×
09.06.2018
218.016.5d5f

Результат интеллектуальной деятельности: СПОСОБ ПОВЫШЕНИЯ РАЗРЕШАЮЩЕЙ СПОСОБНОСТИ ИЗОБРАЖЕНИЙ В МНОГОКАНАЛЬНЫХ РТЛС

Вид РИД

Изобретение

Аннотация: Изобретение относится к радиотеплолокации, а именно к пассивным системам наблюдения за объектами с помощью многоканальных радиотеплолокационных станций (РТЛС) или радиометров со сканирующими антеннами. Достигаемый технический результат - повышение пространственного разрешения изображений в матрицах радиотеплового изображения (РТИ) в равной степени для всех каналов с сохранением температурных характеристик частотных диапазонов. Многоканальная РТЛС с несколькими совмещенными антеннами, имеющими разные характеристики диаграмм направленности (ДН), принимает сигналы в разных частотных диапазонах. Антенны сканируют зону обзора, смещаясь по азимуту и углу места. В результате сканирования и первичной обработки принимаемых сигналов в нескольких измерительных каналах (по числу антенн) формируются матрицы РТИ. Положительный эффект достигается за счет умножения матриц РТИ на определенные коэффициенты и последующей совместной обработки матриц с помощью операций восстановления изображений.

Изобретение относится к радиотеплолокации, а именно к пассивным системам наблюдения за объектами с помощью многоканальных радиотеплолокационных станций (РТЛС) или радиометров [1, 2] со сканирующими антеннами.

Многоканальная РТЛС с несколькими совмещенными антеннами, имеющими разные характеристики диаграмм направленности (ДН), принимает сигналы в разных частотных диапазонах. В результате сканирования антенн зоны обзора и прохождения принимаемых сигналов через тракты первичной обработки в нескольких измерительных каналах формируются матрицы радиотеплового изображения (РТИ) контролируемого участка местности или воздушной обстановки. Каждая матрица соответствует определенной антенне. Изображения объектов в матрицах РТИ получаются нечеткими в силу ограниченной разрешающей способности антенн, определяемой шириной ДН. Амплитуды элементов матриц РТИ несут информацию о радио-яркостной температуре объектов на изображении, которая зависит от частотного диапазона. Из-за различия частотных диапазонов амплитуды соответствующих элементов матриц отличаются. Возникает необходимость повысить четкость изображения объектов (то есть разрешение) за счет дополнительной обработки матриц РТИ и при этом сохранить информацию о тепловых характеристиках объектов в частотных диапазонах.

Известны способы формирования РТИ и повышения их пространственным разрешения, основанные на использовании нескольких совмещенных антенн с разными характеристиками ДН [3, 4]. В этих способах в результате сканирования антенн по пространству формируются несколько матриц РТИ в каналах первичной обработки. Затем эти матрицы совместно обрабатываются и получается одна матрица изображения контролируемого участка местности или воздушной обстановки с повышенным пространственным разрешением. Разрешение изображения повышается за счет увеличения числа каналов с разными характеристиками ДН и операций восстановления при совместной обработке матриц РТИ.

Однако при этом не учитывается различие температурных характеристик объектов в разных частотных диапазонах. Это приводит к ошибкам восстановления изображения, то есть к снижению разрешающей способности. При этом не сохраняются тепловые характеристики объектов в частотных диапазонах, соответствующих различным антеннам.

Рассмотрим в качестве прототипа способ формирования изображений в многоканальных РТЛС и РЛС [3], который заключается в следующем:

1. Антенная система, представляющая собой несколько совмещенных антенн или антенную решетку, построчно сканирует зону обзора, смещаясь по азимуту и углу места.

2. Цифровая система обработки принимаемых сигналов измеряет в каждом q-м канале (q=1, 2, …, Q, Q - число каналов) независимо сигналы в дискретные моменты времени, совпадающие с шагами дискретизации по углу места и азимуту, и формирует из них матрицы РТИ Y1, Y2, …, YQ.

3. Полученные матрицы Y1, Y2, …, YQ последовательно и построчно сворачивают в один вектор измерений .

4. Вектор умножают справа на матрицу весовых коэффициентов Н, вычисляемую заранее, тем самым получают вектор оценок .

5. Вектор оценок разворачивают построчно в матрицу X, представляющую восстановленное изображение зоны обзора с повышенным в несколько раз разрешением по угловым координатам.

Данный способ обладает указанными выше недостатками, а именно:

1. При формировании вектора измерений не учитываются амплитудные различия искомых изображений X1, X2, …, XQ в разных частотных диапазонах антенн. Приближенно принимается: Х12=…=XQ=X, что приводит к ошибкам восстановления.

2. В элементах полученной матрицы X отсутствует информация о тепловых характеристиках объектов в разных частотных диапазонах.

Технический результат направлен на устранение указанных недостатков, а именно на повышение разрешающей способности изображений с сохранением информации о температурных характеристиках объектов в разных частотных диапазонах.

Технический результат предлагаемого технического решения достигается применением способа повышения разрешающей способности изображений в многоканальных РТЛС, который заключается в сканировании зоны обзора по азимуту и углу места несколькими совмещенными антеннами РТЛС с разными ДН, принимающими сигналы в разных частотных диапазонах, формируют матрицы РТИ Y1, Y2, …, YQ по числу антенн, которые затем совместно обрабатывают, отличающийся тем, что матрицы Y1, Y2, …, YQ умножают на определенные коэффициенты μ1, μ2, …, μQ, рассчитанные заранее, сворачивают построчно полученные матрицы μ1Y1, μ2Y2, …, μQYQ в один вектор измерений , который умножают справа на матрицу весовых коэффициентов Н, вычисляемую заранее, и получают вектор оценок , затем разворачивают вектор построчно в матрицу X, умножают эту матрицу на коэффициенты 1/μ1, 1/μ2, …, 1/μQ и получают матрицы Х1=(1/μ1)⋅X, Х2=(1/μ2)⋅X, XQ=(1/μQ)⋅X восстановленного изображения зоны обзора с повышенным пространственным разрешением в разных частотных диапазонах.

Расчетная часть

Модель элементов матриц РТИ Y1={у1(i,j)}, Y2={у2(i,j)}, …, YQ={уQ(i,j)}, (М и N - количество строк и столбцов матриц), задается следующим выражением:

где уq(i,j) - i-й, j-й элемент матрицы Yq; αq(i,j) - функция рассеяния, описывающая действие ДН q-й антенны и тракта первичной обработки q-го канала; , элемент искомой матрицы изображения Xq={xq(i,j)} в q-м частотном диапазоне; (2m+1) и (2n+1) - размеры области определения функций αq(i,j) по углу места и азимуту в числе элементов дискретизации; pq(i,j) - нормальный шум аппаратуры q-го канала.

Задача заключается в нахождении матриц Xq={xq(i,j)} по совокупности наблюдений Y1, Y2, …, YQ на основе известных характеристик αq(i,j), .

Для модели наблюдений вида (1) задача решается известными методами восстановления изображений [5] независимо для каждой матрицы Yq. При одинаковой точности восстановления матриц Y1, Y2, …, YQ, присущей методу восстановления, разрешающая способность изображений Х1, Х2, …, XQ получается разной из-за различия ширины ДН антенн. При этом не достигается потенциально достижимая точность восстановления, получаемая при совместной обработке матриц Y1, Y2, …, YQ для модели наблюдений вида:

где, в отличие от модели (1), искомое изображение X={x(i,j)} одинаково во всех q-x каналах. Различие Xq проявляется в интенсивности и проникающей способности радиотеплового излучения в разных частотных диапазонах, что отражается на амплитудах элементов матриц Xq.

Примем справедливость существования коэффициентов μ1, μ2, …, μQ, таких, что выполняются равенства:

μ1X12Х2=…=μQXQ=X,

где Х - гипотетическое изображение, которое в разных частотных диапазонах воспринимается как Хq

Тогда Х1=(1/μ1)X, Х2=(1/μ2)X, … XQ=(1/μQ)X и модель (1) принимает вид:

или

что дает основание для применения предложенного способа.

Коэффициенты μ1, μ2, …, μQ находятся эмпирически из соображений наилучшей четкости восстановления контрольных изображений X и затем используются без изменения для данного класса изображений.

Задача восстановления X по совокупности наблюдений μ1Y1, μ2Y2, …, μQYQ решается известным [3, 5] матричным методом. При этом модель (3) записывается в векторно-матричной форме:

где - вектор всей совокупности наблюдений μqуq(i,j), , выписанных построчно из матриц Yq; A={a(i,j)} - матрица, элементы которой a(i,j) получены расположением по определенному правилу значений функций αq(i,j) в первоначально обнуленной матрице А; - вектор искомого изображения, при построчном переписыванием элементов x(i,j) из матрицы Х; - вектор шумов, составленный из pq(i,j).

Оптимальная оценка вектора при отсутствии информации относительно X и Р находится минимизацией квадрата евклидовой нормы

т.е. методом наименьших квадратов, T - символ транспонирования.

Необходимое условие существования экстремума функции (5) дает известное выражение вектора оптимальных оценок:

где δ - параметр регуляризации (малое положительное число), необходимый для устойчивого обращения матрицы ATA; Е - единичная матрица.

Матрица Н в (6), вычисляемая заранее, является псевдообратной для А и также может быть найдена сингулярным разложением А, например, в среде Matlab: H=pinv(A, δ).

Элементы найденного в (6) вектора построчно заполняют матрицу X* восстановленного изображения X.

Результаты моделирования

Для двухканальной системы с двумя антеннами (Q=2) моделировалось изображение X объекта в виде геометрической фигуры в составе матрицы размером M×N=25×25. Функция αq(i,j) задавалась экспонентой с квадратичным показателем степени, взятым с коэффициентом kq. В первой матрице РТИ Y1, полученной в соответствии с (1) для широкой ДН (k1=0,1), амплитуда объекта принималась равной А1, во второй матрице Y2,, полученной для узкой ДН (k1=0,3), амплитуда объекта А2. Изображение объекта восстанавливалось по правилу (6) для разных значений ΔА=А21 при А1=5 и А2>5 или А2=5 и А1>5. Различие амплитуд определялось различием частотных диапазонов антенн. Восстановленное изображение X* нормировалось делением всех элементов матрицы X* на максимальный элемент и умножением на А1, после чего сравнивалось с моделируемым изображением X1. Это давало возможность оценить по амплитуде четкость изображения.

При фиксированном коэффициенте μ1=1 выбирался коэффициент μ2 по минимуму оценки среднеквадратического отклонения (СКО) ошибки восстановления. Оптимальным значениям μ2 соответствовала минимальная оценка СКО на уровне 0,35-0,37 при ΔА>0 и на уровне 0,4-0,5 при ΔА<0. Оптимальные значения μ2 представлены в таблице в зависимости от ΔА.

Найденные для различных значений ΔА (различных частотных диапазонов) оптимальные значения μ2 использовались для получения искомых изображений: Х1*=X*, Х2*=(1/μ2)X*. Для оценки потенциально достижимой точности находилось СКО ошибки восстановления для модели (2), которое составило 0,35.

Выводы

Результаты модельного эксперимента показывают возможность применения предложенного способа в многоканальных РТЛС с несколькими антеннами. Способ позволяет повысить пространственное разрешение изображения объектов на местности или воздушной обстановки в равной степени для всех каналов с сохранением температурных характеристик частотных диапазонов.

Литература

1. Николаев А.Г., Перцов С.В. Радиотеплолокация (пассивная радиолокация). М.: Сов. радио, 1964. 335 с.

2. Шарков Е.А. Радиотепловое дистанционное зондирование Земли: физические основы: в 2 т. / Т. 1. М.: ИКИ РАН, 2014. 544 с.

3. Патент RU 2368917 С1. Способ формирования изображений в многоканальных РТЛС и РЛС / В.К. Клочко. МПК: G01S 13/89. Приоритет 21.12.2007. Опубл.: 27.09.2009. Бюл. №27.

4. Патент RU 2379706 С2. Способ повышения разрешающей способности радиотепловых изображений / В.К. Клочко, В.В. Курилкин, А.А. Куколев, С.А. Львов. МПК: G01S 13/89. Приоритет 28.03.2008. Опубл.: 20.01.2010. Бюл. №2.

5. Василенко Г.И., Тараторин А.М. Восстановление изображений. М.: Радио и связь, 1986. 304 с.

Способ повышения разрешающей способности изображений в многоканальных радиотеплолокационных станциях (РТЛС), заключающийся в сканировании зоны обзора по азимуту и углу места несколькими совмещенными антеннами РТЛС с разными диаграммами направленности, принимающими сигналы в разных частотных диапазонах, формировании матриц радиотеплового изображения Y, Y, …, Y по числу антенн, которые затем совместно обрабатывают, отличающийся тем, что матрицы Y, Y, …, Y умножают на определенные коэффициенты μ, μ, …, μ, рассчитанные заранее, сворачивают построчно полученные матрицы μY, μY, …, μY в один вектор измерений , который умножают справа на матрицу весовых коэффициентов Н, вычисляемую заранее, и получают вектор оценок , затем разворачивают вектор построчно в матрицу X, умножают эту матрицу на коэффициенты 1/μ, 1/μ, …, 1/μ и получают матрицы Х=(1/μ)⋅X, Х=(1/μ)⋅X, X=(1/μ)⋅X восстановленного изображения зоны обзора с повышенным пространственным разрешением в разных частотных диапазонах.
СПОСОБ ПОВЫШЕНИЯ РАЗРЕШАЮЩЕЙ СПОСОБНОСТИ ИЗОБРАЖЕНИЙ В МНОГОКАНАЛЬНЫХ РТЛС
СПОСОБ ПОВЫШЕНИЯ РАЗРЕШАЮЩЕЙ СПОСОБНОСТИ ИЗОБРАЖЕНИЙ В МНОГОКАНАЛЬНЫХ РТЛС
СПОСОБ ПОВЫШЕНИЯ РАЗРЕШАЮЩЕЙ СПОСОБНОСТИ ИЗОБРАЖЕНИЙ В МНОГОКАНАЛЬНЫХ РТЛС
Источник поступления информации: Роспатент

Показаны записи 11-20 из 88.
26.08.2017
№217.015.ee51

Вычислитель для режектирования помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Техническим результатом является повышение эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002628904
Дата охранного документа: 22.08.2017
19.01.2018
№218.016.00bd

Зонд атомно-силового микроскопа с программируемым спектральным портретом излучающего элемента, легированного квантовыми точками структуры ядро-оболочка

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей микроскопии и атомно-силовой микроскопии для диагностирования и исследования наноразмерных структур. Сущность изобретения заключается в том, что кантилевер соединен с электропроводящей зондирующей...
Тип: Изобретение
Номер охранного документа: 0002629713
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.00ce

Вычислитель доплеровской скорости движения объекта

Изобретение относится к вычислительной технике. Технический результат заключается в повышении точности измерения скорости за счет меньшего числа функциональных преобразований и расширении диапазона однозначно измеряемой доплеровской скорости. Вычислитель доплеровской скорости движения объекта...
Тип: Изобретение
Номер охранного документа: 0002629642
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.010c

Фазометр когерентных неэквидистантных импульсов

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) когерентных неэквидистантных импульсов на фоне шума и может быть использовано в радиолокационных и навигационных системах для однозначного измерения доплеровской...
Тип: Изобретение
Номер охранного документа: 0002629710
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.01fd

Градиентное защитное покрытие

Изобретение относится к области электротехники, а именно к защитному покрытию электрических контактов, например магнитоуправлемых контактов (герконов), микроэлектромеханических (МЭМС) коммутаторов, слаботочных и сильноточных контактов коммутационных приборов, электромагнитных реле, и может быть...
Тип: Изобретение
Номер охранного документа: 0002629954
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.089c

Способ получения покрытий на основе нанопористого диоксида титана

Изобретение относится к области электрохимии, в частности к технологии получения пористого покрытия, представляющего собой высокоупорядоченный массив нанотрубок диоксида титана, и может быть использовано в устройствах для очистки воды и воздуха от органических соединений, в производстве...
Тип: Изобретение
Номер охранного документа: 0002631780
Дата охранного документа: 26.09.2017
19.01.2018
№218.016.09c0

Способ обнаружения механического воздействия для идентификации пользователя и устройство для его осуществления

Предлагаемое изобретение относится к средствам распознавания с использованием электронных средств. Технический результат – повышение вероятности идентификации. Для этого предложен способ, который основан на сравнении на интервале времени анализа бинарного кода, формируемого из...
Тип: Изобретение
Номер охранного документа: 0002631977
Дата охранного документа: 29.09.2017
20.01.2018
№218.016.125d

Вычислитель для подавления помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Технический результат заключается в повышении эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002634190
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.126c

Вычислитель для режекции помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Технический результат заключается в повышении эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002634191
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.13af

Фильтр режектирования помех

Изобретение относится к радиолокационной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002634615
Дата охранного документа: 02.11.2017
Показаны записи 11-20 из 32.
26.08.2017
№217.015.d622

Способ определения аппаратной функции радиометра

Изобретение относится к радиотеплолокации, а именно к пассивным системам наблюдения за объектами с помощью сканирующего радиометра, и может быть использовано для получения радиотеплового изображения различных объектов. Технический результат изобретения заключается в определении корректной...
Тип: Изобретение
Номер охранного документа: 0002622899
Дата охранного документа: 21.06.2017
04.04.2018
№218.016.3753

Способ формирования изображений объектов в радиометре с двумя антеннами

Изобретение относится к пассивным радиотеплолокационным системам наблюдения за объектами с помощью сканирующего радиометра с двумя антеннами, принимающими сигналы в двух частотных диапазонах. Достигаемый технический результат – повышение пространственного разрешения изображения в первой...
Тип: Изобретение
Номер охранного документа: 0002646434
Дата охранного документа: 06.03.2018
10.05.2018
№218.016.3dc7

Способ наблюдения за объектами с помощью радиометра с двумя антеннами

Изобретение относится к радиотеплолокации, а именно к радиотеплолокационным (пассивным) системам наблюдения за объектами с помощью сканирующего радиометра, работающего в миллиметровом диапазоне длин волн в условиях повышенного шага сканирования антенны радиометра. Достигаемый технический...
Тип: Изобретение
Номер охранного документа: 0002648270
Дата охранного документа: 23.03.2018
14.06.2018
№218.016.61e8

Способ формирования температурной карты местности

Изобретение относится к способам формирования температурной карты местности путем регистрации электромагнитного излучения, испущенного находящимися на местности объектами. Предложен способ формирования температурной карты местности, включающий регистрацию посредством радиометра...
Тип: Изобретение
Номер охранного документа: 0002657331
Дата охранного документа: 13.06.2018
19.07.2018
№218.016.7263

Способ формирования радиотеплового изображения

Изобретение относится к пассивным радиотеплолокационным системам (РТЛС) наблюдения миллиметрового диапазона длин волн, предназначенным для формирования радиотеплового изображения объектов в зоне обзора. Достигаемый технический результат - обеспечение возможности на базе сканирующего радиометра...
Тип: Изобретение
Номер охранного документа: 0002661491
Дата охранного документа: 17.07.2018
24.07.2018
№218.016.73f5

Способ выделения спектральных отсчетов в многоканальной доплеровской рлс

Изобретение относится к радиолокации, а именно к бортовым импульсно-доплеровским радиолокационным станциям (РЛС), работающим в режиме узкополосной доплеровской фильтрации и предназначенным для наблюдения за наземными или воздушными объектами. Достигаемый технический результат - выделение...
Тип: Изобретение
Номер охранного документа: 0002661913
Дата охранного документа: 23.07.2018
24.07.2018
№218.016.7427

Способ повышения разрешающей способности радиометрических изображений

Изобретение относится к пассивной радиолокации, а именно к радиотеплолокационным станциям (РТЛС) наблюдения за поверхностью и воздушной обстановкой. Технический результат изобретения - повышение разрешающей способности радиометрического изображения при сохранении информации о тепловых...
Тип: Изобретение
Номер охранного документа: 0002661903
Дата охранного документа: 23.07.2018
11.03.2019
№219.016.d5f7

Способ определения траекторий движения объектов в радиометрической системе видения

Изобретение относится к пассивным радиометрическим системам наблюдения за движущимися малоразмерными объектами. Достигаемый технический результат – повышение точности определения траектории движения объектов. Радиометрическая система состоит из нескольких радиометров, работающих с перекрытием...
Тип: Изобретение
Номер охранного документа: 0002681519
Дата охранного документа: 07.03.2019
11.03.2019
№219.016.d621

Способ определения дальностей до объектов в пассивных системах видения

Изобретение относится к пассивным системам видения оптического, инфракрасного и миллиметрового диапазонов длин волн, предназначенным для наблюдения за малоразмерными объектами. Достигаемый технический результат - определение дальностей как в оптических, так и в радиосистемах при наличии...
Тип: Изобретение
Номер охранного документа: 0002681518
Дата охранного документа: 07.03.2019
21.03.2019
№219.016.eb15

Способ ориентации систем координат наблюдателей в пассивной системе видения

Изобретение относится к области радиосистем наблюдения. Технический результат – уменьшение вычислительных затрат за счёт введения правила выбора сопряженных пар точек или ортов направлений на эти точки. Способ ориентации систем координат наблюдателей в пассивной системе видения заключается в...
Тип: Изобретение
Номер охранного документа: 0002682382
Дата охранного документа: 19.03.2019
+ добавить свой РИД