×
09.06.2018
218.016.5d97

Результат интеллектуальной деятельности: МАЛОШУМНОЕ СЕЙСМОСТОЙКОЕ ПРОИЗВОДСТВЕННОЕ ЗДАНИЕ

Вид РИД

Изобретение

№ охранного документа
0002656425
Дата охранного документа
05.06.2018
Аннотация: Изобретение относится к промышленной акустике при строительстве сооружений в сейсмоопасных регионах. Технический результат - повышение комфортности и сейсмостойкости здания. Это достигается тем, что в малошумном сейсмостойком производственном здании, содержащем каркас здания с основанием, несущие стены с ограждениями в виде пола и потолка, которые облицованы звукопоглощающими конструкциями, оконные и дверные проемы, а также штучные звукопоглотители, содержащие каркас, в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием, базовые несущие плиты перекрытия снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов, воспринимающих горизонтальные статические и динамические нагрузки, при этом пол в помещениях выполнен на упругом основании и содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, причем полости базовой плиты заполнены вибродемпфирующим материалом, потолок выполнен акустическим подвесным, состоящим из жесткого каркаса, подвешиваемого к потолку производственного здания с расположенным внутри каркаса звукопоглощающим материалом, обернутым акустически прозрачным материалом, а к каркасу прикреплен перфорированный лист: диаметр перфорации 3…7 мм, процент перфорации 10…15%, а основание каркаса здания выполнено с виброизоляцией железобетонной плиты, состоящей из связанных между собой железобетонных балок в основании здания, которая включает в себя по крайней мере четыре виброизолятора, устанавливаемых между металлической плитой и железобетонной балкой, расположенной в основании здания, выполненного за одно целое с по крайней мере восьмью ленточными фундаментными блоками, являющимися своеобразными "ловушками", а каждая из металлических плит установлена на по крайней мере трех железобетонных столбах-упорах, а между каждыми ленточными фундаментными блоками и каждой из железобетонных балок устанавливаются песчаные подушки, а под виброизоляторами закреплены тензорезисторные датчики, контролирующие осадку виброизоляторов, при этом песчаные подушки установлены в металлических разъемных обоймах, а каждый из виброизоляторов состоит из жестко связанных между собой резиновых плит - верхней и нижней, в которых выполнены сквозные отверстия, расположенные по поверхности виброизолятора в шахматном порядке, а по форме виброизоляторы выполнены квадратными или прямоугольными, а их боковые грани выполнены в виде криволинейных поверхностей n-го порядка, обеспечивающих равночастотность системы виброизоляции в целом, при этом отверстия имеют в сечении форму, обеспечивающую равночастотность виброизолятора, а каждый из виброизоляторов состоит из основания, упругого сетчатого элемента и шайб, взаимодействующих со втулками, при этом основание выполнено в виде пластины с крепежными отверстиями, а сетчатый упругий элемент своей нижней частью опирается на основание и фиксируется нижней шайбой, жестко соединенной с основанием, а верхней частью фиксируется верхней нажимной шайбой, жестко соединенной с центрально расположенным кольцом, охватываемым соосно расположенным кольцом, жестко соединенным с основанием. 1 з.п. ф-лы, 9 ил.

Изобретение относится к промышленной акустике при строительстве сооружений в сейсмоопасных регионах.

Известны малошумные конструкции для производственных зданий в виде акустических облицовок и штучных звукопоглотителей, полости которых заполнены звукопоглощающим материалом [1, 2, 3, 4, 5]. В настоящее время волокнистые звукопоглотители являются наиболее употребительными в строительной практике.

Недостатками известных конструкций звукопоглотителей являются их сравнительно невысокая эффективность на низких и средних частотах, а также они не отвечают возросшим требованиям, предъявляемым к дизайну помещений и сейсмической стойкости возводимых сооружений.

Известны малошумные сейсмостойкие производственные здания, содержащие каркас здания с основанием, несущие стены с ограждениями в виде пола и потолка, которые облицованы звукопоглощающими конструкциями, оконные и дверные проемы, а также штучные звукопоглотители, содержащие каркас, в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием [6, 7, 8].

Их недостаток - сравнительно невысокая эффективность шумоглушения на высоких частотах из-за отсутствия в элементах конструкций схем, содержащих резонаторы Гельмгольца.

Известны малошумные сейсмостойкие производственные здания, содержащие базовые несущие плиты перекрытия, снабженные в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов, воспринимающих горизонтальные статические и динамические нагрузки [9, 10].

Недостатками известных конструкций зданий являются их сравнительно невысокая эффективность на низких и средних частотах, а также они не отвечают возросшим требованиям, предъявляемым к сейсмической стойкости возводимых сооружений.

Наиболее близким техническим решением по технической сущности и достигаемому результату является малошумное сейсмостойкое производственное здание по патенту РФ №129125 [11] на полезную модель, основание каркаса здания которого выполнено с виброизоляцией железобетонной плиты, состоящей из связанных между собой железобетонных балок в основании здания, которая включает в себя, по крайней мере, четыре виброизолятора, устанавливаемых между металлической плитой и железобетонной балкой, расположенной в основании здания, выполненного за одно целое с, по крайней мере, восемью ленточными фундаментными блоками, являющимися своеобразными "ловушками", а каждая из металлических плит установлена на, по крайней мере, трех железобетонных столбах-упорах, между каждыми ленточными фундаментными блоками и каждой из железобетонных балок устанавливаются песчаные подушки, под виброизоляторами закреплены тензорезисторные датчики, контролирующие осадку виброизоляторов, при этом песчаные подушки установлены в металлических разъемных обоймах.

Недостатками этого сейсмостойкого производственного здания является сравнительно невысокая эффективность шумоподавления на низких и средних частотах, а также сравнительно невысокое демпфирование на резонансных частотах в системах виброизоляции, и, как следствие, - сравнительно невысокая сейсмостойкость.

Технический результат - повышение эффективности виброизоляции и шумоглушения на низких и средних частотах путем применения подвесного акустического потолка, а также увеличения демпфирования в плитах межэтажного перекрытия и основании каркаса здания с виброизоляцией железобетонной плиты.

Технический результат - повышение комфортности и сейсмостойкости здания.

Это достигается тем, что в малошумном сейсмостойком производственном здании, содержащем каркас здания с основанием, несущие стены с ограждениями в виде пола и потолка, которые облицованы звукопоглощающими конструкциями, оконные и дверные проемы, а также штучные звукопоглотители, содержащие каркас, в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием, базовые несущие плиты перекрытия снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов, воспринимающих горизонтальные статические и динамические нагрузки, при этом пол в помещениях выполнен на упругом основании и содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, причем полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером.

На фиг.1 изображен общий вид малошумного сейсмостойкого производственного здания, на фиг.2 - разрез междуэтажного перекрытия здания, на фиг.3 - конструкция подвесного потолка, на фиг.4 - схема виброизоляции железобетонной плиты в основании здания, фиг.5 - общий вид виброизолятора, фиг.6 - разрез А-А виброизолятора, на фиг.7 представлен общий вид виброизолятора шайбового сетчатого, на фиг.8 - его фронтальный разрез, на фиг.9 - фронтальный разрез вибродемпфирующей вставки, расположенной в полостях базовой плиты межэтажного перекрытия.

Малошумное сейсмостойкое производственное здание (фиг.1) содержит каркас здания с основанием (фиг.4), оконные 9 и дверные 10 проемы и несущие стены 1, 2, 3, 4 с ограждениями 5, 6 (пол и потолок), которые облицованы звукопоглощающими конструкциями, а также штучные звукопоглотители 7 и 8, содержащие каркас в котором расположен звукопоглощающий материал и установленные над шумным оборудованием 11.

Конструкция пола на упругом основании (фиг.2) содержит установочную плиту 12, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите 15 межэтажного перекрытия с полостями 16 через слои вибродемпфирующего материала 14 и гидроизоляционного материала 13 с зазором 17 относительно несущих стен 1, 2, 3, 4 производственного здания. Чтобы обеспечить эффективную виброизоляцию установочной плиты 12 по всем направлениям слои вибродемпфирующего материала 14 и гидроизоляционного материала 13 выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен 1, 2, 3, 4 и базовой несущей плите 15 перекрытия.

Возможен вариант, когда в полостях 16 базовой плиты 15 межэтажного перекрытия расположены вибродемпфирующие вставки (фиг.9), выполненные в виде цилиндра 48 из жесткого вибродемпфирующего материала, например пластиката типа «Агат», «Антивибрит», «Швим», внутри которого осесимметрично и коаксиально расположен упругий сердечник 49, вдоль оси которого жестко закреплены с шагом, кратным длине полости 16, демпфирующие диски 50, при этом крайние диски закреплены «заподлицо» с цилиндром 48 из вибродемпфирующего материала, торцы которого, в свою очередь, расположены «заподлицо» с боковыми поверхностями базовой плиты 15.

Для повышения эффективности виброизоляции и сейсмостойкости здания базовые несущие плиты 15 перекрытия (на фиг.2 показана плита 15 перекрытия только для одного этажа здания и с одной стороны несущих стен 1, 2, 3, 4) снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов 26 и 28, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов 27, воспринимающих горизонтальные статические и динамические нагрузки. Схема виброизоляторов, выполненных из эластомера, представлена на фиг.5-6. Каждый из виброизоляторов 26, 27, 28 состоит из жестко связанных между собой резиновых плит: верхней 38 и нижней 39 (фиг.5 и 6), в которых выполнены сквозные отверстия 40, расположенные по поверхности виброизолятора в шахматном порядке. По форме виброизоляторы выполнены квадратными или прямоугольными, а также их боковые грани могут быть выполнены в виде криволинейных поверхностей n-го порядка, обеспечивающих равночастотность системы виброизоляции в целом. Отверстия 40 имеют в сечении форму, обеспечивающую равночастотность виброизолятора.

Возможен вариант использования виброизолятора шайбового сетчатого (фиг.7), который содержит основание 41 в виде пластины с крепежными отверстиями 42, сетчатый упругий элемент 47, нижней частью опирающийся на основание 41, и фиксируемый нижней шайбой 46, жестко соединенной с основанием, а верхней частью фиксируемый верхней нажимной шайбой 45, жестко соединенной с центрально расположенным кольцом 44, охватываемым соосно расположенным кольцом 43, жестко соединенным с основанием 41.

Плотность сетчатой структуры упругого сетчатого элемента (фиг.8) находится в оптимальном интервале величин: 1,2 г/см3…2,0 г/см3, причем материал проволоки упругих сетчатых элементов - сталь марки ЭИ-708, а диаметр ее находится в оптимальном интервале величин 0,09 мм … 0,15 мм. Плотность сетчатой структуры внешних слоев упругого сетчатого элемента в 1,5 раза больше плотности сетчатой структуры внутренних слоев упругого сетчатого элемента. Упругий сетчатый элемент 47 может быть выполнен комбинированным из сетчатого каркаса, залитого эластомером, например полиуретаном.

Виброизолятор шайбовый сетчатый работает следующим образом.

При колебаниях железобетонной балки 29, расположенной на верхней нажимной шайбе 45, упругий сетчатый элемент 47 воспринимает как вертикальные, так и горизонтальные нагрузки, ослабляя тем самым динамическое воздействие на балку 29 и основание 30 здания, т.е. обеспечивается пространственная виброзащита и защита от ударов и толчков как со стороны основания 30 здания, так и со стороны железобетонной балки 29.

Для повышения эффективности звукоизоляции и звукопоглощения в цехах, находящихся под межэтажным перекрытием, полости 16 заполнены вибродемпфирующим материалом, например вспененным полимером, например полиэтиленом или полипропиленом, а стены 1, 2, 3, 4 облицованы звукопоглощающими конструкциями. В качестве звукопоглощающего материала звукопоглощающих конструкций используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом (не показано), например стеклотканью типа Э3-100 или полимером типа «Повиден».

В качестве звукопоглощающего материала может быть использован также жесткий пористый материал, например пеноалюминий, или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин 30÷45%. В качестве звукопоглощающего материала может быть использован материал в виде крошки из твердых вибродемпфирующих материалов, например эластомера, или полиуретана, или пластиката, причем размер фракций крошки лежит в оптимальном интервале величин 0,3÷2,5 мм (не показано).

Подвесной акустический потолок (фиг.3) состоит из жесткого каркаса 19, выполненного по форме в виде прямоугольного параллелепипеда с размерами сторон в плане В×С, отношение которых лежит в оптимальном интервале величин B:C=1:1…2:1, подвешиваемого к потолку производственного здания с помощью подвесок 21, имеющих скобы 22 для прокладки проводов электропитания к светильникам 24, установленным в каркасе 19. Крепление каркаса к потолку осуществляется с помощью дюбель-винтов 23. К каркасу прикреплен перфорированный лист 20, на котором через слой акустического прозрачного материала 25 расположен слой звукопоглощающего материала 18. При монтаже акустического потолка должны соблюдаться оптимальные соотношения размеров: D - от точки подвеса каркаса до любой из его сторон и Е - толщины слоя звукопоглощающего материала, причем отношение этих размеров должно находиться в оптимальном интервале величин: E:D=0,1…0,5. Перфорированный лист 20 имеет следующие параметры перфорации: диаметр перфорации 3…7 мм, процент перфорации 10%…15%, причем по форме перфорация может быть выполнена в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного сечения (на чертеже показаны квадратные отверстия). В случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности.

На фиг.4 представлена схема виброизоляции железобетонной плиты, состоящей из связанных между собой железобетонных балок 29 в основании здания, которая является вариантом виброзащиты без домкратов и включает в себя, по крайней мере, четыре резиновых виброизолятора 33 (фиг.5 и 6), устанавливаемых между металлической плитой 34 и железобетонной балкой 29, расположенной в основании 30 здания, выполненного за одно целое с, по крайней мере, восемью ленточными фундаментными блоками 31 и 32, являющимися своеобразными "ловушками", а каждая из металлических плит 34 установлена на, по крайней мере, трех железобетонных столбах-упорах 35. Между каждыми ленточными фундаментными блоками 31 и 32 и каждой из железобетонных балок 29 устанавливаются песчаные подушки 37, а под резиновыми виброизоляторами 33 закреплены тензорезисторные датчики 36, контролирующие осадку виброизоляторов 33. Песчаные подушки 37 установлены в металлических разъемных обоймах.

В процессе возведения сейсмостойкого здания опалубка железобетонной монолитной стены опирается на песчаные подушки 37, заключенные в разборную металлическую обойму. После отвердения бетона и снятия опалубки между выступами "ловушками" 31 и 32 устанавливается виброизолятор 33 в сборе. После того как бетон в балке 29 наберет достаточную прочность, металлическая обойма размыкается и песок из "подушки" извлекается, а балка 29 опирается на виброизолятор 33. В дальнейшем, по мере воздвижения здания, виброизолятор 33 сжимается. Демонтаж и замена виброизолятора 33 производятся с помощью домкратов (не показано).

При монтаже системы виброзащиты здания указанным способом необходимо соблюдать следующие положения:

- виброизоляторы 33 должны быть смонтированы уже в начальной стадии строительства, в связи с чем они должны быть заранее изготовлены и испытаны;

- должна быть обеспечена сохранность виброизоляторов 33 и тензорезисторных датчиков 36 от воздействия неблагоприятных природных факторов в период строительства;

- высота песчаной подушки 37 назначается по расчету исходя из осадки виброизоляторов 33 под нагрузкой и с течением времени.

- для регулировки зазора между железобетонной балкой 29 и "ловушкой" на последней устанавливаются, по крайней мере, две съемные металлические плиты толщиной по 1 см.

Каждый из виброизоляторов 33 (фиг.5 и 6) состоит из жестко связанных между собой резиновых плит: верхней 38 и нижней 39, в которых выполнены сквозные отверстия 40, расположенные по поверхности виброизолятора в шахматном порядке. По форме виброизоляторы 33 выполнены квадратными или прямоугольными, а также их боковые грани могут быть выполнены в виде криволинейных поверхностей n-го порядка, обеспечивающих равночастотность системы виброизоляции в целом. Отверстия 40 имеют в сечении форму, обеспечивающую равночастотность виброизолятора 33.

Возможен вариант, когда внутри центрально расположенных и осесимметричных колец 44 и 43, закрепленных соответственно на верхней нажимной шайбе 45 и нижней шайбе 46, жестко соединенной с основанием 41 таким образом, что нижнее кольцо 43 охватывает верхнее кольцо 44, дополнительно расположен демпфирующий элемент в виде винтовой цилиндрической пружины, витки которой покрыты слоем вибродемпфирующего материала, например полиуретана (не показано).

Малошумное сейсмостойкое производственное здание работает следующим образом.

Звуковая энергия от оборудования 11, находящегося в помещении, попадает на слои звукопоглощающего материала звукопоглощающих конструкций, которыми облицованы несущие стены 1, 2, 3, 4 с ограждениями 5, 6 (пол 6 и потолок 5), а также штучные звукопоглотители 7 и 8, содержащие каркас, в котором расположен звукопоглощающий материал, и которые установлены над шумным оборудованием 11. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора, о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Коэффициент перфорации перфорированной стенки принимается равным или более 0,25. Для предотвращения высыпания мягкого звукопоглотителя предусмотрена стеклоткань, например, типа Э3-100, расположенная между звукопоглотителем и перфорированной стенкой.

Звуковые волны, распространяясь в производственном помещении, взаимодействуют с заполненными звукопоглотителем полостями.

Взаимодействие звуковых волн с активными полостями, заполненными негорючим звукопоглотителем, приводит к шумоглушению в высокочастотном диапазоне, причем за счет наличия полостей увеличивается поверхность звукопоглощения и, как следствие, повышается коэффициент звукопоглощения.

При установке виброактивного оборудования на плиту 12, происходит двухкаскадная виброзащита, за счет вибродемпфирующих вкраплений в саму массу плиты 12, а также за счет слоя вибродемпфирующего материала 14, в качестве которого могут быть использованы иглопробивные маты типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, материал из твердых вибродемпфирующих материалов, например, пластиката, из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.

Подвесной акустический потолок работает следующим образом.

Подвешивание подвесного акустического потолка осуществляют на подвесках 21, которые крепятся к потолку с помощью дюбель-винтов 23, а другим концом закреплены на каркасе 19. Звуковые волны, распространяясь в производственном помещении, взаимодействуют с заполненными звукопоглотителем полостями.

Взаимодействие звуковых волн с активными полостями, заполненными негорючим звукопоглотителем, приводит к шумоглушению в высокочастотном диапазоне, причем за счет наличия полостей увеличивается поверхность звукопоглощения и, как следствие, повышается коэффициент звукопоглощения.

Преимуществом предлагаемого изобретения является его универсальность применения для различных производственных помещений, имеющих самые разнообразные шумовые характеристики. При этом следует отметить относительную легкость настройки характеристик на требуемый частотный диапазон шумоподавления за счет изменения длины подвеса и его экономически обоснованную эффективность (имеется в виду снижение шума до санитарно-гигиенических норм). Кроме того, выполнение звукопоглотителя из негорючих материалов делает конструкцию пожаробезопасной.

Источники информации

1. Кочетов О.С., Сажин Б.С. Снижение шума и вибраций в производстве: теория, расчет, технические решения. М.: МГТУ им. А.Н. Косыгина, 2001. - 319 с. (рис.П.III.10, стр.263).

2. Кочетов О.С. Текстильная виброакустика. Учебное пособие для вузов. М.: МГТУ им. А.Н.Косыгина, группа «Совьяж Бево» 2003. - 191 с. (рис.П.2, стр.176).

3. Кочетов О.С. Лабораторный практикум по производственной санитарии. Учебное пособие для вузов. М.: МГТУ им. А.Н. Косыгина, группа «Совьяж Бево» 2004. - 168 с. (рис.6.6, стр.120).

4. Кочетов О.С. Звукопоглощающие конструкции для снижения шума на рабочих местах производственных помещений. Журнал «Безопасность труда в промышленности», №11, 2010, стр.46-50. (рис.1; стр.48 и рис.2; стр.48)

5. Кочетов О.С. Звукопоглощающая конструкция цеха // Патент на изобретение №2414565. Опубликовано 20.03.2011. Бюллетень изобретений №8.

6. Кочетов О.С. Способ акустической защиты оператора // Патент на изобретение №2431022. Опубликовано 10.10.2011. Бюллетень изобретений №28.

7. Кочетов О.С., Стареева М.О. Производственное помещение с низким уровнем шума // Патент на изобретение №2425931. Опубликовано 10.08.2011. Бюллетень изобретений №22.

8. Дурнев Р.А., Кочетов О.С, Иванова О.Ю. Сейсмостойкое здание // Патент на полезную модель №120447. Опубликовано 20.09.2012. Бюллетень изобретений №26.

9. Дурнев Р.А., Кочетов О.С., Иванова О.Ю., Авгуцевичс А.Х. Сейсмостойкое сооружение // Патент на полезную модель №123433. Опубликовано 27.12.2012. Бюллетень изобретений №36.

10. Дурнев Р.А., Кочетов О.С., Иванова О.Ю., Авгуцевичс А.Х. Сейсмостойкая кирпичная стеновая панель // Патент на полезную модель №118331. Опубликовано 20.07.2012. Бюллетень изобретений №20.

11. Дурнев Р.А., Иванова О.Ю., Кочетов О.С. Малошумное сейсмостойкое производственное здание // Патент на полезную модель №129125. Опубликовано 20.06.2013. Бюллетень изобретений №17.


МАЛОШУМНОЕ СЕЙСМОСТОЙКОЕ ПРОИЗВОДСТВЕННОЕ ЗДАНИЕ
Источник поступления информации: Роспатент

Показаны записи 2 231-2 240 из 2 424.
01.09.2018
№218.016.8212

Скруббер

Изобретение относится к технике мокрого пылеулавливания. Скруббер, содержащий корпус, включающий коническую, цилиндрическую части и шламосборник, патрубок для ввода запыленного газа, патрубок для выхода очищенного, оросительное устройство, включающее внешний трубопровод с врезанными в корпус...
Тип: Изобретение
Номер охранного документа: 0002665399
Дата охранного документа: 29.08.2018
01.09.2018
№218.016.8226

Двухступенчатая установка пылеулавливания

Изобретение относится к технике пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов. Целью изобретения является повышение эффективности и надежности процесса пылеулавливания, а также снижение металлоемкости...
Тип: Изобретение
Номер охранного документа: 0002665531
Дата охранного документа: 30.08.2018
01.09.2018
№218.016.822c

Газопромыватель

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов. Газопромыватель, содержащий корпус, состоящий из верхней и нижней секций, патрубок для ввода запыленного газа,...
Тип: Изобретение
Номер охранного документа: 0002665408
Дата охранного документа: 29.08.2018
01.09.2018
№218.016.8231

Вихревой пылеуловитель со встречно-закрученными потоками

Изобретение относится к технике очистки газа от пыли и может быть использовано в различных отраслях промышленности в системах пневмотранспорта, пневмоуборки, аспирации. Технически достижимый результат - повышение эффективности процесса пылеулавливания и безопасности работы системы в целом. Это...
Тип: Изобретение
Номер охранного документа: 0002665535
Дата охранного документа: 30.08.2018
01.09.2018
№218.016.824c

Центробежный газопромыватель с вихревыми форсунками

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов. Технический результат - повышение эффективности и надежности процесса пылеулавливания. Это достигается тем, что в...
Тип: Изобретение
Номер охранного документа: 0002665529
Дата охранного документа: 30.08.2018
01.09.2018
№218.016.8278

Дренчерный ороситель

Изобретение относится к пожарной технике, в частности к дренчерным оросителям для тушения тонкораспыленной жидкостью. Ороситель предназначен для распыления жидкости в автоматических стационарных установках пожаротушения. Технически достижимый результат - повышение эффективности пожаротушения в...
Тип: Изобретение
Номер охранного документа: 0002665391
Дата охранного документа: 29.08.2018
01.09.2018
№218.016.8281

Центробежный газопромыватель

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов. Технический результат - повышение эффективности и надежности процесса пылеулавливания. Это достигается тем, что в...
Тип: Изобретение
Номер охранного документа: 0002665527
Дата охранного документа: 30.08.2018
01.09.2018
№218.016.8283

Форсунка вихревая

Изобретение относится к технике распыления жидкости и может быть использовано в противопожарной технике, в сельском хозяйстве, в устройствах химической технологии и в теплоэнергетике. Форсунка вихревая содержит полый цилиндрический корпус, соединенный с рассекателем. Корпус состоит из...
Тип: Изобретение
Номер охранного документа: 0002665539
Дата охранного документа: 30.08.2018
04.09.2018
№218.016.82a3

Установка для извлечения ртути из люминесцентных ламп

Изобретение относится к извлечению ртути из люминесцентных ламп. Установка содержит блок дробления люминесцентных ламп, состоящий из приемного бункера, щековой дробилки для первичного дробления ламп с получением стеклобоя, элеватора с винтовым конвейером для подачи в него стеклобоя, планетарной...
Тип: Изобретение
Номер охранного документа: 0002665648
Дата охранного документа: 03.09.2018
05.09.2018
№218.016.82e2

Камера для проведения тепломассообмена между диспергированными частицами и газообразной средой

Изобретение относится к способу сушки растворов с получением гранулированного продукта, обладающего повышенной гигроскопичностью. В камере для проведения тепломассообмена между диспергированными частицами и газообразной средой, содержащей корпус, размещенный внутри корпуса концентрично ему...
Тип: Изобретение
Номер охранного документа: 0002665782
Дата охранного документа: 04.09.2018
Показаны записи 2 231-2 240 из 2 436.
01.09.2018
№218.016.81aa

Двухступенчатая система пылеулавливания с инерционным пылеотделителем

Изобретение относится к технике сухого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов. Технически достижимый результат - повышение эффективности и надежности процесса пылеулавливания. Это достигается...
Тип: Изобретение
Номер охранного документа: 0002665395
Дата охранного документа: 29.08.2018
01.09.2018
№218.016.81b1

Вихревой пылеуловитель со встречно-закрученными потоками

Изобретение относится к технике очистки газа от пыли и может быть использовано в различных отраслях промышленности в системах пневмотранспорта, пневмоуборки, аспирации. Технически достижимый результат - повышение эффективности процесса пылеулавливания и безопасности работы системы в целом. Это...
Тип: Изобретение
Номер охранного документа: 0002665528
Дата охранного документа: 30.08.2018
01.09.2018
№218.016.81bf

Конический форсуночный скруббер

Изобретение относится к технике мокрого пылеулавливания. Конический форсуночный скруббер, содержащий корпус с патрубками для запыленного и очищенного газа, форсуночное оросительное устройство, опорные и ограничительные тарелки, между которыми расположена насадка, брызгоуловитель, выполненный в...
Тип: Изобретение
Номер охранного документа: 0002665401
Дата охранного документа: 29.08.2018
01.09.2018
№218.016.81c3

Центробежный газопромыватель

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов. Центробежный газопромыватель содержит корпус, патрубок для ввода запыленного газа, патрубок для выхода очищенного...
Тип: Изобретение
Номер охранного документа: 0002665405
Дата охранного документа: 29.08.2018
01.09.2018
№218.016.81cb

Рассекатель потока жидкости эжекционного типа

Изобретение относится к технике распыления жидкости. Технический результат - повышение эффективности мелкодисперсного распыливания жидкости. Это достигается тем, что в рассекателе потока жидкости эжекционного типа для форсунки, которая содержит полый корпус, состоящий из цилиндрической части с...
Тип: Изобретение
Номер охранного документа: 0002665534
Дата охранного документа: 30.08.2018
01.09.2018
№218.016.81ce

Сетчатый вертикальный фильтр

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности. Сетчатый вертикальный фильтр содержит корпус, установленный на укрытии источника паропылевой смеси, входной и выходной патрубки, фильтрующий...
Тип: Изобретение
Номер охранного документа: 0002665412
Дата охранного документа: 29.08.2018
01.09.2018
№218.016.81d8

Форсунка для распыливания жидкостей

Изобретение относится к технике распыления жидкости и может быть использовано в противопожарной технике, в сельском хозяйстве, в устройствах химической технологии и в теплоэнергетике. Технический результат - повышение эффективности мелкодисперсного распыливания жидкости. Это достигается тем,...
Тип: Изобретение
Номер охранного документа: 0002665530
Дата охранного документа: 30.08.2018
01.09.2018
№218.016.81f4

Конический форсуночный скруббер

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов. Технический результат - повышение эффективности и надежности процесса пылеулавливания путем увеличения степени...
Тип: Изобретение
Номер охранного документа: 0002665526
Дата охранного документа: 30.08.2018
01.09.2018
№218.016.81fe

Конический форсуночный скруббер с вихревым оросителем

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов. Технический результат - повышение эффективности и надежности процесса пылеулавливания путем увеличения степени...
Тип: Изобретение
Номер охранного документа: 0002665525
Дата охранного документа: 30.08.2018
01.09.2018
№218.016.8202

Двухступенчатая система пылеулавливания с инерционным пылеотделителем

Изобретение относится к технике сухого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов. Технически достижимый результат - повышение эффективности и надежности процесса пылеулавливания. Это достигается...
Тип: Изобретение
Номер охранного документа: 0002665532
Дата охранного документа: 30.08.2018
+ добавить свой РИД