×
11.06.2018
218.016.617f

Способ количественной трехмерной реконструкции поверхности образца в растровом электронном микроскопе

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области растровой электронной микроскопии. В изобретении используется принцип фотограмметрической обработки изображений, полученных в растровом электронном микроскопе при различных углах наклона исследуемого образца. На поверхности исследуемого образца предварительно формируются структурные элементы сферической формы, создающие контраст на изображении, результаты фотограмметрической обработки изображений корректируются на значения индивидуальной высоты структурных элементов, определяемых по изображениям. Технический результат - повышение точности результатов трехмерной реконструкции. 1 з.п. ф-лы, 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к области растровой электронной микроскопии и может быть использовано для контроля размерных параметров изделий микро- и наноэлектроники, микросистемной техники, в материаловедении.

Растровый электронный микроскоп (РЭМ), обладающий высоким пространственным разрешением и большой глубиной фокуса, является наиболее часто используемым прибором для получения изображений поверхностей микро- и нанообъектов. Удобство эксплуатации РЭМ объясняется высокой скоростью получения изображений и широким диапазоном увеличений.

Однако сами по себе РЭМ-изображения являются двумерными и дают лишь качественную информацию о Z-координате, поскольку уровень видеосигнала для каждой точки изображения является сложной функцией композиционных и топографических особенностей поверхности образца, а также коэффициента сбора вторичных электронов. Тем не менее на практике часто бывает необходимым проведение трехмерной реконструкции объектов, в том числе кремниевых, с высоким аспектным соотношением, к которым относятся многие изделия микро- и наноэлектроники и микросистемной техники. При этом восстановление трехмерного профиля указанных объектов традиционными методами, например атомно-силовой микроскопии, может быть затруднительно.

Известен способ [1] количественной трехмерной реконструкции объектов по стереоизображениям, получаемым в растровом электронном микроскопе при наклоне столика объектов на углы ±Δϕ относительно его горизонтального положения. Данный способ использует принципы фотограмметрической обработки изображений, определяя перепад высот между двумя точками А и В (точка В находится в начале координат) на поверхности объекта на основании математических вычислений по формуле (при условии, что наклон столика объектов осуществляется вокруг оси X)

где индексы 1 и 2 относятся соответственно к Y- координатам точки А на 1-м изображении (при наклоне объекта на угол -Δϕ) и 2-м изображении (при наклоне объекта на угол +Δϕ), значение у12 - изменение расстояния вдоль оси Y между двумя точками А и В (так называемый параллакс) при наклоне объекта на угол 2Δϕ вокруг оси X.

Процесс фотограмметрической обработки стереоизображений (получаемых при наклоне объекта на углы +Δϕ и -Δϕ) включает несколько этапов:

- нахождение массива контрастных элементов для каждого из стереоизображений;

- определение массива пар гомологических точек, где внутри каждой пары гомологические точки, представляющие контрастные элементы из разных изображений, соответствуют одному местоположению на поверхности объекта;

- определение трехмерных координат точек поверхности исследуемого объекта в соответствии с формулой (1).

Данный способ обладает следующими недостатками, которые влияют на точность результатов количественной трехмерной реконструкции:

- не всегда удается выделить на поверхности исследуемого объекта достаточное множество контрастных элементов, которые можно однозначно идентифицировать на каждом из стереоизображений, при этом размытость указанных точек или их недостаточный контраст на фоне шумов видеосигнала (обуславливая погрешность идентификации гомологических точек) будут ухудшать показатели точности результатов количественной трехмерной реконструкции;

- дисторсия изображения в растровом электронном микроскопе, приводящая к искажению двумерных координат, влияет на погрешность результатов трехмерной реконструкции.

В патенте [2] изложен способ реконструкции поверхности исследуемого объекта в РЭМ, реализуемый при неподвижном столике объектов посредством изменения угла, под которым электронный зонд падает на объект для трех или более значений указанного угла. Данное предложение может быть реализовано при введении дополнительных отклоняющих элементов в электронно-оптическую колонну, формирующих двойное отклонение электронного пучка, при этом место падения электронного зонда на образец должно оставаться неизменным. Регистрация информативного сигнала от электронов, испускаемых исследуемым образцом как результат воздействия на образец первичного электронного зонда, осуществляется набором детекторов электронов, расположенных в различных угловых положениях по отношению к электронно-оптической оси. Хотя данное усовершенствование ускоряет процесс трехмерной реконструкции поверхности исследуемого объекта, но при этом ухудшается пространственное разрешение РЭМ из-за введения дополнительных отклоняющих элементов в колонну РЭМ, а значит, снижается точность результатов трехмерной реконструкции.

Недостатки, присущие способу трехмерной реконструкции поверхности объекта в РЭМ, описанному в [1], частично решаются в патенте [3], который может быть выбран в качестве прототипа. В данном патенте описан способ трехмерной реконструкции поверхности в растровом электронном микроскопе, включающий регистрацию сигнала электронов, эмитируемых образцом при сканировании электронным пучком исследуемого объекта для двух его угловых положений. Для облегчения процедуры стереосовмещения РЭМ-изображений, получаемых при двух углах наклона образца, на поверхности исследуемого образца формируют референтные маркеры, а необходимость их формирования оценивается компьютерной программой после предварительного сканирования образца в РЭМ и определения наличия необходимого количества характерных деталей на изображении. В случае обнаружения участков образца, где отсутствуют характерные детали изображения, необходимые для выполнения процедуры стереосовмещения изображений, на таких участках формируются референтные маркеры.

Кроме того, для устранения погрешностей трехмерной реконструкции, связанной с дисторсией изображения, в патенте [3] предлагается использовать референтные пластины, на которых в заданных точках сформированы референтные маркеры. РЭМ-изображения референтных пластин при двух значениях наклона столика объектов РЭМ позволяют определить корректирующие коэффициенты, связанные с дисторсией изображения. Полученные корректирующие коэффициенты используются в дальнейшем для преобразования изображений от исследуемого объекта при двух углах наклона для компенсации дисторсии изображения.

Однако на практике очень часто основной вклад в погрешность трехмерной реконструкции дает не дисторсия изображения, а процедура совмещения характерных точек на стереоизображениях [4]. Например, для образца, участок поверхности которого имеет плавно меняющийся рельеф, контраст изображения будет отсутствовать на этом участке, поскольку указанный контраст не будет превышать величины шума тракта видеоизображения и совмещение характерных точек на стереоизображениях невозможно ввиду их отсутствия на изображениях. В патенте [3] предложено формировать на поверхности исследуемого образца референтные маркеры, которые обеспечат контраст на изображении в точках расположения маркеров. Референтные маркеры должны иметь конечные размеры, чтобы обеспечить контраст на изображении, поэтому реконструкция поверхностного рельефа происходит с учетом высоты самих маркеров.

В описываемом изобретении [3] предлагается, что референтными маркерами могут быть контаминационные образования конусной формы, возникающие при фиксации электронного зонда в заданной точке в течение определенного промежутка времени. Механизм роста таких контаминационных образований обусловлен [5]:

- полимеризацией на поверхности образца под действием электронного пучка углеводородных соединений, которые входят в состав остаточной атмосферы камеры образцов РЭМ;

- поверхностной диффузией и полимеризацией под электронным пучком углеводородных соединений, адсорбированных на поверхности образца.

Из имеющихся в наличии литературных данных по скорости роста контаминационных образований конусной формы [6] известно, что время, необходимое для формирования одного указанного контаминационного образования, составляет примерно 1 минуту. Поэтому является проблематичным формирование за разумное время референтных маркеров в количестве, достаточном для построение трехмерной карты поверхностного рельефа. Кроме того, на наклонных участках поверхностного рельефа такой референтный маркер будет иметь другие размеры по сравнению с плоскими участками поверхности в силу увеличения выхода вторичных электронов с наклонной поверхности. При изменении состава образца на отдельных участках поверхности также будут изменяться условия роста контаминационных образований. Неодинаковость габаритных размеров референтных маркеров создает дополнительную систематическую погрешность трехмерной реконструкции.

Задачей изобретения является повышение точности результатов количественной трехмерной реконструкции поверхности образца в растровом электронном микроскопе. Указанная задача решается путем формирования на поверхности исследуемого образца структурных элементов, которые создают контраст на РЭМ-изображениях и учете размеров указанных структурных элементов для определения истинной формы поверхности исследуемого образца.

Поставленная задача решается с помощью способа трехмерной реконструкции поверхности образца, который включает в себя установку образца на предметном столике РЭМ с возможностью его наклона в два угловых положения относительно электронно-оптической оси, облучение образца сфокусированным пучком ускоренных электронов, детектирование сигнала вторичных электронов, эмиттируемых образцом, получение двух изображений при сканировании электронным пучком образца в двух угловых положениях предметного столика.

Особенностью заявляемого способа является то, что предварительно на образце формируют структурные элементы сферической формы, которые создают контраст на РЭМ-изображениях, трехмерная реконструкция осуществляется в 2 этапа посредством фотограмметрической обработки полученных изображений, используя координаты центров структурных элементов на изображениях, причем на первом этапе производят предварительную трехмерную реконструкцию, для чего результаты фотограмметрической обработки в виде Z-координаты для центра каждого структурного элемента уменьшаются на параметр, равный диаметра D структурного элемента, который определяют по изображению для каждого структурного элемента и по результатам предварительной трехмерной реконструкции определяют угол локального наклона поверхности α относительно горизонтальной плоскости в месте расположения каждого структурного элемента;

на втором этапе трехмерной реконструкции результаты фотограмметрической обработки в виде Z-координаты для центра каждого структурного элемента уменьшаются на параметр, равный D/(2⋅cosα).

Вариантом реализации заявляемого способа может быть использование в качестве структурных элементов на поверхности исследуемого образца элементов сферической формы из олова.

Предложенный способ иллюстрируется микрофотографиями и чертежами.

На фиг. 1 приведено изображение структурного элемента сферической формы на участке поверхности исследуемого образца, имеющего локальный наклон α относительно горизонтальной плоскости.

Показаны положения электронного пучка , соответствующие краям сферического структурного элемента на РЭМ-изображении - точки С и D. На фиг. 2 приведена микрофотография структурных элементов сферической формы из олова на графитовой подложке.

Из фиг. 1 следует, что в результате определения краев сферического элемента - точек С и D, центр сферического элемента, определяемый в плоскости изображения - точка О будет иметь высоту относительно поверхности образца, равную длине отрезка OA. Из геометрических построений фиг. 1 следует, что , где D=CD - диаметр сферического элемента.

Поэтому при использовании для трехмерной реконструкции координат центров сферических элементов на РЭМ-изображениях результаты указанной реконструкции в виде Z-координат точек, соответствующих центрам сферических элементов, должны корректироваться на значение . Данная коррекция заключается в уменьшении значения Z-координаты (при условии, что ось Z направлена вверх) на величину . Поскольку в общем случае в каждой точке значение угла наклона α неизвестно, на первом этапе производится предварительная трехмерная реконструкция, где коррекция результатов заключается в уменьшении значения Z-координаты на величину D/2, полагая что угол α мал и cosα≈1.

В результате предварительной трехмерной реконструкции получают совокупность XiYiZi примерных координат точек поверхности исследуемого образца в местах расположения структурных элементов. Погрешность определения Z-координаты для наклонных участков исследуемого образца на первом этапе обусловлена тем, что при расчете корректирующего фактора полагают cosα=1.

Локальный наклон α поверхности образца в точке XiYiZi, может быть определен, используя дополнительно координаты двух ближайших точек Xi-1Yi-1Zi-1, и Xi+1Yi+1Zi+1 таких, чтобы указанные 3 точки не лежали на одной прямой. Используя формулы аналитической геометрии, для локального наклона α справедливо

где

Литература

1. Piazzesi G. Photogrammetry with the scanning electron microscope // J. Phys. E: Sci. Instrum. 1973. V. 6. №4. PP. 392-396.

2. G.F. Lorusso, R.A. Watts, A.J. Gubbens, L.S. Hordon. SEM Profile and Surface Reconstruction using multiple data sets. US Patent № US 6930308 B1.

3. N. Kochi, H. Koike. Electron beam device and method for stereoscopic measurements. US Patent № US 6852974 B2.

4. Кузин А.Ю., Васильев А.Л., Митюхляев В.Б., Михуткин А.А., Тодуа П.А., Филиппов М.Н. Анализ факторов, влияющих на погрешность трехмерной реконструкции поверхности объектов с субмикронным рельефом, по полученным в РЭМ стереоизображениям // Измерительная техника. 2016. №3, с. 20-23.

5. Жданов Г.С. О скорости углеводородного загрязнения объектов в микрозондовых системах // Поверхность. 1983, №1. С. 65-72.

6. N. Yoshimura. Vacuum Technology. Practice for Scientific Instruments. Springer-Verlag Berlin Heidelberg. 2008. P.p. 175-203.


Способ количественной трехмерной реконструкции поверхности образца в растровом электронном микроскопе
Способ количественной трехмерной реконструкции поверхности образца в растровом электронном микроскопе
Способ количественной трехмерной реконструкции поверхности образца в растровом электронном микроскопе
Способ количественной трехмерной реконструкции поверхности образца в растровом электронном микроскопе
Источник поступления информации: Роспатент

Показаны записи 1-2 из 2.
26.08.2017
№217.015.d6c1

Способ количественной трехмерной реконструкции поверхности кремниевых микро- и наноструктур

Изобретение относится к области растровой электронной микроскопии. В изобретении используется принцип фотограмметрической обработки изображений, полученных в растровом электронном микроскопе при различных углах наклона исследуемого объекта. Сущность изобретения: исследуемая кремниевая структура...
Тип: Изобретение
Номер охранного документа: 0002622896
Дата охранного документа: 21.06.2017
30.10.2019
№219.017.dba0

Способ трехмерной реконструкции поверхности образца по изображениям, полученным в растровом электронном микроскопе

Изобретение относится к области растровой электронной микроскопии. В изобретении используется принцип фотограмметрической обработки изображений, полученных в растровом электронном микроскопе при различных углах наклона исследуемого образца. Сущность изобретения: на поверхности исследуемого...
Тип: Изобретение
Номер охранного документа: 0002704390
Дата охранного документа: 28.10.2019
Показаны записи 1-9 из 9.
27.12.2013
№216.012.920b

Тестовый объект для калибровки просвечивающих электронных микроскопов

Изобретение относится к области калибровки просвечивающих электронных микроскопов (ПЭМ) при измерениях в нано- и субнанометровом диапазонах. Тестовый объект выполнен в виде держателя образцов с несколькими местами крепления исследуемых объектов, в одном из которых расположена эталонная...
Тип: Изобретение
Номер охранного документа: 0002503080
Дата охранного документа: 27.12.2013
20.06.2014
№216.012.d327

Тестовый объект для калибровки микроскопов в микрометровом и нанометровом диапазонах

Изобретение относится к области калибровки оптических цифровых и конфокальных микроскопов, растровых электронных микроскопов и сканирующих зондовых микроскопов при измерении микронных и нанометровых длин отрезков. Тестовый объект для калибровки микроскопов выполнен в виде канавочных структур,...
Тип: Изобретение
Номер охранного документа: 0002519826
Дата охранного документа: 20.06.2014
27.05.2015
№216.013.4ef2

Способ холодной периодической прокатки особотонкостенных труб

Изобретение относится к области трубопрокатного производства, а именно к изготовлению особотонкостенных труб способом холодной периодической прокатки. Способ включает зажим трубы-заготовки за хвостовую часть патроном подачи и поворота с последующей подачей трубы-заготовки в зону деформации,...
Тип: Изобретение
Номер охранного документа: 0002551728
Дата охранного документа: 27.05.2015
27.07.2015
№216.013.6604

Герметичный кабельный ввод сквозь наружную и внутреннюю стены защитной оболочки атомной электростанции

Изобретение относится к области электротехники, а именно к герметичным вводам электрических цепей в герметичную зону многослойной защитной оболочки атомных электростанций. Герметичный кабельный ввод сквозь наружную и внутреннюю стены защитной оболочки атомной электростанции содержит...
Тип: Изобретение
Номер охранного документа: 0002557669
Дата охранного документа: 27.07.2015
26.08.2017
№217.015.d6c1

Способ количественной трехмерной реконструкции поверхности кремниевых микро- и наноструктур

Изобретение относится к области растровой электронной микроскопии. В изобретении используется принцип фотограмметрической обработки изображений, полученных в растровом электронном микроскопе при различных углах наклона исследуемого объекта. Сущность изобретения: исследуемая кремниевая структура...
Тип: Изобретение
Номер охранного документа: 0002622896
Дата охранного документа: 21.06.2017
10.05.2018
№218.016.415c

Система облицовки стен

Изобретение относится к области строительства, а именно к установочным элементам для облицовочных плиток. Техническим результатом является повышение устойчивости системы облицовки здания к внешним нагрузкам и возможным деформациям, повышение прочности монтажного профиля к боковым нагрузкам, а...
Тип: Изобретение
Номер охранного документа: 0002649199
Дата охранного документа: 30.03.2018
23.02.2019
№219.016.c7ae

Тестовый объект для калибровки растровых электронных и сканирующих зондовых микроскопов

Изобретение относится к области измерения малых длин отрезков, характеризующих геометрические параметры профиля элементов рельефа поверхности твердого тела, в нанометровом диапазоне (1-1000 нм), проводимого с помощью растровых электронных (РЭМ) и сканирующих зондовых (СЗМ) микроскопов....
Тип: Изобретение
Номер охранного документа: 0002325619
Дата охранного документа: 27.05.2008
10.07.2019
№219.017.ae95

Автожир

Изобретение относится к авиационной технике. Автожир состоит из кабины (1), шасси (2), оперения (3), несущего винта, органа управления общим шагом (6) лопастей (7) несущего винта, силовой установки, механической трансмиссии, включающей вал и управляемую фрикционную муфту (11), соединяющую вал с...
Тип: Изобретение
Номер охранного документа: 0002360837
Дата охранного документа: 10.07.2009
30.10.2019
№219.017.dba0

Способ трехмерной реконструкции поверхности образца по изображениям, полученным в растровом электронном микроскопе

Изобретение относится к области растровой электронной микроскопии. В изобретении используется принцип фотограмметрической обработки изображений, полученных в растровом электронном микроскопе при различных углах наклона исследуемого образца. Сущность изобретения: на поверхности исследуемого...
Тип: Изобретение
Номер охранного документа: 0002704390
Дата охранного документа: 28.10.2019
+ добавить свой РИД