×
09.06.2018
218.016.5cac

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДЛИНЫ ПРОТЯЖЕННОГО МЕТАЛЛИЧЕСКОГО ИЗДЕЛИЯ

Вид РИД

Изобретение

№ охранного документа
0002656021
Дата охранного документа
30.05.2018
Аннотация: Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве. Техническим результатом изобретения является расширение функциональных возможностей устройства вследствие повышения точности измерения длины протяженного металлического изделия. Устройство для измерения длины протяженного металлического изделия содержит металлическую плоскость с размещенным изолированно над ней контролируемым изделием, совокупность которых образует отрезок длинной линии, генератор электромагнитных колебаний фиксированной частоты, соединенный линией связи с одним из концов отрезка длинной линии, включенные в линию связи направленные ответвители для прямой и отраженной электромагнитных волн, выход каждого из которых подсоединен к соответствующему входу фазового детектора, регистратор. При этом для достижения технического результата включены блок для измерения фазовой скорости электромагнитных волн и вычислительное устройство, выход фазового детектора соединен с первым входом вычислительного устройства, ко второму входу которого подсоединен выход блока для измерения фазовой скорости электромагнитных волн, а к выходу - регистратор. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях.

Известны механический способ измерения длины протяженных металлических изделий и реализующее его устройство (SU 313070 А1, 31.08.1971). Согласно им контролируемое изделие перемещают протяжным устройством в осевом направлении. Синхронно с этим приводят во вращение роликовый датчик пути, отсчитывая длину изделия как превышение некоторой базовой величины, обозначенной стационарными датчиками. Недостатками этих способа и устройства являются контактность измерений, часто неприемлемая на практике; громоздкость оборудования (его двойная длина); невысокие точность измерения и быстродействие. Точность измерения снижена вследствие проскальзывания изделия относительно ролика.

Известно также техническое решение (SU 442361 А1, 05.09.1974), которое содержит описание устройства, по технической сущности наиболее близкого к предлагаемому устройству, и принятое в качестве прототипа. Согласно этому устройству-прототипу, контролируемую металлическую трубу располагают изолированно над заземленной металлической плоскостью. В совокупности проводников - трубы и данной плоскости возбуждают электромагнитные колебания как в отрезке длинной линии. Измеряя колебательные характеристики отрезка длинной линии, в частности его резонансную частоту электромагнитных колебаний, судят о длине металлической трубы. Недостатком данного устройства является его ограниченные функциональные возможности, вызванные невысокой точностью измерения вследствие возможных изменений электрофизических параметров среды на измерительном участке.

Техническим результатом изобретения является расширение функциональных возможностей устройства вследствие повышения точности измерения длины протяженного металлического изделия.

Технический результат в предлагаемом устройстве для измерения длины протяженного металлического изделия, содержащем металлическую плоскость с размещенным изолированно над ней контролируемым изделием, совокупность которых образует отрезок длинной линии, генератор электромагнитных колебаний фиксированной частоты, соединенный линией связи с одним из концов отрезка длинной линии, включенные в линию связи входами направленные ответвители для прямой и отраженной электромагнитных волн, выход каждого из которых подсоединен к соответствующему входу фазового детектора, регистратор, достигается тем, что оно содержит блок для измерения фазовой скорости электромагнитных волн и вычислительное устройство, выход фазового детектора соединен с первым входом вычислительного устройства, ко второму входу которого подсоединен выход блока для измерения фазовой скорости электромагнитных волн, а к выходу - регистратор.

Предлагаемое техническое решение поясняется чертежом на фиг. 1, где показана функциональная схема устройства для измерения длины протяженного металлического изделия.

Устройство содержит: изделие 1, металлическую плоскость 2, генератор 3, линию связи 4, блок измерения фазовой скорости электромагнитных волн 5, фазовый детектор 6, направленные ответвители 6 и 7, вычислительное устройство 9, регистратор 10.

Устройство работает следующим образом.

В данном устройстве для проведения измерений длины протяженного металлического изделия рассматривают совокупность двух протяженных проводников - контролируемого протяженного металлического изделия и заземленной металлической плоскости - как отрезок длинной линии. Информативным параметром служит фазовый сдвиг Δϕ возбуждаемой и отраженной от разомкнутого конца отрезка длинной линии электромагнитных волн.

При распространении электромагнитной волны вдоль отрезка длинной линии, ее отражении от разомкнутого конца отрезка длинной линии и приеме этой волны на его входе фазовый сдвиг Δϕ падающей и принимаемой электромагнитных волн выражается следующей формулой (Викторов В.А. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1978. 280 с. С. 73-74):

где ƒ - частота генератора, - фазовая скорость электромагнитной волны, с - скорость света, ε и μ - соответственно, относительное значение диэлектрической проницаемости и относительное значение магнитной проницаемости среды в пространстве, где расположены проводники рассматриваемого отрезка длинной линии, .

В данном устройстве предусмотрено наличие блока измерения фазовой скорости νф электромагнитных волн на измерительном участке устройства, которое воспринимает текущую информацию о значениях величин ε и μ и их возможных изменениях. Этот блок содержит резонатор - колебательный контур, дополнительный отрезок длинной линии или объемный резонатор. При этом собственная (резонансная) частота ƒp такого резонатора определяет (задает) частоту электромагнитных колебаний генератора, которая зависит от ε и μ:

где - собственная частота этого резонатора при ε=μ=1.

При умножении значения Δϕ из формулы (1) на значение ƒp из формулы (2), любых значениях ε и μ будет иметь:

где . Это соотношение является инвариантом по отношению к ε и μ. Следовательно, обеспечив выполнение в вычислительном блоке устройства операции умножения величин Δϕ и ƒp согласно формуле (3), достигается независимость результатов измерения от электрофизических параметров ε и μ окружающей среды.

При реализации данного устройства контролируемую трубу 1 располагают на диэлектрических опорах (не показаны на рисунке) над металлической плоскостью 2 (фиг. 1).

С применением высокочастотного генератора 3 фиксированной частоты и линии связи 4 (коаксиальный кабель) в таком отрезке длинной линии возбуждают электромагнитные волны. Устройство содержит также блок для измерения фазовой скорости электромагнитных волн 5 на измерительном участке устройства в виде резонатора 5 - колебательного контура, дополнительного отрезка длинной линии или объемного резонатора. При этом собственная (резонансная) частота ƒp такого резонатора зависит от фазовой скорости νф электромагнитных волн на измерительном участке, то есть от ε и μ, и выражается формулой (2).

Отраженные от конца отрезка длинной линии волны, а также прямые волны (часть их мощности) подаются от генератора 3 на фазовый детектор 6. Для этой цели служат включенные в линию связи 4 направленные ответвители 7 и 8 соответственно, для прямых и отраженных электромагнитных волн. На выходе фазового детектора 6, осуществляющего сравнение фаз прямых и отраженных волн, образуется сигнал, напряжение U которого пропорционально разности фаз Δϕ этих волн: U=acos(Δϕ+Δϕ0). Здесь Δϕ0 - фиксированный фазовый сдвиг в линии связи 4, направленных ответвителях 7 и 8. Коэффициент а учитывает затухание, вносимое схемными элементами. Выход фазового детектора 5 подсоединен к первому входу вычислительного устройства 9, ко второму входу которого подсоединен выход блок для измерения фазовой скорости электромагнитных волн 5. К выходу вычислительного устройства 9 подключен регистратор 10, выходной сигнал которого соответствует значению длины протяженного металлического изделия. В вычислительном устройстве 9 осуществляется операция умножения величин Δϕ и ƒp согласно формуле (3) и, тем самым, обеспечивается независимость результатов измерения длины от электрофизических параметров ε и μ окружающей среды.

Для контролируемых протяженных металлических изделий выбором частоты генератора можно оптимизировать чувствительность такого датчика длины металлического изделия в рабочем диапазоне ее изменения. При этом имеет место монотонность зависимости информативного параметра от этой длины. Данный способ измерения достаточно просто реализуем. Он может найти применение на практике там, где требуется производить высокоточные бесконтактные измерения длины металлической трубы в широких пределах ее изменения при наличии возможных изменений электрофизических параметров окружающей среды в области расположения измерительного участка трубы, где производят измерения длины металлического изделия.

Устройство для измерения длины протяженного металлического изделия, содержащее металлическую плоскость с размещенным изолированно над ней контролируемым изделием, совокупность которых образует отрезок длинной линии, генератор электромагнитных колебаний фиксированной частоты, соединенный линией связи с одним из концов отрезка длинной линии, включенные в линию связи входами направленные ответвители для прямой и отраженной электромагнитных волн, выход каждого из которых подсоединен к соответствующему входу фазового детектора, регистратор, отличающееся тем, что оно содержит блок для измерения фазовой скорости электромагнитных волн и вычислительное устройство, выход фазового детектора соединен с первым входом вычислительного устройства, ко второму входу которого подсоединен выход блока для измерения фазовой скорости электромагнитных волн, а к выходу - регистратор.
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДЛИНЫ ПРОТЯЖЕННОГО МЕТАЛЛИЧЕСКОГО ИЗДЕЛИЯ
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДЛИНЫ ПРОТЯЖЕННОГО МЕТАЛЛИЧЕСКОГО ИЗДЕЛИЯ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 276.
20.05.2014
№216.012.c72e

Способ преобразования электрического сигнала в пневматический

Изобретение относится к области автоматики и может быть использовано для преобразования электрического сигнала в пневматический в электроструйных системах автоматического управления с повышенными требованиями к быстродействию. Способ осуществляют следующим образом: электрическим сигналом...
Тип: Изобретение
Номер охранного документа: 0002516749
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.d01e

Устройство для оценки предпочтительного уровня унификации технических систем

Изобретение относится к вычислительной технике и может быть использовано для оценки предпочтительного уровня унификации технических систем (ТС) с целью минимизации затрат на проектирование и изготовление ТС при достаточном уровне их эффективности. Технический результат заключается в повышении...
Тип: Изобретение
Номер охранного документа: 0002519049
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d8c9

Устройство для измерения давления

Изобретение относится к измерительной технике и может быть использовано в системах управления технологическими процессами. Техническим результатом изобретения является упрощение процесса измерения информативного параметра. Устройство для измерения давления содержит генератор электромагнитных...
Тип: Изобретение
Номер охранного документа: 0002521275
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d8d0

Способ измерения расхода газожидкостной смеси

Изобретение относится к измерительной технике и может использоваться для контроля расхода газожидкостной смеси (ГЖС), извлекаемой, например, из буровой скважины. Способ измерения расхода газожидкостной смеси включает измерение объемного расхода по частоте вращения ротора при нулевом перепаде...
Тип: Изобретение
Номер охранного документа: 0002521282
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d8d3

Способ измерения массового расхода среды

Изобретение относится к измерительной технике и может использоваться для измерения расхода различных сред, в частности при коммерческих расчетах. Способ измерения массового расхода среды включает измерение объемного расхода по частоте вращения измерителя при нулевом перепаде давления и передачу...
Тип: Изобретение
Номер охранного документа: 0002521285
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.da87

Способ измерения покомпонентного расхода газожидкостной смеси

Изобретение относится к измерительной технике и может использоваться для контроля расхода газожидкостной смеси (ГЖС), извлекаемой, например, из буровой скважины. Способ измерения покомпонентного расхода газожидкостной смеси включает измерение объемного расхода и передачу данных вычислителю. При...
Тип: Изобретение
Номер охранного документа: 0002521721
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.da88

Устройство для измерения физических параметров объекта

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических параметров объектов, таких как геометрические размеры изделий, расстояние до какого-либо объекта, уровень веществ в емкостях, физические свойства жидкостей и газов,...
Тип: Изобретение
Номер охранного документа: 0002521722
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.da8e

Магниторезистивная головка-градиометр

Изобретение может быть использовано в датчиках магнитного поля и тока, головках считывания с магнитных дисков и лент, устройствах диагностики печатных плат и микросхем, биообъектов (бактерий и вирусов), идентификации информации, записанной на магнитные ленты, считывания информации, записанной...
Тип: Изобретение
Номер охранного документа: 0002521728
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.da8f

Бесконтактный радиоволновой способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. Способ заключается в том, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону...
Тип: Изобретение
Номер охранного документа: 0002521729
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dc1c

Флажковый ветрогенератор

Изобретение относится к области ветроэнергетики. Флажковый ветрогенератор содержит ветроприемник, выполненный в виде струн, расположенных в ветровом потоке между стойками, преобразователь колебаний струн в полезную энергию. Струны, натянутые между стойками, содержат навешанные на них полотнища...
Тип: Изобретение
Номер охранного документа: 0002522126
Дата охранного документа: 10.07.2014
Показаны записи 21-30 из 86.
20.12.2014
№216.013.1299

Концентратомер

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения концентрации бинарных смесей различных жидких веществ, перекачиваемых по трубопроводам. Концентратомер содержит установленный на измерительном участке трубопровода с перекачиваемой жидкостью...
Тип: Изобретение
Номер охранного документа: 0002536184
Дата охранного документа: 20.12.2014
10.05.2015
№216.013.4b38

Способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня диэлектрической жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Предлагается способ измерения...
Тип: Изобретение
Номер охранного документа: 0002550763
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4b3b

Способ определения уровня жидкого металла в технологической емкости

Изобретение относится к измерительной технике и предназначено для измерения уровня электропроводной жидкости в различных открытых емкостях. В частности, оно может быть применено для определения уровня жидкого металла в технологических емкостях металлургического производства. Предлагается способ...
Тип: Изобретение
Номер охранного документа: 0002550766
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4b47

Способ определения состояния поверхности дороги

Изобретение относится к способам для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Контролируемый участок поверхности дороги зондируют электромагнитными волнами по нормали к ней, принимают отраженные от этого участка поверхности...
Тип: Изобретение
Номер охранного документа: 0002550778
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4d92

Устройство для измерения физических параметров диэлектрического листового материала

Изобретение относится к измерительной технике и может быть использовано для высокоточных бесконтактных измерений физических параметров (влажности, плотности, массы, толщины и др.) различных листовых материалов, движущихся или находящихся в стационарных условиях. В частности, это устройство...
Тип: Изобретение
Номер охранного документа: 0002551372
Дата охранного документа: 20.05.2015
27.05.2015
№216.013.4eb9

Устройство для измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.). В...
Тип: Изобретение
Номер охранного документа: 0002551671
Дата охранного документа: 27.05.2015
10.06.2015
№216.013.510f

Способ определения состояния поверхности дороги

Изобретение относится к способам для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Контролируемый участок поверхности дороги зондируют электромагнитными волнами, принимают отраженные от этого участка поверхности электромагнитные...
Тип: Изобретение
Номер охранного документа: 0002552272
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.60af

Способ измерения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного измерения уровня диэлектрической жидкости, находящейся в емкости, например для измерения уровня нефтепродуктов. Техническим результатом является увеличение чувствительности и точности измерений. В предлагаемом способе измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002556292
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.69c5

Способ измерения уровня вещества в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения уровня вещества (жидкости, сыпучего вещества), находящегося в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Техническим...
Тип: Изобретение
Номер охранного документа: 0002558630
Дата охранного документа: 10.08.2015
10.11.2015
№216.013.8bff

Способ измерения количества диэлектрической жидкости в металлической емкости

Изобретение относится к измерительной технике и может быть использовано для измерения количества (объема) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее электрофизических параметров. Предлагается способ измерения количества диэлектрического вещества...
Тип: Изобретение
Номер охранного документа: 0002567446
Дата охранного документа: 10.11.2015
+ добавить свой РИД