×
11.06.2018
218.016.60af

Результат интеллектуальной деятельности: Магнитная система ротора синхронного двигателя с инкорпорированными магнитами (варианты)

Вид РИД

Изобретение

Аннотация: Изобретение относится к электротехнике и может быть использовано в электромашиностроении при производстве электродвигателей. Техническим результатом является повышение мощности, механического момента, к.п.д. при снижении массогабаритных показателей. Магнитная система ротора с инкорпорированными постоянными магнитами содержит призматические постоянные магниты, вмонтированные в магнитопровод ротора. По внешней стороне окружности магнитопровода ротора установлены электропроводящие стержни, накоротко замкнутые посредством электропроводящих колец, расположенных с торцов магнитопровода, с возможностью обеспечения синхронному двигателю асинхронного прямого пуска. Инкорпорированные магниты выполнены в виде сектора окружностей полого цилиндра, которые образуют n-полюсную магнитную систему. По первому варианту сцепление между магнитами и магнитопроводом обеспечивают титановые пластины, жестко соединенные с магнитопроводом посредством соединения "ласточкин хвост" и с электропроводящими стержнями посредством замкнутых электропроводящих колец, расположенных с торцов магнитопровода. По второму варианту сцепление между инкорпорированными магнитами и магнитопроводом ротора обеспечивают накоротко замкнутые электропроводящие направляющие, расположенные на периферии полюсных делений, которые жестко сцеплены с магнитопроводом ротора посредством соединения "ласточкин хвост" и с замкнутыми электропроводящими кольцами, расположенными с торцов магнитопровода ротора. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области электротехники, а более конкретно к устройству роторов синхронного двигателя с инкорпорированными магнитами, и может быть использовано в электромашиностроении при производстве электродвигателей.

Известна магнитная система ротора (патент RU 2244370, МПК Н02K 1/06, опубл. 10.01.2005), содержащая закрепленный на валу магнитопровод, выполненный из магнитомягкого материала без разрывов по внешнему и внутреннему диаметрам и с отверстиями под размещение в них постоянных магнитов. Отверстия выполнены прямоугольной формы с наклоном к радиальным осям (расположены вдоль хорд) таким образом, что расстояние между обращенными друг к другу и к валу боковыми поверхностями их по мере приближения к расточке ротора уменьшается, а между противоположными поверхностями тех же отверстий и в том же направлении увеличивается. Магнитная система ротора с требуемым по условию ее работоспособности чередованием вдоль расточки ротора полярностью полюсов образуется путем установки в указанные прямоугольной формы отверстия ротора намагниченных перпендикулярно боковым поверхностям призматических постоянных магнитов, причем таким образом, что каждая пара обращенных друг к другу и в сторону расточки ротора поверхности соседних магнитов имеет одинаковую магнитную полярность и полярность следующих друг за другом и ориентированных указанным образом пар магнитов вдоль расточки чередуется.

Известна магнитная система ротора (патент RU №2316103, МПК Н02K 1/27, МПК Н02K 21/14, опубл. 27.01.2008 г.), которая содержит закрепленный на валу магнитопровод, выполненный из магнитомягкого материала без разрывов по внутреннему и внешнему диаметрам и с отверстиями под размещение в них постоянных магнитов. Отверстия выполнены прямоугольными с наклоном к радиальным осям (расположены вдоль хорд) таким образом, что расстояние между обращенными друг к другу и к валу боковыми поверхностями их по мере приближения к расточке ротора уменьшается, а между противоположными поверхностями тех же отверстий и в том же направлении увеличивается. Магнитная система ротора с требуемой по условию ее работоспособности чередующейся по расточке ротора полярностью полюсов образуется путем установки в указанные прямоугольной формы отверстия ротора намагниченных перпендикулярно боковым поверхностям постоянных магнитов, причем таким образом, что каждая пара обращенных друг к другу и в сторону расточки ротора поверхностей соседних призматических магнитов имеет одинаковую магнитную полярность, а полярность следующих друг за другом таких пар магнитов вдоль расточки чередуется.

Недостатком является наличие воздушной полости, прилегающей к торцам постоянных магнитов со стороны вала, что способствует лишь уменьшению магнитных потоков рассеяния в этой области, но не устраняет их полностью.

Наиболее близкой к заявленной магнитной системе является магнитная система синхронного двигателя с инкорпорированными магнитами [Синхронные электрические двигатели малой мощности: учеб. пособие для вузов / И.Л. Осин. - М.: Издательский дом МЭИ, 2006. - 216 с.: ил., стр. 74-77], содержащая инкорпорированные призматические постоянные магниты, вмонтированные в магнитопровод ротора, по внешней стороне окружности магнитопровода ротора установлены электропроводящие стержни, накоротко замкнутые посредством электропроводящих колец, расположенных с торцов магнитопровода ротора, электропроводящие стержни служат синхронному двигателю с инкорпорированными магнитами для асинхронного прямого пуска.

Недостатком представленной магнитной системы синхронного двигателя с инкорпорированными постоянными магнитами является сложность конструкции, сравнительно малое полюсное деление ротора, несинусоидальное распределение магнитного поля на внешней стороне ротора.

Задача изобретения - расширение функциональных возможностей, упрощение конструкции, увеличение полюсного деления.

Техническим результатом является повышение энергетических характеристик: мощности, механического момента, коэффициента мощности, КПД при снижении массогабаритных показателей благодаря использованию постоянных магнитов в виде секторов окружности полого цилиндра.

Поставленная задача решается и технический результат по первому варианту достигается тем, что магнитная система ротора с инкорпорированными постоянными магнитами, содержащая инкорпорированные призматические постоянные магниты, вмонтированные в магнитопровод ротора, по внешней стороне окружности магнитопровода ротора установлены электропроводящие стержни, накоротко замкнутые посредством электропроводящих колец, расположенных с торцов магнитопровода ротора, с возможностью обеспечения синхронному двигателю с инкорпорированными постоянными магнитами асинхронного прямого пуска, согласно изобретению инкорпорированные магниты выполнены в виде сектора окружностей полого цилиндра, которые образуют n-полюсную магнитную систему, а сцепление между инкорпорированными магнитами и магнитопроводом ротора обеспечивают титановые пластины, жестко соединенные с магнитопроводом ротора посредством соединения "ласточкин хвост" и с электропроводящими стержнями посредством замкнутых электропроводящих колец, расположенных с торцов магнитопровода ротора.

Поставленная задача решается и технический результат по второму варианту достигается тем, что магнитная система ротора с инкорпорированными постоянными магнитами, содержащая инкорпорированные призматические постоянные магниты, вмонтированные в магнитопровод ротора, по внешней стороне окружности магнитопровода ротора установлены электропроводящие стержни, накоротко замкнутые посредством электропроводящих колец, расположенных с торцов магнитопровода ротора, с возможностью обеспечения синхронному двигателю с инкорпорированными постоянными магнитами асинхронного прямого пуска, согласно изобретению инкорпорированные магниты выполнены в виде сектора окружностей полого цилиндра, которые образуют n-полюсную магнитную систему, а сцепление между инкорпорированными магнитами и магнитопроводом ротора обеспечивают накоротко замкнутые электропроводящие направляющие, расположенные на периферии полюсных делений, которые жестко сцеплены с магнитопроводом ротора посредством соединения "ласточкин хвост" и с замкнутыми электропроводящими кольцами, расположенными с торцов магнитопровода ротора.

Существо изобретения поясняется чертежами. На фиг. 1 изображен поперечный и продольный разрез магнитной системы ротора с инкорпорированными постоянными магнитами по первом варианту, на фиг. 2 изображен поперечный и продольный разрез магнитной системы ротора с инкорпорированными постоянными магнитами по второму варианту.

Предложенная конструкция магнитной системы ротора с инкорпорированными постоянными магнитами по первому варианту содержит инкорпорированные магниты 1, выполняемые в виде сектора окружностей полого цилиндра, которые образуют n-полюсную магнитную систему. Инкорпорированные магниты 1 жестко соединены с магнитопроводом ротора 2, сцепление обеспечивают титановые пластины 3 посредством соединения "ласточкин хвост", титановые пластины 3 также соединены с электропроводящими стержнями 4 посредством замкнутых электропроводящих колец 5, расположенных с торцов магнитопровода ротора.

Предложенная конструкция магнитной системы ротора с инкорпорированными постоянными магнитам по второму варианту содержит: инкорпорированные магниты 1, выполненные в виде сектора окружностей полого цилиндра, которые образуют n-полюсную магнитную систему, жестко соединены с магнитопроводом ротора 2. На внешней стороне магнитопровода ротора 2 расположены электропроводящие стержни 4, соединенные с электропроводящими кольцами 5, которые расположены с торцов магнитопровода ротора 2. Также на внешней стороне ротора 2, на периферии полюсных делений расположены электропроводящие направляющие 6, соединенные с электропроводящими кольцами 5.

Магнитная система синхронного двигателя с инкорпорированными постоянными магнитами по первому варианту работает следующим образом: для пуска синхронного двигателя с инкорпорированными постоянными магнитами статорная обмотка включается в сеть с заданным напряжением и частотой, протекающие по обмотке токи образуют вращающееся магнитное поле. Это магнитное поле будет индуцировать в электропроводящих стержнях 4 токи, которые, замыкаясь через электропроводящие кольца 5, образуют короткозамкнутые контуры. Токи имеют частоту скольжения, т.е. частоту, которая определяется разницей скоростей вращения магнитного поля статора и частотой вращения ротора. В результате взаимодействия токов, индуктируемых в короткозамкнутых контурах ротора с вращающимся магнитным полем статора, на ротор будет действовать электромагнитный момент, который будет разгонять ротор. Также на ротор будут действовать тормозной момент, возникающий за счет взаимодействия полей инкорпорированных постоянных магнитов 1 с внешним полем статора. Чтобы минимизировать тормозной момент, титановые пластины 3 соединены с электропроводящими стержнями 4 посредством замкнутых электропроводящих колец 5, расположенных с торцов магнитопровода ротора, для того чтобы в момент пуска синхронного двигателя с инкорпорированными магнитами по титановой пластине 3 протекал ток в аксиальном направлении и в результате протекания тока титановая пластина 3 нагревалась, а т.к. титановая пластина 3 расположена в непосредственной близости с инкорпорированными постоянными магнитами 1, то последние также нагреются. При нагреве инкорпорированных постоянных магнитов 1 их внешнее магнитное поле будет уменьшаться, тем самым будет и уменьшаться тормозной пусковой момент. По мере входа в синхронизм синхронного двигателя с инкорпорированными магнитами ток в электропроводящих стержнях 4 и в титановых пластинах 3 будет уменьшаться, соответственно, будет уменьшаться температура в титановых пластинах 3, что также приведет к уменьшению температуры инкорпорированных магнитов 1. Магнитное поле инкорпорированных постоянных магнитов 1 будет восстанавливаться, и синхронный двигатель с инкорпорированными магнитами войдет в синхронизм. После входа в синхронизм синхронный двигатель с инкорпорированными магнитами будет иметь более жесткую механическую характеристику, меньшее потребление энергии из сети, увеличенный коэффициент мощности, чем в прототипе, за счет того что предложенная конструкция будет иметь увеличенное полюсное деление, иными словами, коэффициент использования энергии постоянных магнитов будет больше, чем в прототипе. Стоит отметить, что в данной конструкции отсутствует бандаж, т.к. магнитопровод ротора 2 замкнут шихтованной электротехничеcкой сталью по всей внешней длине окружности. Также механическую прочность обеспечивают титановые пластины 3 посредством жесткого соединения "ласточкин хвост" с магнитопроводом ротора 2. Также титановые пластины 3 выступают в качестве магнитного сопротивления, для того чтобы инкорпорированные постоянные магниты не замыкались между собой, а чтобы магнитное поле шло на внешнюю сторону магнитопровода ротора 2.

Магнитная система синхронного двигателя с инкорпорированными постоянными магнитами по второму варианту работает следующим образом: для пуска синхронного двигателя с инкорпорированными постоянными магнитами 1 статорная обмотка включается в сеть с заданным напряжением и частотой, протекающие по обмотке токи образуют вращающееся магнитное поле. Это магнитное поле будет индуцировать в электропроводящих стержнях 4 токи, которые, замыкаясь через электропроводящие кольца 5, образуют короткозамкнутые контуры. Токи имеют частоту скольжения, т.е. частоту, которая определяется разницей скоростей вращения магнитного поля статора и частотой вращения ротора. В результате взаимодействия токов, индуктируемых в короткозамкнутых контурах ротора с вращающимся магнитным полем статора, на ротор будет действовать электромагнитный момент, который будет разгонять ротор. Также на ротор будут действовать тормозной момент, возникающий за счет взаимодействия полей инкорпорированных постоянных магнитов 1 с внешним полем статора. Чтобы минимизировать тормозной момент на внешней стороне магнитопровода ротора 2, на периферии полюсных делений располагают накоротко замкнутые электропроводящие направляющие 6, которые посредством соединения "ласточкин хвост" жестко соединяются с магнитопроводом ротора 2. Электропроводящие направляющие 6 соединены с электропроводящими кольцами 5, расположенными с торцов магнитопровода ротора, для того чтобы в момент пуска синхронного двигателя с инкорпорированными магнитами по электропроводящим направляющим 6 протекал ток в аксиальном направлении и в результате протекания тока по электропроводящим направляющим 6 они нагревались, а т.к. электропроводящие направляющие 6 расположены в непосредственной близости с инкорпорированными постоянными магнитами 1, то последние также нагреются. При нагреве инкорпорированных постоянных магнитов 1 их внешнее магнитное поле будет уменьшаться, тем самым будет и уменьшаться тормозной пусковой момент. По мере входа в синхронизм синхронного двигателя с инкорпорированными магнитами ток в электропроводящих направляющих 6 и электропроводящих стержнях 4 будет уменьшаться, иными словами, температура в электропроводящих направляющих 6 и электропроводящих стержнях 4 будет уменьшаться, что также приведет к уменьшению температуры в инкорпорированных магнитах 1. Магнитное поле инкорпорированных постоянных магнитов 1 будет восстанавливаться, и синхронный двигатель с инкорпорированными магнитами войдет в синхронизм. После входа в синхронизм синхронный двигатель с инкорпорированными магнитами 1 будет иметь более жесткую механическую характеристику, меньшее потребление энергии из сети, увеличенный коэффициент мощности, чем в прототипе, за счет того что предложенная конструкция будет иметь увеличенное полюсное деление, иными словами, коэффициент использования энергии постоянных магнитов будет больше, чем в прототипе. Стоит отметить, что в данной конструкции отсутствует бандаж, т.к. магнитопровод ротора 2 замкнут шихтованной электротехнической сталью по всей внешней длине окружности. Также механическую прочность обеспечивают электропроводящие направляющие 6 посредством жесткого соединения "ласточкин хвост" с магнитопроводом ротора 2. Также электропроводящие направляющие 6 выступают в качестве магнитного сопротивления, для того чтобы инкорпорированные постоянные магниты не замыкались между собой и чтобы магнитное поле шло на внешнюю сторону магнитнопровода ротора 2.

Итак, заявленное изобретение позволяет расширить функциональные возможности, упростить конструкцию, повысить КПД, увеличить полюсные деления, благодаря использованию постоянных магнитов в виде секторов окружности полого цилиндра.


Магнитная система ротора синхронного двигателя с инкорпорированными магнитами (варианты)
Магнитная система ротора синхронного двигателя с инкорпорированными магнитами (варианты)
Источник поступления информации: Роспатент

Показаны записи 51-60 из 146.
03.10.2018
№218.016.8d03

Способ измерения толщины покрытия в ходе процесса плазменно-электролитического оксидирования

Использование: для измерения толщины покрытия в ходе процесса плазменно-электролитического оксидирования вентильных металлов. Сущность изобретения заключается в том, что способ определения толщины покрытия включает измерение напряжения в процессе получения покрытия, где измеряют среднее и...
Тип: Изобретение
Номер охранного документа: 0002668344
Дата охранного документа: 28.09.2018
09.11.2018
№218.016.9b58

Способ измерения толщины покрытия в ходе процесса плазменно-электролитического оксидирования и устройство для его реализации

Изобретение относится к области электрохимической обработки материалов и касается способа определения толщины покрытия. Способ включает в себя измерение через 5-300 с после начала обработки интенсивности излучения детали в диапазоне длин волн шириной 3-50 нм, включающем характеристическую...
Тип: Изобретение
Номер охранного документа: 0002672036
Дата охранного документа: 08.11.2018
17.11.2018
№218.016.9e4f

Многофазный синхронный генератор с однополупериодным выпрямителем

Изобретение относится к области энергомашиностроения, в частности к устройствам, использующимся в системах автономного электроснабжения. Технический результат: повышение надежности многофазного синхронного генератора с возможностью подключения в трехфазную сеть, а также повышение...
Тип: Изобретение
Номер охранного документа: 0002672562
Дата охранного документа: 16.11.2018
16.01.2019
№219.016.afd0

Способ получения износостойкого покрытия на основе интерметаллида системы ti-al

Изобретение относится к области машиностроения, в частности к получению износо-, ударо-, тепло-, трещино- и коррозионностойких покрытий, и может быть использовано для повышения надежности и долговечности широкого ассортимента деталей машин и инструмента. Способ получения износостойкого...
Тип: Изобретение
Номер охранного документа: 0002677043
Дата охранного документа: 15.01.2019
24.01.2019
№219.016.b2d7

Способ химико-термической обработки детали из легированной стали

Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из легированных сталей, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, режущего инструмента и штамповой...
Тип: Изобретение
Номер охранного документа: 0002677908
Дата охранного документа: 22.01.2019
24.01.2019
№219.016.b388

Устройство для выведения малых космических аппаратов

Изобретение относится к системам разделения космических аппаратов (КА) и м.б. использовано для запуска на орбиту малых КА массой от 1 до 50 кг. Устройство для выведения КА (2) содержит основание (3), на котором КА удерживается гибкими токопроводящими пластинами (1). Пластины подключены к блоку...
Тип: Изобретение
Номер охранного документа: 0002677974
Дата охранного документа: 22.01.2019
14.02.2019
№219.016.ba48

Способ автоматизированной очистки солнечных панелей

Изобретение относится к области электроэнергетики, энергосбережения и может быть использовано для очистки солнечных панелей от снега и льда в зимнее время. Технический результат: повышение эффективности работы солнечных панелей и увеличение их кпд, а также возможность постоянного использования...
Тип: Изобретение
Номер охранного документа: 0002679771
Дата охранного документа: 12.02.2019
26.02.2019
№219.016.c815

Способ ионно-имплантационной обработки моноколеса компрессора с лопатками из титановых сплавов

Изобретение относится к способу упрочнения рабочих лопаток моноколеса компрессора ГТД из титановых сплавов и может быть использовано в авиационном двигателестроении и энергетическом турбостроении. Способ включает установку моноколеса на валу держателя, помещение его внутрь вакуумной установки...
Тип: Изобретение
Номер охранного документа: 0002680630
Дата охранного документа: 25.02.2019
14.03.2019
№219.016.df01

Система автоматического управления углом курса и ограничения угла крена летательного аппарата

Система автоматического управления углом курса и ограничения угла крена летательного аппарата содержит задатчик угла курса, четыре элемента сравнения, вычислитель заданного угла крена, алгебраический селектор минимального сигнала, вычислитель автопилота угла крена, сервопривод элеронов, датчик...
Тип: Изобретение
Номер охранного документа: 0002681817
Дата охранного документа: 12.03.2019
20.03.2019
№219.016.e2e7

Способ упрочнения лопаток моноколеса из титанового сплава

Изобретение относится к способу упрочнения лопаток моноколеса из титанового сплава. Способ включает ионно-имплантационную обработку материала поверхностного слоя лопаток энергией от 20 кэВ до 35 кэВ и дозой от 1,6⋅10 см до 2,0⋅10 см с последующим нанесением ионно-плазменного многослойного...
Тип: Изобретение
Номер охранного документа: 0002682265
Дата охранного документа: 18.03.2019
Показаны записи 51-60 из 110.
24.08.2017
№217.015.94d5

Вертикальный трубчатый электрофильтр (варианты)

Изобретение относится к электрической очистке газов от взвешенных частиц в различных отраслях промышленности, в частности в химической и нефтеперерабатывающей промышленности, металлургии и других отраслях. Вертикальный трубчатый электрофильтр, содержащий корпус, осадительные электроды,...
Тип: Изобретение
Номер охранного документа: 0002608402
Дата охранного документа: 18.01.2017
24.08.2017
№217.015.95aa

Способ и устройство извлечения ротора магнитоэлектрической машины

Изобретение относится к электротехнике, а именно к способу и устройству разборки электрических машин с постоянными магнитами для ремонта и обслуживания. Устройство для извлечения ротора с постоянными магнитами содержит лапы, первую рукоятку с возможностью вращения, резьбовую втулку,...
Тип: Изобретение
Номер охранного документа: 0002608561
Дата охранного документа: 23.01.2017
25.08.2017
№217.015.ae97

Электромагнитная машина ударного действия

Изобретение относится к электромагнитной машине ударного действия. Электромагнитная машина ударного действия содержит корпус, на котором закреплен электромагнит с магнитопроводом, рейку, выполненную с возможностью вращения на оси, закрепленной в боковой стенке корпуса, и шток, выполненный с...
Тип: Изобретение
Номер охранного документа: 0002612865
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.c868

Электромагнитная машина вибрационного действия для ручного инструмента

Изобретение относится к электротехнике, к ручным инструментам, предназначенным для чеканки при изготовлении картин на металле и ювелирных изделий. Технический результат состоит в повышении точности позиционирования ручного инструмента. В электромагнитной машине вибрационного действия для...
Тип: Изобретение
Номер охранного документа: 0002619075
Дата охранного документа: 11.05.2017
26.08.2017
№217.015.d54c

Электродинамический тормоз

Использование: относится к электрическим машинам и может быть использовано в стыковочных узлах авиакосмической техники. Технический результат состоит в повышении надежности системы измерения и управления и силовой системы, а также снижении массогабаритных показателей элементов за счет...
Тип: Изобретение
Номер охранного документа: 0002623103
Дата охранного документа: 22.06.2017
26.08.2017
№217.015.d600

Тепловой генератор электрической энергии для космического аппарата

Изобретение относится к электротехнике и может применяться для создания генераторов на космических аппаратах, в которых солнечная тепловая энергия преобразуется в электрическую. Технический результат заключается в снижении удельной массы теплового генератора, обеспечении выработки электрической...
Тип: Изобретение
Номер охранного документа: 0002622907
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.d641

Осадительный электрод электрофильтра (варианты)

Группа изобретений относится к электрической очистке газов от взвешенных частиц в различных отраслях промышленности. Устройство по первому варианту содержит отдельные элементы, выполненные в виде полых барабанов, закрепленных на изоляторах и оси, имеющей на обоих концах резьбу, для стыковки...
Тип: Изобретение
Номер охранного документа: 0002622953
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.e409

Магнитотепловой генератор для космического аппарата

Изобретение относится к области энергетики, может применяться для создания генераторов на космических аппаратах, в которых солнечная тепловая энергия преобразуется в электрическую. Технический результат заключается в снижении удельной массы, обеспечении выработки электрической энергии из...
Тип: Изобретение
Номер охранного документа: 0002626412
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e547

Система на магнитных подшипниках

Изобретение относится к электротехнике и может быть использовано в качестве подвеса ротора электрических машин. Технический результат заключается в повышении надежности. Левый пассивный магнитный подшипник выполнен в виде комбинированного радиально-аксиального магнитного подшипника, состоящего...
Тип: Изобретение
Номер охранного документа: 0002626461
Дата охранного документа: 28.07.2017
29.12.2017
№217.015.f376

Способ стабилизации выходного напряжения магнитоэлектрического генератора

Изобретение относится к области электротехники и может быть использовано в магнитоэлектрических генераторах автономных систем электроснабжения. Техническим результатом является повышение КПД и повышение точности регулирования напряжения за счет саморегулирования напряжения магнитоэлектрического...
Тип: Изобретение
Номер охранного документа: 0002637767
Дата охранного документа: 07.12.2017
+ добавить свой РИД