×
09.06.2018
218.016.604d

Результат интеллектуальной деятельности: СВЕРХВЫСОКООБОРОТНЫЙ МИКРОГЕНЕРАТОР

Вид РИД

Изобретение

Аннотация: Изобретение относится к электротехнике и может быть использовано для обеспечения электроэнергией автономных объектов. Технический результат состоит в снижении физической заметности объектов, оснащенных данными сверхвысокооборотными микрогенераторами, благодаря снижению уровня шума, повышению магнитной индукции в их воздушном зазоре и минимизации их тепловыделений. Ротор выполнен полым. Статор выполнен из немагнитного, неэлектропроводящего материала в виде кольца с закрытыми пазами и расположен внутри кольцевого постоянного магнита полого ротора, выполненного в виде n-полюсной монолитной сборки Хальбаха и установленного с натягом внутри полого ротора, который сочленен с турбиной и компрессором. На внутренней поверхности кольцевого постоянного магнита и на внешней поверхности статора нанесено покрытие из твердого материала с минимальным коэффициентом трения. Полый ротор имеет механический контакт со статором, образуя в воздушном зазоре малошумный подшипник скольжения. В зубцах статора выполнены радиальные каналы с возможностью подачи смазки в пространство между статором и полым ротором. 2 ил.

Изобретение относится к области электромашиностроения и может быть использовано для обеспечения электроэнергией автономных объектов.

Известен сверхвысокооборотный микрогенератор [J. Guidez, Y. Ribaud, О. dessornes, Т. Courvoisier, С. Dumand, Т. Onishi, S. Burguburu, Micro gas turbine research at Onera // International Symposium on Measurement and Control in robotics, 2005, Brussels, Belgium], состоящий из беспазового статора, выполненного из аморфного железа, в котором концентрично расточке статора расположен ротор, состоящий из кольцевого магнита, намагниченного радиально, и вала, на котором установлены шариковые подшипниковые опоры, при этом вал сочленен с компрессором и турбиной.

Недостатками данного аналога являются ограниченные функциональные возможности из-за значительных тепловыделений, обусловленных потерями в магнитопроводе статора, значительный шум, создаваемый подшипниковыми опорами и невысокая жесткость ротора.

Известна микротурбинная система с сверхвысоокоборотным микрогенератором [K. Isomura, М. Murayama, S. Teramoto, K. Hikichi, Y. Endo, S. Togo, S. Tanaka, Experimental Verification of the Feasibility of a 100W Class Micro-scale Gas Turbine at an Impeller Diameter of 10 mm, J. Micromech. Microeng, 2006, 16, pp. 254-261], состоящим из беспазового статора, выполненного из аморфного железа, в котором концентрично расточке статора расположен ротор, состоящий из кольцевого магнита, намагниченного радиально, и вала, при этом вал вращается в газовых подшипниковых опорах.

Недостатками данного аналога являются ограниченные функциональные возможности из-за значительных тепловыделений, обусловленных потерями в магнитопроводе статора, и невысокая жесткость ротора.

Известен сверхвысокооборотный микрогенератор [Park С.Н., Choi S. K., Ham S. Y. Design and experiment of 400,000 rpm high speed rotor and bearings for 500W class micro gas turbine generator // International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS). - 2011], состоящий из пазового статора, выполненного из аморфного железа, в котором концентрично расточке статора расположен ротор, состоящий из кольцевого магнита, намагниченного радиально, и вала, при этом вал вращается в газовых подшипниковых опорах.

Недостатками данного аналога являются техническая сложность его реализации, обусловленная применением пазового статора, а также ограниченные функциональные возможности из-за значительных тепловыделений, обусловленных потерями в магнитопроводе статора, значительный шум, создаваемый подшипниковыми опорами, и невысокая жесткость ротора.

Известен сверхвысокооборотный аксиальный микрогенератор [патент US 4996457, кл. H02K 21/24, 1990 г.], содержащий вал, в котором располагается ось, осевой ротор и множество статоров, расположенных параллельно осевому ротору.

Недостатками данного аналога являются техническая сложность его реализации, обусловленная осевым расположением ротора, а также ограниченные функциональные возможности из-за значительных тепловыделений, обусловленных потерями в магнитопроводе статора, значительный шум, создаваемый подшипниковыми опорами, невысокая жесткость ротора и его значительный момент инерции.

Наиболее близким к предлагаемому устройству является сверхвысокооборотный стартер-генератор для микротурбинной установки [С. Zwyssig, J.W. Kolar, S.D. Round Mega-Speed Drive Systems: Pushing Beyond 1 Million RPM // Mechatronics, IEEE/ASME Transactions on, 2009, Vol. 14, No. 5, pp. 564-574], состоящий из беспазового статора, выполненного из аморфного железа, в котором расположена обмотка из высокочастотного литцендрата, концентрично расточке статора расположен ротор, состоящий из кольцевого постоянного магнита, намагниченного радиально, и вала, на котором установлены шариковые подшипниковые опоры, при этом вал сочленен с турбиной и компрессором.

Недостатками ближайшего аналога являются ограниченные функциональные возможности из-за значительных тепловыделений, обусловленные потерями в магнитопроводе статора, значительный шум, создаваемый подшипниковыми опорами, и невысокая жесткость ротора.

Задача изобретения - расширение функциональных возможностей сверхвысокооборотного микрогенератора благодаря повышению жесткости ротора, а также увеличение его коэффициента полезного действия и энергетических характеристик.

Технический результат - снижение физической заметности объектов, оснащенных данными сверхвысокооборотными микрогенераторами, благодаря снижению уровня шума сверхвысокооборотных микрогенераторов, повышение магнитной индукции в их воздушном зазоре и минимизация их тепловыделений.

Поставленная задача решается, а технический результат достигается тем, что в сверхвысокооборотном микрогенераторе, содержащем статор с обмоткой, выполненной из высокочастотного литцендрата, ротор, кольцевой постоянный магнит, вал, сочлененный с турбиной и компрессором, согласно изобретению ротор выполнен полым, а статор выполнен из немагнитного, неэлектропроводящего материала в виде кольца с закрытыми пазами и расположен внутри кольцевого постоянного магнита полого ротора, выполненного в виде n-полюсной монолитной сборки Хальбаха и установленного с натягом внутри полого ротора, который сочленен с турбиной и компрессором, причем на внутренней поверхности кольцевого постоянного магнита и на внешней поверхности статора нанесено покрытие из твердого материала с минимальным коэффициентом трения, причем полый ротор имеет механический контакт со статором, образуя при этом в воздушном зазоре сверхвысокооборотного микрогенератора малошумный подшипник скольжения, кроме того, в зубцах статора выполнены радиальные каналы с возможностью подачи смазки в пространство между статором и полым ротором.

Существо изобретения поясняется чертежами. На фиг. 1 изображен поперечный разрез сверхвысокооборотного микрогенератора. На фиг. 2 изображен продольный разрез сверхвысокооборотного микрогенератора.

Устройство содержит полый вал 1, соединенный с турбиной 2 и компрессором 3. В полом валу 1 установлен с натягом кольцевой постоянный магнит 4, выполненный в виде n-полюсной монолитной сборки Хальбаха, на внутренней поверхности кольцевого постоянного магнита 4 нанесено покрытие 5 из твердого материала с минимальным коэффициентом трения. Статор 6 выполнен из немагнитного неэлектропроводящего материала в виде кольца с закрытыми пазами, на внешней поверхности которого нанесено покрытие 7 из твердого материала с минимальным коэффициентом трения, при этом покрытие 5 полого ротора и покрытие 7 статора находятся в механическом контакте относительно друг друга. В пазах статора 6 расположена зубцовая обмотка 8, выполненная из высокочастотного литцендрата, в зубцах статора 6 выполнены радиальные каналы 9 с возможностью подачи смазки в пространство между статором 6 и кольцевым постоянным магнитом 4.

Предложенный сверхвысокооборотный микрогенератор работает следующим образом: турбина 2 с компрессором 3 вращает полый вал 1 с определенной частотой. При этом жесткость полого вала 1 сверхвысокооборотного микрогенератора обеспечивается малошумным подшипником скольжения, который образуется внутренней поверхностью кольцевого постоянного магнита 4 с нанесенным покрытием 5 из твердого материала с минимальным коэффициентом трения и внешней поверхностью статора 6, выполненного из немагнитного неэлектропроводящего материала в виде кольца с закрытыми пазами, на внешней поверхности которого нанесено покрытие 7 из твердого материала с минимальным коэффициентом трения, то есть подшипник скольжения интегрирован в активную часть сверхвысокооборотного микрогенератора. Ввиду того что статор выполнен из неэлектропроводящего немагнитного материала, в нем не индуцируются вихревые токи, что позволяет минимизировать тепловыделения сверхвысокооборотного микрогенератора. При этом для снижения коэффициента трения в данном подшипнике скольжения в зубцах статора 6 выполнены радиальные каналы 9, через которые поступает смазка. При этом смазка одновременно выполняет две функции: как смазочный материал подшипника скольжения и как хладагент для охлаждения генератора. Так как постоянный магнит 4, выполненный в виде n-полюсной монолитной сборки Хальбаха, установлен внутри полого вала, то центробежные силы, стремящиеся его разрушить, направлены на внешнюю поверхность полого вала, а это позволяет минимизировать воздушный зазор и повысить тем самым энергетические характеристики сверхвысокооборотного микрогенератора и индукцию в его воздушном зазоре. То есть совокупность существенных признаков заявляемого изобретения позволяет повысить энергетические характеристики сверхвысокооборотных микрогенератров, минимизировав их тепловыделения и шум, что приводит к снижению физической заметности объектов, оснащенных данными сверхвысокооборотными микрогенераторами.

Итак, заявляемая конструкция позволяет расширить функциональные возможности сверхвысокооборотных микрогенератров благодаря повышению жесткости их ротора, а также увеличить их коэффициент полезного действия и энергетические характеристики.

Таким образом, достигается снижение физической заметности объектов, оснащенных данными сверхвысокооборотными микрогенераторами, благодаря снижению уровня шума сверхвысокооборотных микрогенераторов, повышение магнитной индукции в их воздушном зазоре и минимизация их тепловыделений.

Сверхвысокооборотный микрогенератор, содержащий статор с обмоткой, выполненной из высокочастотного литцендрата, ротор, кольцевой постоянный магнит, вал, сочлененный с турбиной и компрессором, отличающийся тем, что ротор выполнен полым, а статор выполнен из немагнитного, неэлектропроводящего материала в виде кольца с закрытыми пазами и расположен внутри кольцевого постоянного магнита полого ротора, выполненного в виде n-полюсной монолитной сборки Хальбаха и установленного с натягом внутри полого ротора, который сочленен с турбиной и компрессором, причем на внутренней поверхности кольцевого постоянного магнита и на внешней поверхности статора нанесено покрытие из твердого материала с минимальным коэффициентом трения, а полый ротор имеет механический контакт со статором, образуя при этом в воздушном зазоре сверхвысокооборотного микрогенератора малошумный подшипник скольжения, кроме того, в зубцах статора выполнены радиальные каналы с возможностью подачи смазки в пространство между статором и полым ротором.
СВЕРХВЫСОКООБОРОТНЫЙ МИКРОГЕНЕРАТОР
СВЕРХВЫСОКООБОРОТНЫЙ МИКРОГЕНЕРАТОР
Источник поступления информации: Роспатент

Показаны записи 51-60 из 146.
03.10.2018
№218.016.8d03

Способ измерения толщины покрытия в ходе процесса плазменно-электролитического оксидирования

Использование: для измерения толщины покрытия в ходе процесса плазменно-электролитического оксидирования вентильных металлов. Сущность изобретения заключается в том, что способ определения толщины покрытия включает измерение напряжения в процессе получения покрытия, где измеряют среднее и...
Тип: Изобретение
Номер охранного документа: 0002668344
Дата охранного документа: 28.09.2018
09.11.2018
№218.016.9b58

Способ измерения толщины покрытия в ходе процесса плазменно-электролитического оксидирования и устройство для его реализации

Изобретение относится к области электрохимической обработки материалов и касается способа определения толщины покрытия. Способ включает в себя измерение через 5-300 с после начала обработки интенсивности излучения детали в диапазоне длин волн шириной 3-50 нм, включающем характеристическую...
Тип: Изобретение
Номер охранного документа: 0002672036
Дата охранного документа: 08.11.2018
17.11.2018
№218.016.9e4f

Многофазный синхронный генератор с однополупериодным выпрямителем

Изобретение относится к области энергомашиностроения, в частности к устройствам, использующимся в системах автономного электроснабжения. Технический результат: повышение надежности многофазного синхронного генератора с возможностью подключения в трехфазную сеть, а также повышение...
Тип: Изобретение
Номер охранного документа: 0002672562
Дата охранного документа: 16.11.2018
16.01.2019
№219.016.afd0

Способ получения износостойкого покрытия на основе интерметаллида системы ti-al

Изобретение относится к области машиностроения, в частности к получению износо-, ударо-, тепло-, трещино- и коррозионностойких покрытий, и может быть использовано для повышения надежности и долговечности широкого ассортимента деталей машин и инструмента. Способ получения износостойкого...
Тип: Изобретение
Номер охранного документа: 0002677043
Дата охранного документа: 15.01.2019
24.01.2019
№219.016.b2d7

Способ химико-термической обработки детали из легированной стали

Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из легированных сталей, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, режущего инструмента и штамповой...
Тип: Изобретение
Номер охранного документа: 0002677908
Дата охранного документа: 22.01.2019
24.01.2019
№219.016.b388

Устройство для выведения малых космических аппаратов

Изобретение относится к системам разделения космических аппаратов (КА) и м.б. использовано для запуска на орбиту малых КА массой от 1 до 50 кг. Устройство для выведения КА (2) содержит основание (3), на котором КА удерживается гибкими токопроводящими пластинами (1). Пластины подключены к блоку...
Тип: Изобретение
Номер охранного документа: 0002677974
Дата охранного документа: 22.01.2019
14.02.2019
№219.016.ba48

Способ автоматизированной очистки солнечных панелей

Изобретение относится к области электроэнергетики, энергосбережения и может быть использовано для очистки солнечных панелей от снега и льда в зимнее время. Технический результат: повышение эффективности работы солнечных панелей и увеличение их кпд, а также возможность постоянного использования...
Тип: Изобретение
Номер охранного документа: 0002679771
Дата охранного документа: 12.02.2019
26.02.2019
№219.016.c815

Способ ионно-имплантационной обработки моноколеса компрессора с лопатками из титановых сплавов

Изобретение относится к способу упрочнения рабочих лопаток моноколеса компрессора ГТД из титановых сплавов и может быть использовано в авиационном двигателестроении и энергетическом турбостроении. Способ включает установку моноколеса на валу держателя, помещение его внутрь вакуумной установки...
Тип: Изобретение
Номер охранного документа: 0002680630
Дата охранного документа: 25.02.2019
14.03.2019
№219.016.df01

Система автоматического управления углом курса и ограничения угла крена летательного аппарата

Система автоматического управления углом курса и ограничения угла крена летательного аппарата содержит задатчик угла курса, четыре элемента сравнения, вычислитель заданного угла крена, алгебраический селектор минимального сигнала, вычислитель автопилота угла крена, сервопривод элеронов, датчик...
Тип: Изобретение
Номер охранного документа: 0002681817
Дата охранного документа: 12.03.2019
20.03.2019
№219.016.e2e7

Способ упрочнения лопаток моноколеса из титанового сплава

Изобретение относится к способу упрочнения лопаток моноколеса из титанового сплава. Способ включает ионно-имплантационную обработку материала поверхностного слоя лопаток энергией от 20 кэВ до 35 кэВ и дозой от 1,6⋅10 см до 2,0⋅10 см с последующим нанесением ионно-плазменного многослойного...
Тип: Изобретение
Номер охранного документа: 0002682265
Дата охранного документа: 18.03.2019
Показаны записи 51-60 из 110.
24.08.2017
№217.015.94d5

Вертикальный трубчатый электрофильтр (варианты)

Изобретение относится к электрической очистке газов от взвешенных частиц в различных отраслях промышленности, в частности в химической и нефтеперерабатывающей промышленности, металлургии и других отраслях. Вертикальный трубчатый электрофильтр, содержащий корпус, осадительные электроды,...
Тип: Изобретение
Номер охранного документа: 0002608402
Дата охранного документа: 18.01.2017
24.08.2017
№217.015.95aa

Способ и устройство извлечения ротора магнитоэлектрической машины

Изобретение относится к электротехнике, а именно к способу и устройству разборки электрических машин с постоянными магнитами для ремонта и обслуживания. Устройство для извлечения ротора с постоянными магнитами содержит лапы, первую рукоятку с возможностью вращения, резьбовую втулку,...
Тип: Изобретение
Номер охранного документа: 0002608561
Дата охранного документа: 23.01.2017
25.08.2017
№217.015.ae97

Электромагнитная машина ударного действия

Изобретение относится к электромагнитной машине ударного действия. Электромагнитная машина ударного действия содержит корпус, на котором закреплен электромагнит с магнитопроводом, рейку, выполненную с возможностью вращения на оси, закрепленной в боковой стенке корпуса, и шток, выполненный с...
Тип: Изобретение
Номер охранного документа: 0002612865
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.c868

Электромагнитная машина вибрационного действия для ручного инструмента

Изобретение относится к электротехнике, к ручным инструментам, предназначенным для чеканки при изготовлении картин на металле и ювелирных изделий. Технический результат состоит в повышении точности позиционирования ручного инструмента. В электромагнитной машине вибрационного действия для...
Тип: Изобретение
Номер охранного документа: 0002619075
Дата охранного документа: 11.05.2017
26.08.2017
№217.015.d54c

Электродинамический тормоз

Использование: относится к электрическим машинам и может быть использовано в стыковочных узлах авиакосмической техники. Технический результат состоит в повышении надежности системы измерения и управления и силовой системы, а также снижении массогабаритных показателей элементов за счет...
Тип: Изобретение
Номер охранного документа: 0002623103
Дата охранного документа: 22.06.2017
26.08.2017
№217.015.d600

Тепловой генератор электрической энергии для космического аппарата

Изобретение относится к электротехнике и может применяться для создания генераторов на космических аппаратах, в которых солнечная тепловая энергия преобразуется в электрическую. Технический результат заключается в снижении удельной массы теплового генератора, обеспечении выработки электрической...
Тип: Изобретение
Номер охранного документа: 0002622907
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.d641

Осадительный электрод электрофильтра (варианты)

Группа изобретений относится к электрической очистке газов от взвешенных частиц в различных отраслях промышленности. Устройство по первому варианту содержит отдельные элементы, выполненные в виде полых барабанов, закрепленных на изоляторах и оси, имеющей на обоих концах резьбу, для стыковки...
Тип: Изобретение
Номер охранного документа: 0002622953
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.e409

Магнитотепловой генератор для космического аппарата

Изобретение относится к области энергетики, может применяться для создания генераторов на космических аппаратах, в которых солнечная тепловая энергия преобразуется в электрическую. Технический результат заключается в снижении удельной массы, обеспечении выработки электрической энергии из...
Тип: Изобретение
Номер охранного документа: 0002626412
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e547

Система на магнитных подшипниках

Изобретение относится к электротехнике и может быть использовано в качестве подвеса ротора электрических машин. Технический результат заключается в повышении надежности. Левый пассивный магнитный подшипник выполнен в виде комбинированного радиально-аксиального магнитного подшипника, состоящего...
Тип: Изобретение
Номер охранного документа: 0002626461
Дата охранного документа: 28.07.2017
29.12.2017
№217.015.f376

Способ стабилизации выходного напряжения магнитоэлектрического генератора

Изобретение относится к области электротехники и может быть использовано в магнитоэлектрических генераторах автономных систем электроснабжения. Техническим результатом является повышение КПД и повышение точности регулирования напряжения за счет саморегулирования напряжения магнитоэлектрического...
Тип: Изобретение
Номер охранного документа: 0002637767
Дата охранного документа: 07.12.2017
+ добавить свой РИД