×
20.06.2018
218.016.6444

Результат интеллектуальной деятельности: Дифракционный способ определения внутренних дефектов изделий, выполненных по аддитивной технологии

Вид РИД

Изобретение

№ охранного документа
0002658098
Дата охранного документа
19.06.2018
Аннотация: Изобретение относится к неразрушающим способам обнаружения дефектов изделий, выполненных по аддитивной технологии из неметаллических материалов, прозрачных для электромагнитных волн с длинами 10 до 10 метра, и может быть использовано для автоматического обнаружения скрытых дефектов структуры. Способ включает обнаружение дефектов изготовления материала, таких как трещины, пустоты, полости, поры, соизмеримых по величине с длиной монохромной волны, проходящей через исследуемый материал. При взаимодействии электромагнитной волны с дефектом возникает эффект дифракции. Дифракционная картина проецируется на экран, находящийся за исследуемым объектом и состоящий из болометрических ячеек, чувствительных к терагерцевому излучению. Дифракционная картина считывается с экрана и преобразуется в компьютерное изображение, пригодное для последующего анализа. Техническим результатом изобретения является упрощение процедуры фиксации присутствия дефекта и его безопасность по сравнению с аналогичными методами рентгеновской томографии за счет использования неионизирующего излучения. 3 ил.

Изобретение относится к неразрушающим способам обнаружения дефектов изделий, выполненных по аддитивной технологии из неметаллических материалов, прозрачных для электромагнитных волн с длинами 10-4 до 10-3 метра, и может быть использовано при решении вопросов автоматического контроля качества этих изделий, выявления скрытых трещин, пор и других мелкоразмерных дефектов структуры. Основным ограничением практического применения деталей, выполненных по аддитивной технологии, является наличие внутренних дефектов, которые образуются при спекании технологических слоев и являются особенностью данной технологии. Для обнаружения указанных дефектов используются ультразвуковые способы контроля, однако из-за расположения указанных дефектов один над другим данный способ не всегда позволяет обнаружить все дефекты.

Известен способ рентгеновской томографии для определения дефектов в оптически непрозрачных средах [Вайнберг Э.И., Клюев В.В., Курозаев В.П. Промышленная рентгеновская вычислительная томография, в кн.: Приборы для неразрушающего контроля материалов и изделий. Справочник, под ред. В.В. Клюева, 2 изд., т. 1, М., 1986].

Способ заключается в получении рентгеновских снимков исследуемого объекта с разных ракурсов с последующей компьютерной обработкой для получения трехмерной картины внутренней структуры материала. На полученной картине видны как отличные по цвету и яркости все дефекты внутренней структуры материала. К недостаткам этого способа относятся: необходимость выполнения нескольких снимков с разных ракурсов, что либо значительно повышает стоимость используемого оборудования, либо требует увеличения времени на поиск дефекта; необходимость использования сложного программного обеспечения для получения искомой трехмерной картины и значительные затраты вычислительных ресурсов; использование источника ионизирующего рентгеновского излучения, вредного для здоровья.

Наиболее близким к предлагаемому способу является способ рентгеновской томографии [патент RU 2505800 C2. Сырямкин В.И. и др. «Способ рентгеновской томографии и устройство для его осуществления», заявка №2012119065/28 от 10.05.2012, опубликовано: 27.01.2014, Бюл. №3], заключающийся в том, что облучают и воспринимают массив изображения энергетического спектра рентгеновского излучения, проходящего через объект, при этом восстанавливают изображение по теневым проекциям объекта, затем формируют, сравнивают и анализируют текущие и эталонные интегральные характеристики изображения объекта, определяют дефекты объекта и отображают результаты анализа объекта.

К недостаткам этого способа можно отнести:

1. Использование опасного для здоровья рентгеновского излучения.

2. Необходимость вращения объекта по трем взаимно перпендикулярным осям координат.

3. Сложность и высокая стоимость используемого оборудования.

Целью настоящего изобретения является устранение этих недостатков.

Поставленная цель достигается за счет использования источника монохромного электромагнитного терагерцового излучения (длина волны λ=0,1-1 мм, частота ν=3⋅1011-3⋅1012 Гц). Волны этого диапазона свободно проникают через большинство диэлектриков, в частности пластик, керамику, полимеры, которые как раз используются при трехмерной печати (аддитивные технологии). Геометрические размеры дефектов изготовления (трещины, пустоты, полости, поры) в материале соизмеримы по величине с длиной монохромной волны, проходящей через исследуемый материал. При взаимодействии электромагнитной волны с дефектом возникает эффект дифракции, аналогичный дифракции оптических волн на щели или дифракционной решетке. Полученная дифракционная картина проецируется на экран, находящийся за исследуемым объектом и состоящий из болометрических ячеек, чувствительных к терагерцевому излучению. Дифракционная картина считывается с экрана и преобразуется в компьютерное изображение, пригодное для последующего анализа. В процессе исследования объект остается неподвижным, съемка выполняется с одного ракурса.

Амплитуда светового сигнала на экране в общем случае описывается выражением Релея-Зоммерфельда:

,

где U(P0) - комплексная амплитуда излучения в точке P0 на экране, U(P1) - комплексная амплитуда излучения в точке P1 внутри объекта, r - расстояние между точками P0 и P1, λ - длина волны излучения, θ - угол между нормалью из точки P1 к плоскости экрана и вектором r из точки P0 в точку P1, i - мнимая единица, S1 - поверхность, содержащая семейство точек P1. В точках расположения дефектов величина U(P1) будет отличаться от величины U(P1) в однородной части объекта. Интенсивность электромагнитного сигнала в точке Р0 связана с комплексной амплитудой соотношением:

,

где U*(P0) - величина, комплексно сопряженная с величиной амплитуды U(P0).

Таким образом, величина комплексной амплитуды и связанной с ней интенсивности сигнала в дифракционной картине на экране будут различными в зависимости от того, есть внутри исследуемого объекта дефект или нет.

Существенными отличиями заявляемого решения являются:

1. «Поставленная цель достигается за счет использования источника монохромного электромагнитного терагерцового излучения». В прототипе использовалось рентгеновское излучение.

2. «При взаимодействии электромагнитной волны с дефектом возникает эффект дифракции, аналогичный дифракции оптических волн». В прототипе для выявления дефектов используются теневые проекции объекта.

3. «Дифракционная картина считывается с экрана и преобразуется в компьютерное изображения, пригодное для последующего анализа». В прототипе по теневым проекциям формируют, сравнивают и анализируют текущие и эталонные интегральные характеристики изображения объекта.

4. «В процессе исследования объект остается неподвижным». В прототипе осуществлялось вращение и смещение объекта по трем взаимно перпендикулярным осям системы координат.

Фиг. 1 поясняет суть предлагаемого метода. Источник когерентного терагерцового излучения 1 (терагерцевый лазер) просвечивает монохроматическим лучом 2 исследуемый объект 3. Если внутри исследуемого объекта на пути луча 2 располагается трещина, то на экране 5 отображается дифракционная картина. P0 - точка на экране 5, в которой регистрируется некоторая интенсивность электромагнитного сигнала. P1 - точка внутри исследуемого объекта, источник вторичного электромагнитного излучения в результате дифракции луча 2 на трещине 4. Радиус-вектор r из точки в точку составляет угол θ с осью Z. Экран 5 представляет собой матрицу фотоприемников, чувствительных к терагерцевому излучению, изготовленную, например, по технологии [патент RU 2545497 C1. Чесноков В.В., Чесноков Д.В., Кочкарев Д.В., Кузнецов М.В. «Способ изготовления детекторов терагерцового диапазона», заявка №2014100144/28 от 09.01.2014, опубликовано: 10.04.2015, Бюл. №10]. Картина, полученная на экране 5, фиксируется в виде цифрового изображения и обрабатывается в дальнейшем на компьютере. При наличии внутри объекта 3 дефекта 4, соизмеримого с длиной волны луча 2, она представляет собой упорядоченный набор дифракционных максимумов Mj (на Фиг. 1 обозначены белыми эллипсами в поле темного экрана 5). Среднее расстояние между соседними дифракционными максимумами может быть определено по формуле

,

где Δj, j+1 - расстояние между соседними дифракционными максимумами Mj и Mj+1; j - индекс максимума, где j=0 - индекс центрального дифракционного максимума, jmax - индекс последнего наблюдаемого (наиболее удаленного от центрального) дифракционного максимума.

На Фиг. 2 приведены изображения, зафиксированные на экране 5 в случае исследования объекта без внутренних дефектов (а) и имеющейся внутри него трещиной (б). На Фиг. 2(б) ясно видны дифракционные максимумы, свидетельствующие о наличии внутри исследуемого объекта дефекта его структуры.

На Фиг. 3 приведена зависимость среднего расстояния между соседними дифракционными максимумами, расположенными на оси X, от расстояния между трещиной внутри исследуемого объекта и плоскостью XY экрана 5. Из приведенного графика следует, что с увеличением расстояния L между трещиной и экраном возрастает и среднее расстояние между дифракционными максимумами.

Приведенные экспериментальные данные свидетельствуют о том, что заявляемый метод работоспособен. Он позволяет в автоматическом режиме и с высокой скоростью, без проведения съемки с разных ракурсов и разрушения объекта исследования, не только выявлять наличие скрытого дефекта структуры в объекте, изготовленном по аддитивной технологии, но и оценивать его геометрическое положение. Для реализации метода достаточно источника когерентного излучения с фиксированной длиной волны в диапазоне от 0,1 до 1 мм и экрана, чувствительного к вышеуказанному излучению, с устройством преобразования интенсивности принятого сигнала в цифровой компьютерный формат. Заявляемый способ не требует другого специального дорогостоящего оборудования, прецизионной юстировки и квалифицированного обслуживания.


Дифракционный способ определения внутренних дефектов изделий, выполненных по аддитивной технологии
Дифракционный способ определения внутренних дефектов изделий, выполненных по аддитивной технологии
Дифракционный способ определения внутренних дефектов изделий, выполненных по аддитивной технологии
Дифракционный способ определения внутренних дефектов изделий, выполненных по аддитивной технологии
Дифракционный способ определения внутренних дефектов изделий, выполненных по аддитивной технологии
Источник поступления информации: Роспатент

Показаны записи 1-6 из 6.
20.02.2013
№216.012.27d6

Способ образования трещин в образцах из алюминиевых сплавов

Изобретение относится к механическим испытаниям материалов, в частности к способам изготовления образца с трещиной. Сущность: в образце создаются механические напряжения для прорастания трещины. Прорастание трещины обеспечивается локальным охрупчиванием образца путем нанесения ограниченного...
Тип: Изобретение
Номер охранного документа: 0002475718
Дата охранного документа: 20.02.2013
27.02.2014
№216.012.a746

Способ измерения геометрических параметров структуры текстильных материалов

Изобретение может быть использовано для измерения основных технологических структурных параметров, связанных с периодичностью структуры текстильных материалов, при текущем автоматическом контроле. Способ заключается в том, что по компьютерному оптическому изображению поверхности исследуемого...
Тип: Изобретение
Номер охранного документа: 0002508537
Дата охранного документа: 27.02.2014
27.11.2014
№216.013.0be0

Способ контроля зоны термического влияния сварных соединений

Использование: для контроля зоны термического влияния сварных соединений. Сущность изобретения заключается в том, что сварное соединение подвергают термическому воздействию, регистрируют сигналы акустической эмиссии и по их параметрам судят о качестве сварного соединения, при этом сигналы...
Тип: Изобретение
Номер охранного документа: 0002534448
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0ce7

Способ определения угла крутки нити

Изобретение относится к неразрушающим способам измерения угла, крутки нити. В способе производят анализ угловой диаграммы распределения светового потока в дифракционной картине, наблюдаемой от исследуемого материала при освещении поверхности нити параллельным пучком монохроматического...
Тип: Изобретение
Номер охранного документа: 0002534720
Дата охранного документа: 10.12.2014
13.02.2018
№218.016.209f

Устройство для контроля сварных соединений

Использование: для контроля сварных соединений. Сущность изобретения заключается в том, что устройство для контроля сварных соединений содержит функционально соединенные и объединенные в единую конструкцию пьезоэлектрический преобразователь, установленный на контролируемом сварном соединении,...
Тип: Изобретение
Номер охранного документа: 0002641616
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.20cf

Способ определения механических напряжений в стальных конструкциях магнитным методом контроля

Способ определения механических напряжений стальных конструкций основан на определении действительного направления напряжения в точке контроля на основании полученной зависимости анизотропии коэрцитивной силы от величины напряжения. Для этого измеряют значение коэрцитивной силы в точке контроля...
Тип: Изобретение
Номер охранного документа: 0002641511
Дата охранного документа: 17.01.2018
Показаны записи 1-4 из 4.
27.11.2014
№216.013.0be0

Способ контроля зоны термического влияния сварных соединений

Использование: для контроля зоны термического влияния сварных соединений. Сущность изобретения заключается в том, что сварное соединение подвергают термическому воздействию, регистрируют сигналы акустической эмиссии и по их параметрам судят о качестве сварного соединения, при этом сигналы...
Тип: Изобретение
Номер охранного документа: 0002534448
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0ce7

Способ определения угла крутки нити

Изобретение относится к неразрушающим способам измерения угла, крутки нити. В способе производят анализ угловой диаграммы распределения светового потока в дифракционной картине, наблюдаемой от исследуемого материала при освещении поверхности нити параллельным пучком монохроматического...
Тип: Изобретение
Номер охранного документа: 0002534720
Дата охранного документа: 10.12.2014
13.02.2018
№218.016.209f

Устройство для контроля сварных соединений

Использование: для контроля сварных соединений. Сущность изобретения заключается в том, что устройство для контроля сварных соединений содержит функционально соединенные и объединенные в единую конструкцию пьезоэлектрический преобразователь, установленный на контролируемом сварном соединении,...
Тип: Изобретение
Номер охранного документа: 0002641616
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.20cf

Способ определения механических напряжений в стальных конструкциях магнитным методом контроля

Способ определения механических напряжений стальных конструкций основан на определении действительного направления напряжения в точке контроля на основании полученной зависимости анизотропии коэрцитивной силы от величины напряжения. Для этого измеряют значение коэрцитивной силы в точке контроля...
Тип: Изобретение
Номер охранного документа: 0002641511
Дата охранного документа: 17.01.2018
+ добавить свой РИД