×
09.06.2018
218.016.5cc5

Результат интеллектуальной деятельности: СПОСОБ ДРОССЕЛИРОВАНИЯ ТЯГИ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к ракетной технике. Способ дросселирования тяги ЖРД, основанный на снижении массовых расходов компонентов топлива в камеру с нерегулируемыми форсунками, при котором после уменьшения массовых расходов ниже заданных значений подают газ в полости магистралей питания камеры на входах в форсуночную головку камеры и смешивают его с жидкими компонентами топлива, создавая гомогенные мелкодисперсные эмульсии компонентов топлива, относительные объемные газосодержания которых увеличивают с увеличением степени дросселирования тяги. Изобретение обеспечивает уменьшение потерь удельного импульса жидкостного ракетного двигателя при глубоком дросселировании тяги и увеличение степени дросселирования тяги. 1 ил.

Изобретение относится к ракетной технике и может быть использовано при разработке жидкостных ракетных двигателей с изменяемой в широком диапазоне тягой.

В практике реализации космических программ двигатели с глубоким дросселированием тяги в основном предназначены для применения в составе посадочных платформ - последних ступеней ракетно-космических комплексов (РКК) для обеспечения их мягкой посадки на планеты Солнечной системы с разреженной атмосферой или при ее отсутствии.

В частности, такие двигатели применялись в составе посадочных модулей РКК «Apollo» (с пятикратным дросселированием тяги) и «Луна-16» (с трехкратным дросселированием тяги).

Наряду с требованием глубокого дросселирования тяги для таких двигателей (двигателей последних ступеней РКК) весьма актуальным является требование их экономичности, то есть высокого удельного импульса во всем диапазоне изменения тяги, так как увеличение массы необходимого для осуществления мягкой посадки запаса топлива прямо связано с уменьшением массы полезной нагрузки посадочной платформы.

Однако удельные импульсы известных (в том числе вышеуказанных) двигателей не отвечают этому требованию по следующим причинам.

В двигателе посадочного модуля РКК «Apollo» осуществляется способ дросселирования тяги камеры, основанный на уменьшении расходов компонентов топлива с поддержанием постоянных перепадов давления на форсунках, необходимых для распыла компонентов топлива, во всем диапазоне изменения тяги за счет уменьшения площадей проходных сечений регулируемых форсунок, механизм регулирования которых кинематически связан с приводом дросселей, обеспечивающих уменьшение расходов компонентов топлива в камеру посредством уменьшения их проходных сечений и соответственно увеличения гидросопротивлений магистралей питания камеры компонентами топлива. Схема этого двигателя представлена в книге Б.Ф. Гликмана «Автоматическое регулирование жидкостных ракетных двигателей», Москва, 1974 г., стр. 348, рисунок 9.6.

Однако применение такого способа невозможно при исполнении форсуночной головки камеры с большим количеством мелкомасштабных форсунок, обеспечивающих более качественный распыл и, соответственно, смешение компонентов топлива в камере, что обусловливает высокую полноту сгорания в камере и, следовательно, ее высокий удельный импульс во всем диапазоне изменения тяги. Данный способ может быть реализован без существенных конструктивных осложнений лишь в случае камеры, подобной камере двигателя посадочного модуля РКК «Apollo», удельный импульс которой из-за низкого качества распыла и низкой полноты сгорания топлива в камере во всем диапазоне изменения тяги находится на уровне ~260 с.

Двигатель посадочной платформы РКК «Луна-16», имеющий камеру с большим количеством мелкомасштабных 2-компонентных форсунок с постоянными проходными сечениями, реализует единственно возможный для него способ дросселирования тяги, основанный на снижении расходов компонентов топлива в камеру (при котором пропорционально квадратам расходов уменьшаются перепады давлений на форсунках). Этот способ (используется в двигателе лунной посадочной платформы, представленном в сборнике «Двигатели 1944-2000, авиационные, ракетные, морские, промышленные», Москва, АКС КОНВЕРСАЛТ, 2000 г., под редакцией И.Г.Шустова, стр. 78.) принят за прототип изобретения. Данный способ обеспечивает высококачественный распыл и смешение компонентов топлива в камере при максимальных расходах и перепадах давлений на форсунках, соответствующих максимальной тяге двигателя, как следствие максимальную полноту сгорания компонентов топлива в камере, близкую к теоретическому пределу, и, соответственно, максимальный удельный импульс камеры и двигателя, на десятки секунд превышающий удельный импульс двигателя посадочного модуля РКК «Apollo».

Однако при дросселировании тяги таким способом, вследствие уменьшения перепадов давлений на форсунках из-за уменьшения расходов, качество распыла поступающих в камеру компонентов топлива существенно ухудшается, что приводит к уменьшению удельного импульса, а при достижении некоторых предельных величин (для двигателя посадочной платформы РКК «Луна-16», реализующего способ-прототип минимально допустимый перепад давления ΔР≈1,5 атм) - к негативным процессам, таким как, например, низкочастотные колебания давления в камере, препятствующим дальнейшему снижению тяги.

Таким образом, степень дросселирования тяги двигателя по прототипу ограничена (для двигателя посадочной платформы РКК «Луна-16» - не более 3) и дальнейшее ее увеличение возможно лишь за счет повышения перепадов давлений на форсунках камеры на режиме максимальной тяги, что приводит к существенному ухудшению экономичности двигателя с турбонасосной подачей компонентов топлива или массовых характеристик ДУ (с вытеснительной подачей).

Так, исходя из указанного минимально допустимого перепада давления на форсунках ΔР≈1,5 атм, для обеспечения требуемого при мягкой посадке посадочной платформы РКК «Луна-16» (без использования специальных двигателей мягкой посадки) семикратного дросселирования тяги необходимо увеличить перепад давления на форсунках камеры при максимальной тяге двигателя с 15 атм до 69 атм, что приведет к уменьшению удельного импульса двигателя на режиме максимальной тяги на ~4 с вследствие увеличения затрат компонентов топлива на привод ТНА при турбонасосной системе подачи топлива или к увеличению массы двигательной установки (за счет увеличения массы баков и баллонов с газом наддува баков) в ~3 раза при вытеснительной системе подачи топлива. Кроме того, при этом увеличивается опасность возникновения высокочастотных колебаний давления в камере.

Предлагаемое изобретение направлено на уменьшение потерь удельного импульса жидкостного ракетного двигателя с глубоким дросселированием тяги и увеличение допустимой степени дросселирования тяги двигателя при обеспечении его высоких энергомассовых характеристик.

Результат обеспечивается тем, что способ дросселирования тяги жидкостного ракетного двигателя, основанный на снижении массовых расходов компонентов топлива в камеру с нерегулируемыми форсунками, при этом после уменьшения массовых расходов компонентов топлива в камеру двигателя ниже заданных значений подают газ в полости магистралей питания камеры на входах в форсуночную головку камеры и смешивают его с жидкими компонентами топлива, создавая гомогенные мелкодисперсные эмульсии компонентов топлива, относительные объемные газосодержания которых увеличивают с увеличением степени дросселирования тяги.

Вследствие мелкодисперсности эмульсии с размерами микропузырьков ≤0,1 мм при малом времени пребывания (~0,1÷0,2 с) в полостях форсуночной головки эмульсии компонентов топлива не расслаиваются на газ и жидкость и в виде гомогенных смесей газа и жидкости поступают через форсунки в камеру, где смешиваются и сгорают.

При этом плотности эмульгированных компонентов топлива на входах в форсунки уменьшаются в соответствии с зависимостью

ρ=ρж⋅(1-ϕ)+ρг⋅ϕ,

где ρ - плотность эмульсии,

ρж - плотность жидкости,

ρг - плотность газа,

ϕ - относительное объемное содержание газа в эмульсии.

С уменьшением плотности эмульгированного компонента топлива при постоянстве массового расхода его объемный расход через форсунки увеличивается обратно пропорционально плотности, соответственно увеличивается скорость впрыска компонента в камеру, а перепад давления, определяющий качество распыла жидкого компонента, в соответствии с законом Бернулли возрастает.

Вследствие вышеуказанного, по сравнению с прототипом улучшается распыл компонентов топлива, их смешение в камере, чему, кроме скорости впрыска, способствует структура поступающей из форсунок мелкодисперсной эмульсии, а с увеличением перепадов давления на форсунках уменьшается вероятность возникновения низкочастотных пульсаций давления в камере с присущими им негативными последствиями.

На чертеже представлена схема ЖРД, реализующего предлагаемый способ дросселирования тяги.

В состав двигателя входят камера 1 с форсуночной головкой 2 магистрали окислителя 3 и горючего 4, исполнительные органы системы регулирования тяги - дроссели 5, 6 с электроприводами 7, 8, пневмоуправляемые отсечные клапаны 9, 10, пневмомагистраль 11, эмульгаторы 12, 13 в магистралях 3, 4, трубопроводы 14, 15, сообщающие полости эмульгаторов 12, 13 с пневмомагистралью 11, обратные клапаны 16, 17 и дроссельные шайбы 18, 19 в трубопроводах 14, 15, электроклапан 20 в пневмомагистраль 11 на входе в трубопроводы 14, 15.

Во время работы двигателя на режимах максимальной и относительно высокой тяги компоненты топлива через дроссели 5, 4 и открытые давлением газа управления в управляющих полостях отсечные клапаны 9, 10 поступают на форсунки форсуночной головки 2 камеры 1. На указанных режимах достаточные перепады давлений на форсунках обеспечивают качественный распыл компонентов топлива, следовательно, высокую полноту их сгорания в камере и ее высокий удельный импульс. При этом обратные клапаны 16, 17 препятствуют поступлению компонентов топлива из магистралей 3, 4 в трубопроводы 14, 15 и пневмомагистраль 11.

При дросселировании тяги двигателя за счет уменьшения проходных сечений дросселей 5, 6 электроприводами 7, 8 расходы компонентов топлива в камеру уменьшаются, давления их на входах в форсуночную головку 2 камеры 1 и перепады давлений на форсунках падают. При достижении степени дросселирования, при которой перепад давлений на форсунках недостаточен для качественного распыла и смешения компонентов топлива, вследствие чего полнота их сгорания в камере и удельный импульс камеры уменьшаются (эта степень дросселирования определяется экспериментально), подается электрическое напряжение на электроклапан 20. Электроклапан 20 открывается, газ из пневмомагистралей управления 11 поступает в трубопроводы 14, 15 и через дроссельные шайбы 18, 19 и обратные клапаны 16, 17 в полости эмульгаторов 12, 13. Истекая через микроскопические перфорации в стенках эмульгаторов газ дробится под действием сил поверхностного натяжения жидких компонентов топлива на пузырьки с диаметром, в ~2 раза превышающим размеры перфорации, и смешиваются с жидкими компонентами топлива, в результате чего в магистралях 3, 4 создаются гомогенные эмульсии окислителя и горючего, которые поступают в соответствующие полости форсуночной головки 2 и далее в форсунки окислителя и горючего камеры 1. При этом перепады давлений на форсунках увеличиваются приблизительно пропорционально объемным содержаниям газа в эмульсиях компонентов топлива. При дальнейшем дросселировании тяги двигателя посредством уменьшения расходов компонентов топлива в камеру 1 их давления на входах в форсуночную головку 2, в магистралях 3, 4, также в полостях эмульгаторов 12, 13 уменьшаются, перепады давлений на дроссельных шайбах 18, 19 увеличиваются, массовые расходы газа через дроссельные шайбы и эмульгаторы 12, 13 в магистрали 3, 4 вследствие увеличения перепадов давлений на них при постоянном давлении газа на входе в дроссельные шайбы 18, 19 возрастают до величин, соответствующих критическим перепадам давлений на дроссельных шайбах 18, 19, после чего остаются постоянными.

В результате при дросселировании тяги двигателя уменьшением расходов компонентов топлива относительное объемное газосодержание в эмульсиях окислителя и горючего, поступающих в форсунки камеры 1, возрастает (из-за увеличения массового расхода газа, а также из-за падения давления компонентов топлива), что приводит к уменьшению их плотностей, увеличению перепадов давлений на форсунках, повышению качества распыла компонентов топлива, их смешиванию в камере с сопутствующим увеличением полноты сгорания и, соответственно, удельного импульса камеры при высоких степенях дросселирования тяги двигателя, а также исключает развитие негативных процессов, возникающих при недостаточных для качественного распыла компонентов топлива перепадах давления на форсунках, увеличивая тем самым возможную степень дросселирования тяги двигателя.

Так, расчетная оценка показывает, что использование предлагаемого способа дросселирования позволит увеличить степень дросселирования тяги двигателя посадочной платформы РКК «Луна-16» с трех до семи при относительном объемном содержании газа в эмульсиях компонентов топлива ϕ=0,9 и перепадах давлений на форсунках ΔР=4,73 атм на режиме минимальной тяги (вместо перепада давления ≈0,48 ата, в случае прототипа, при котором распыл компонентов топлива форсунками отсутствует), что обеспечивает достаточно высокий удельный импульс камеры и двигателя.

Способ дросселирования тяги жидкостного ракетного двигателя, основанный на снижении массовых расходов компонентов топлива в камеру с нерегулируемыми форсунками, отличающийся тем, что после уменьшения массовых расходов компонентов топлива в камеру двигателя ниже заданных значений подают газ в полости магистралей питания камеры на входах в форсуночную головку камеры и смешивают его с жидкими компонентами топлива, создавая гомогенные мелкодисперсные эмульсии компонентов топлива, относительные объемные газосодержания которых увеличивают с увеличением степени дросселирования тяги.
СПОСОБ ДРОССЕЛИРОВАНИЯ ТЯГИ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ
СПОСОБ ДРОССЕЛИРОВАНИЯ ТЯГИ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 103.
27.04.2013
№216.012.39dc

Устройство для открывания и закрывания окон летательного аппарата

Изобретение относится к космической технике и может быть использовано для сброса давления из полости летательного аппарата или отдельного его узла. Устройство для открывания и закрывания окон летательного аппарата содержит силовой цилиндр, размещенную в нем пружину, шток, проушины и крышку....
Тип: Изобретение
Номер охранного документа: 0002480373
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.39e8

Устройство для доставки полезного груза в массив грунта небесных тел

Изобретение относится к ракетно-космической технике и может быть использовано при разработке космических аппаратов, предназначенных для проведения комплексных исследований грунта небесных тел, а также для доставки полезного груза в их массивы. Устройство для доставки полезного груза содержит...
Тип: Изобретение
Номер охранного документа: 0002480385
Дата охранного документа: 27.04.2013
10.05.2013
№216.012.3d40

Способ выведения на орбиту ракеты космического назначения пакетной схемы на участке полета до отделения боковых блоков

Изобретение относится к ракетно-космической технике и может быть использовано в ракетах космического назначения (РКН) пакетной схемы. На участке полета до отделения боковых блоков выполняют программный разворот по крену на соответствующий азимуту прицеливания начальный угол для совмещения...
Тип: Изобретение
Номер охранного документа: 0002481247
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3d44

Способ безопасного старта ракеты с многодвигательной первой ступенью

Изобретение относится к ракетно-космической технике и может быть использовано в ракетах космического назначения (РКН) с многодвигательной первой ступенью. При невзрывном отказе одного из двигателей выполняют маневр увода аварийной ракеты за счет разворота ракеты в сторону от сооружений...
Тип: Изобретение
Номер охранного документа: 0002481251
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e39

Система изменения вектора тяги ракетных двигателей ракеты-носителя с управляемым углом отклонения

Изобретение относится к области ракетно-космической техники и может быть использовано в ракетных комплексах на базе ракет-носителей несимметричного пакетного типа с жидкостными ракетными двигателями. Система изменения вектора тяги ракетных двигателей ракеты-носителя с управляемым углом...
Тип: Изобретение
Номер охранного документа: 0002481496
Дата охранного документа: 10.05.2013
10.06.2013
№216.012.49a6

Редуктор давления газа

Изобретение относится к автоматическим устройствам регулирования давления газа и может быть использовано в энергетическом машиностроении. Сущность изобретения состоит в том, что силовая пружина 7, установленная на сферический подшипник 10, передает свое усилие на мембрану 4 через...
Тип: Изобретение
Номер охранного документа: 0002484434
Дата охранного документа: 10.06.2013
27.06.2013
№216.012.5121

Способ и устройство для регулирования основных параметров ракетных двигателей двигательной установки, использующей газообразные компоненты топлива

Изобретение относится к ракетно-космической технике. Способ регулирования основан на поддержании массовых расходов компонентов топлива через двигатели путем обеспечения заданных давлений на входах в блоки двигателей, при этом в процессе работы двигателей измеряют температуры газообразных...
Тип: Изобретение
Номер охранного документа: 0002486362
Дата охранного документа: 27.06.2013
27.07.2013
№216.012.5a26

Турбоэлектрогенераторный агрегат

Изобретение относится к энергетическому машиностроению и может быть использовано в конструкции газотурбинных установок для привода электрогенераторов. Турбоэлектрогенераторный агрегат содержит ротор, статор, электрогенератор, а также опорные узлы, вход рабочего тела, щелевое уплотнение и выхлоп...
Тип: Изобретение
Номер охранного документа: 0002488699
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5c9c

Ракета-носитель

Изобретение относится к ракетно-космической технике, а именно к ракетам-носителям для выведения в космос космических аппаратов. Ракета-носитель содержит один маршевый двигатель в карданном подвесе и отделяемую первая ступень. Первая ступень содержит аэродинамические рули с гидравлическими...
Тип: Изобретение
Номер охранного документа: 0002489329
Дата охранного документа: 10.08.2013
27.08.2013
№216.012.64d4

Насос

Изобретение относится к насосостроению и может быть использовано в ТНА ракетной техники. Насос содержит корпус 1 с боковым всасывающим патрубком 3, подсоединенным к кольцевой полости 4, переходящей в конический подвод 5 перед входом в рабочее колесо ротора 2. Наружная и внутренняя стенки 6...
Тип: Изобретение
Номер охранного документа: 0002491449
Дата охранного документа: 27.08.2013
Показаны записи 11-20 из 63.
27.02.2014
№216.012.a6f9

Космическая энергетическая установка с машинным преобразованием энергии

Космическая энергетическая установка с машинным преобразованием энергии содержит замкнутый контур с газообразным рабочим телом, реализующим замкнутый термодинамический цикл Брайтона. В состав замкнутого термодинамического цикла входят источник тепла, турбокомпрессор, кинематически связанный с...
Тип: Изобретение
Номер охранного документа: 0002508460
Дата охранного документа: 27.02.2014
10.04.2014
№216.012.b346

Способ формирования сигналов управления вращающейся вокруг продольной оси двухканальной ракетой

Изобретение относится к ракетной технике и может быть использовано в системах наведения управляемых ракет. Технический результат - повышение точности наведения ракеты за счет устранения фазовой связи ее каналов управления. Для этого сигналы рассогласования между командами управления ракетой в...
Тип: Изобретение
Номер охранного документа: 0002511610
Дата охранного документа: 10.04.2014
27.08.2014
№216.012.f06e

Способ определения угла крена вращающегося по крену летательного аппарата

Изобретение относится к области управления летательными аппаратами (ЛА), в частности, стабилизированными вращением. Способ использует информацию о векторе магнитного поля Земли (МПЗ), измеренном датчиком МПЗ в связанной с ЛА вращающейся по крену системе координат. Сигнал измеренного датчиком...
Тип: Изобретение
Номер охранного документа: 0002527369
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.f084

Способ управления ракетой и система управления для его осуществления

Изобретение относится к области разработки систем наведения ракет и может быть использовано в комплексах ПТУР и ЗУР. В способе управления ракетой формируют управляющий сигнал автоколебательным приводом аэродинамических рулей с обратной связью и вибрационной линеаризацией и соответствующее...
Тип: Изобретение
Номер охранного документа: 0002527391
Дата охранного документа: 27.08.2014
20.11.2014
№216.013.0638

Способ наведения вращающейся ракеты с релейным приводом рулевого органа и система для его осуществления

Изобретение относится к области приборостроения и может быть использовано в комплексах противотанковых управляемых ракет (ПТУР) и зенитных управляемых ракет (ЗУР). Технический результат - повышение точности наведения ракет с релейными приводами рулевых органов (ПРО). Для этого задают до пуска...
Тип: Изобретение
Номер охранного документа: 0002532993
Дата охранного документа: 20.11.2014
27.12.2014
№216.013.1526

Способ управления ракетой и система управления для его осуществления

Изобретение относится к области разработки систем наведения ракет и может быть использовано в комплексах ПТУР и ЗУР. Оно предназначено для повышения точности наведения ракет с аэродинамическими рулями. Сущность предлагаемой совокупности технических решений заключается в повышении точности...
Тип: Изобретение
Номер охранного документа: 0002536838
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1644

Способ телеуправления ракетой

Изобретение относится к ракетной технике и может быть использовано в системах наведения телеуправляемых ракет. Технический результат - повышение точности и помехозащищенности телеуправления ракетой. Способ включает измерение угловых координат и дальностей цели и ракеты, формирование в функции...
Тип: Изобретение
Номер охранного документа: 0002537124
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1729

Управляемый снаряд

Изобретение относится к ракетному вооружению, в частности к области малогабаритных управляемых снарядов. Управляемый снаряд выполнен по аэродинамической схеме «утка». Снаряд содержит воздушно-динамический рулевой привод в головном отсеке корпуса снаряда и аэродинамические органы управления -...
Тип: Изобретение
Номер охранного документа: 0002537357
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a6a

Двигательная установка реактивной системы управления летательного аппарата

Изобретение относится к ракетно-космической технике и может быть применено в конструкциях систем питания импульсных ракетных двигателей двигательных установок, использующих жидкие криогенные компоненты топлива и предназначенных для реактивных систем управления летательных аппаратов....
Тип: Изобретение
Номер охранного документа: 0002538190
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1b05

Жидкостный ракетный двигатель

Изобретение относится к ракетно-космической технике и может быть использовано в конструкции жидкостного ракетного двигателя (ЖРД) с турбонасосной системой подачи топлива, выполненного по схеме без дожигания с радиационно-охлаждаемым насадком сопла камеры. ЖРД включает турбонасосный агрегат...
Тип: Изобретение
Номер охранного документа: 0002538345
Дата охранного документа: 10.01.2015
+ добавить свой РИД