×
16.06.2018
218.016.62e4

Результат интеллектуальной деятельности: СПОСОБ МОДИФИЦИРОВАНИЯ МИКРО- И НАНОПОРОШКОВ АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к порошковой металлургии, в частности к обработке металлических порошков для улучшения их термохимических свойств. Может быть использовано для повышения реакционной способности порошков алюминия при горении, спекании, в технологиях порошковой металлургии, 3D печати, а также для активирования процессов синтеза интерметаллидов, процессов горения твердых топлив и пиротехнических составов, взаимодействия с водой и получения водорода. Способ модифицирования микро- и нанопорошков алюминия включает облучение образца порошка высокоэнергетичным излучением, которое обеспечивает накопление положительного заряда внутренней части частицы алюминия. В качестве высокоэнергетического излучения используют СВЧ-излучение, которым облучают образцы в воздушной атмосфере импульсами длительностью 25 нс, частотой излучения 2,8 ГГц и плотностью мощности 8 кВт/см, частотой следования 25 Гц в течение не менее 10 минут. Технический результатом является повышение запасенной энергии в порошках. 1 табл., 2 ил.

Изобретение относится к порошковой металлургии, а именно к специальной обработке металлических порошков для улучшения их термохимических свойств, и может быть использовано для повышения реакционной способности порошков алюминия при горении, спекании, в технологиях порошковой металлургии, 3D печати, а также для активирования процессов синтеза интерметаллидов, процессов горения твердых топлив и пиротехнических составов, взаимодействия с водой и получения водорода.

Известен способ повышения запасенной энергии в нанопорошках металлов [RU 2461445 С1, МПК B22F 1/00 (2006.01), B82B 3/00 (2006.01), опубл. 20.09.2012], заключающийся в облучении нанопорошков металлов в вакууме потоком ускоренных электронов с энергией не более 6 МэВ, причем толщина образца нанопорошка превышает длину пробега электронов в нанопорошке. Запасенная энергия в результате облучения повышается в 2-2,5 раз.

Недостатками такого способа являются высокие энергозатраты на генерацию потока ускоренных электронов, а также то, что при облучении образцов нанопорошков металлов с толщиной слоя более длины пробега электронов в образце не весь нанопорошок подвергается облучению, вследствие чего не весь нанопорошок запасает энергию. Кроме того, недостатком является использование оборудования, работающего при высоких напряжениях и использующего вакуум, что делает процесс низкоэффективным, а оборудование опасным для персонала в процессе эксплуатации.

Наиболее близким к заявляемому является способ получения нанопорошков металлов с повышенной запасенной энергией [RU 2535109 С2, МПК B22F 1/00 (2006.01), B82Y 40/00 (2006.01), опубл. 10.12.2014], заключающийся в том, что образец нанопорошка металла облучают потоком ускоренных электронов с энергией не более 6 МэВ в вакууме с обеспечением положительного заряда внутренней части частицы металла при облучении образца нанопорошка металла, толщина которого не превышает длину пробега электронов. Способ обеспечивает повышение запасенной энергии на 10-15%.

Недостатками этого способа являются высокие энергозатраты на генерацию электронного потока, низкое пороговое значение энергии электронов (менее 6 МэВ), выше которого возможно протекание ядерных реакций и наработка радиоактивных изотопов и, как следствие, низкая производительность.

Техническая проблема, решение которой обеспечивается при осуществлении предложенного изобретения, заключается в создании способа модифицирования микро- и нанопорошков алюминия, позволяющего повысить запасенную энергию в этих порошках.

Предложенный способ модифицирования микро- и нанопорошков алюминия, так же как в прототипе, включает облучение образца порошка высокоэнергетичным излучением, обеспечивая накопление положительного заряда внутренней части частицы алюминия.

Согласно изобретению в качестве высокоэнергетического излучения используют СВЧ-излучение, которым облучают образцы в воздушной атмосфере импульсами длительностью 25 нс, частотой излучения 2,8 ГГц и плотностью мощности 8 кВт/см2, частотой следования 25 Гц в течение не менее 10 минут.

Предложенный способ обеспечивает повышение запасенной энергии на 40-150%.

В таблице 1 представлены результаты термического анализа облученных порошков алюминия.

На фиг. 1 показана термограмма порошка алюминия АСД-6М, не подвергнутого модификации.

На фиг. 2 представлена термограмма модифицированного порошка алюминия АСД-6М.

Использовали образцы порошка алюминия различной дисперсности: нанопорошок алюминия марки Alex, промышленные порошки марок АСД-6М, АСД-8, АСД-10. Каждый порошок навеской по 1 г помещали в кварцевые пробирки объемом 3 см3 и диаметром 10 мм2 с диэлектрической проницаемостью 3,8 и располагали в волноводе генератора СВЧ-излучения на основе магнетрона МИ456. Облучение образцов проводили в воздушной атмосфере излучением с частотой 2,8 ГГц при постоянной плотности мощности не менее 8 кВт/см2 импульсами длительностью 25 не с частотой следования 25 Гц в течение 10 минут.

После облучения образцы порошков алюминия подвергали дифференциальному термическому анализу, используя термоанализатор SDT Q 600. Точность измерения температуры составляла 0,001°C, калориметрическая точность ±2%, масса навески ~5 мг, скорость нагрева 10°C/с, атмосфера - воздух.

Величину запасенной энергии в порошке алюминия после модифицирования СВЧ-излучением определяли как разность удельных тепловых эффектов окисления проб исходного и облученного порошков алюминия в воздухе при нагревании до 1250°C в ячейке термоанализатора. В качестве начала отсчета принимали удельный тепловой эффект окисления немодифицированного порошка. После воздействия СВЧ-излучения произошло модифицирование порошков алюминия, что подтверждается увеличением удельного теплового эффекта окисления на величину запасенной энергии. Удельный тепловой эффект окисления рассчитывался термоанализатором автоматически. На фиг. 1 и фиг. 2 представлены термограммы порошка алюминия АСД-6М до (фиг. 1) и после (фиг. 2) модифицирования СВЧ-излучением. Удельный тепловой эффект окисления определяли как сумму двух экзоэффектов при окислении. На фиг. 1 он равен сумме 572,8 Дж/г и 4858 Дж/г (~5431 Дж/г), на фиг. 2 соответствующая сумма равна 13662 Дж/г. Разность величин удельных тепловых эффектов модифицированного СВЧ-излучением порошка (13662 Дж/г) и не модифицированного порошка (5431 Дж/г) является величиной запасенной энергии (8231 Дж/г). Аналогичным образом рассчитывали величины запасенной энергии для нанопорошка алюминия и микронных порошков АСД-8, АСД-10.

Результаты термического анализа облученных порошков алюминия приведены в таблице 1. Увеличение удельного теплового эффекта происходило при действии СВЧ-излучения на микронные порошки всех марок. Максимальное увеличение удельного теплового эффекта (в 2,5 раза - на 150%) произошло для микронного порошка АСД-6М. Повышение удельного теплового эффекта для порошка АСД-8 - в 1,9 раз (на 90%), для АСД-10 - в 1,4 раза (на 40%). Для нанопорошка алюминия увеличение удельного теплового эффекта произошло в 1,6 раза - на 60%.

Способ модифицирования микро- и нанопорошков алюминия, включающий облучение образца порошка высокоэнергетическим излучением с обеспечением накопления положительного заряда внутренней части частицы алюминия, отличающийся тем, что в качестве высокоэнергетического излучения используют СВЧ-излучение, а облучение проводят в воздушной атмосфере импульсами длительностью 25 нс, частотой излучения 2,8 ГГц и плотностью мощности 8 кВт/см, с частотой следования 25 Гц в течение не менее 10 минут.
СПОСОБ МОДИФИЦИРОВАНИЯ МИКРО- И НАНОПОРОШКОВ АЛЮМИНИЯ
СПОСОБ МОДИФИЦИРОВАНИЯ МИКРО- И НАНОПОРОШКОВ АЛЮМИНИЯ
Источник поступления информации: Роспатент

Показаны записи 181-190 из 255.
19.12.2018
№218.016.a8b1

Устройство ультразвуковой томографии

Использование: для визуализации внутреннего строения объектов с помощью ультразвуковых волн. Сущность изобретения заключается в том, что устройство ультразвуковой томографии содержит антенную решетку с n пьезопреобразователями, каждый из которых соединен с выходом соответствующего генератора...
Тип: Изобретение
Номер охранного документа: 0002675214
Дата охранного документа: 17.12.2018
19.12.2018
№218.016.a8b5

Способ ультразвуковой томографии

Использование: для визуализации внутреннего строения объектов с помощью ультразвуковых волн. Сущность изобретения заключается в том, что cпособ ультразвуковой томографии включает излучение в объект контроля и прием из него ультразвуковых сигналов с помощью антенной решетки, фиксацию реализации...
Тип: Изобретение
Номер охранного документа: 0002675217
Дата охранного документа: 17.12.2018
21.12.2018
№218.016.aa09

Средство, обладающее противоинсультным действием

Изобретение относится к фармацевтической промышленности, а именно к лекарственному веществу, обладающему противоинсультным действием. Применение аскорбата лития дигидрата в качестве средства, обладающего противоинсультным действием. Предлагаемое средство обладает противоинсультным действием и...
Тип: Изобретение
Номер охранного документа: 0002675601
Дата охранного документа: 20.12.2018
22.01.2019
№219.016.b2cb

Вентильный электропривод колебательного движения

Изобретение относится к области электротехники и может быть использовано в электроприводах сканирования, калибровки, измерения, контроля и управления, а также в автоматизированных электроприводах механизмов с колебательным движением рабочего органа. Техническим результатом является улучшение...
Тип: Изобретение
Номер охранного документа: 0002677682
Дата охранного документа: 21.01.2019
08.02.2019
№219.016.b81a

Композит для 3d-печати медицинских изделий

Изобретение относится к композиционным материалам медицинского назначения, а именно к высокомолекулярным материалам с фосфорсодержащими неорганическими наполнителями, и может быть использовано для изготовления изделий медицинского назначения методом 3D-печати путем послойного нанесения расплава...
Тип: Изобретение
Номер охранного документа: 0002679127
Дата охранного документа: 06.02.2019
14.02.2019
№219.016.b9f5

Композит для 3d-печати медицинских изделий

Изобретение относится к композиционным материалам медицинского назначения, а именно к высокомолекулярным материалам с фосфорсодержащими неорганическими наполнителями, и может быть использовано для изготовления изделий медицинского назначения методом 3D-печати путем послойного нанесения расплава...
Тип: Изобретение
Номер охранного документа: 0002679632
Дата охранного документа: 12.02.2019
14.02.2019
№219.016.b9fd

Устройство ультразвуковой томографии

Использование: для ультразвуковой томографии. Сущность изобретения заключается в том, что устройство ультразвуковой томографии содержит персональный компьютер, соединенный с микроконтроллером, к которому последовательно подключены многоканальный генератор, антенная решетка, многоканальный...
Тип: Изобретение
Номер охранного документа: 0002679648
Дата охранного документа: 12.02.2019
14.02.2019
№219.016.ba28

Способ ультразвуковой томографии

Использование: для ультразвуковой томографии. Сущность изобретения заключается в том, что осуществляют размещение пьезопреобразователей антенной решетки на объекте контроля, циклическое ультразвуковое облучение объекта контроля поочередно каждым пьезопреобразователем антенной решетки и...
Тип: Изобретение
Номер охранного документа: 0002679647
Дата охранного документа: 12.02.2019
08.03.2019
№219.016.d2dd

Барабанная вращающаяся печь

Изобретение относится к вращающейся барабанной печи с малым наклоном, нагреваемой извне, для обработки минеральных и/или техногенных руд или концентратов фторидом и/или гидрофторидом аммония при переработке титансодержащего сырья. Барабанная вращающаяся печь содержит теплоизолированный изнутри...
Тип: Изобретение
Номер охранного документа: 0002681328
Дата охранного документа: 06.03.2019
08.03.2019
№219.016.d30e

Способ формирования покрытия на имплантате из сплава титана

Изобретение относится к области гальванотехники, в частности к анодированию сплавов титана, и может быть использовано в травматологии, ортопедии и стоматологии. Способ включает анодирование имплантата импульсным током в условиях искрового разряда при напряжении 170-200 В и температуре 10-20°С в...
Тип: Изобретение
Номер охранного документа: 0002681329
Дата охранного документа: 06.03.2019
Показаны записи 11-11 из 11.
21.04.2023
№223.018.5002

Устройство для исследования процесса горения нанопорошков металлов или их смесей

Изобретение относится к области неразрушающего контроля и диагностики оптическими методами и касается устройства для исследования процесса горения нанопорошков металлов или их смесей. Устройство содержит инициирующий лазер, две цифровые камеры и лазерный усилитель яркости, на оптической оси...
Тип: Изобретение
Номер охранного документа: 0002746308
Дата охранного документа: 12.04.2021
+ добавить свой РИД