×
09.06.2018
218.016.5cac

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДЛИНЫ ПРОТЯЖЕННОГО МЕТАЛЛИЧЕСКОГО ИЗДЕЛИЯ

Вид РИД

Изобретение

№ охранного документа
0002656021
Дата охранного документа
30.05.2018
Аннотация: Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве. Техническим результатом изобретения является расширение функциональных возможностей устройства вследствие повышения точности измерения длины протяженного металлического изделия. Устройство для измерения длины протяженного металлического изделия содержит металлическую плоскость с размещенным изолированно над ней контролируемым изделием, совокупность которых образует отрезок длинной линии, генератор электромагнитных колебаний фиксированной частоты, соединенный линией связи с одним из концов отрезка длинной линии, включенные в линию связи направленные ответвители для прямой и отраженной электромагнитных волн, выход каждого из которых подсоединен к соответствующему входу фазового детектора, регистратор. При этом для достижения технического результата включены блок для измерения фазовой скорости электромагнитных волн и вычислительное устройство, выход фазового детектора соединен с первым входом вычислительного устройства, ко второму входу которого подсоединен выход блока для измерения фазовой скорости электромагнитных волн, а к выходу - регистратор. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях.

Известны механический способ измерения длины протяженных металлических изделий и реализующее его устройство (SU 313070 А1, 31.08.1971). Согласно им контролируемое изделие перемещают протяжным устройством в осевом направлении. Синхронно с этим приводят во вращение роликовый датчик пути, отсчитывая длину изделия как превышение некоторой базовой величины, обозначенной стационарными датчиками. Недостатками этих способа и устройства являются контактность измерений, часто неприемлемая на практике; громоздкость оборудования (его двойная длина); невысокие точность измерения и быстродействие. Точность измерения снижена вследствие проскальзывания изделия относительно ролика.

Известно также техническое решение (SU 442361 А1, 05.09.1974), которое содержит описание устройства, по технической сущности наиболее близкого к предлагаемому устройству, и принятое в качестве прототипа. Согласно этому устройству-прототипу, контролируемую металлическую трубу располагают изолированно над заземленной металлической плоскостью. В совокупности проводников - трубы и данной плоскости возбуждают электромагнитные колебания как в отрезке длинной линии. Измеряя колебательные характеристики отрезка длинной линии, в частности его резонансную частоту электромагнитных колебаний, судят о длине металлической трубы. Недостатком данного устройства является его ограниченные функциональные возможности, вызванные невысокой точностью измерения вследствие возможных изменений электрофизических параметров среды на измерительном участке.

Техническим результатом изобретения является расширение функциональных возможностей устройства вследствие повышения точности измерения длины протяженного металлического изделия.

Технический результат в предлагаемом устройстве для измерения длины протяженного металлического изделия, содержащем металлическую плоскость с размещенным изолированно над ней контролируемым изделием, совокупность которых образует отрезок длинной линии, генератор электромагнитных колебаний фиксированной частоты, соединенный линией связи с одним из концов отрезка длинной линии, включенные в линию связи входами направленные ответвители для прямой и отраженной электромагнитных волн, выход каждого из которых подсоединен к соответствующему входу фазового детектора, регистратор, достигается тем, что оно содержит блок для измерения фазовой скорости электромагнитных волн и вычислительное устройство, выход фазового детектора соединен с первым входом вычислительного устройства, ко второму входу которого подсоединен выход блока для измерения фазовой скорости электромагнитных волн, а к выходу - регистратор.

Предлагаемое техническое решение поясняется чертежом на фиг. 1, где показана функциональная схема устройства для измерения длины протяженного металлического изделия.

Устройство содержит: изделие 1, металлическую плоскость 2, генератор 3, линию связи 4, блок измерения фазовой скорости электромагнитных волн 5, фазовый детектор 6, направленные ответвители 6 и 7, вычислительное устройство 9, регистратор 10.

Устройство работает следующим образом.

В данном устройстве для проведения измерений длины протяженного металлического изделия рассматривают совокупность двух протяженных проводников - контролируемого протяженного металлического изделия и заземленной металлической плоскости - как отрезок длинной линии. Информативным параметром служит фазовый сдвиг Δϕ возбуждаемой и отраженной от разомкнутого конца отрезка длинной линии электромагнитных волн.

При распространении электромагнитной волны вдоль отрезка длинной линии, ее отражении от разомкнутого конца отрезка длинной линии и приеме этой волны на его входе фазовый сдвиг Δϕ падающей и принимаемой электромагнитных волн выражается следующей формулой (Викторов В.А. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1978. 280 с. С. 73-74):

где ƒ - частота генератора, - фазовая скорость электромагнитной волны, с - скорость света, ε и μ - соответственно, относительное значение диэлектрической проницаемости и относительное значение магнитной проницаемости среды в пространстве, где расположены проводники рассматриваемого отрезка длинной линии, .

В данном устройстве предусмотрено наличие блока измерения фазовой скорости νф электромагнитных волн на измерительном участке устройства, которое воспринимает текущую информацию о значениях величин ε и μ и их возможных изменениях. Этот блок содержит резонатор - колебательный контур, дополнительный отрезок длинной линии или объемный резонатор. При этом собственная (резонансная) частота ƒp такого резонатора определяет (задает) частоту электромагнитных колебаний генератора, которая зависит от ε и μ:

где - собственная частота этого резонатора при ε=μ=1.

При умножении значения Δϕ из формулы (1) на значение ƒp из формулы (2), любых значениях ε и μ будет иметь:

где . Это соотношение является инвариантом по отношению к ε и μ. Следовательно, обеспечив выполнение в вычислительном блоке устройства операции умножения величин Δϕ и ƒp согласно формуле (3), достигается независимость результатов измерения от электрофизических параметров ε и μ окружающей среды.

При реализации данного устройства контролируемую трубу 1 располагают на диэлектрических опорах (не показаны на рисунке) над металлической плоскостью 2 (фиг. 1).

С применением высокочастотного генератора 3 фиксированной частоты и линии связи 4 (коаксиальный кабель) в таком отрезке длинной линии возбуждают электромагнитные волны. Устройство содержит также блок для измерения фазовой скорости электромагнитных волн 5 на измерительном участке устройства в виде резонатора 5 - колебательного контура, дополнительного отрезка длинной линии или объемного резонатора. При этом собственная (резонансная) частота ƒp такого резонатора зависит от фазовой скорости νф электромагнитных волн на измерительном участке, то есть от ε и μ, и выражается формулой (2).

Отраженные от конца отрезка длинной линии волны, а также прямые волны (часть их мощности) подаются от генератора 3 на фазовый детектор 6. Для этой цели служат включенные в линию связи 4 направленные ответвители 7 и 8 соответственно, для прямых и отраженных электромагнитных волн. На выходе фазового детектора 6, осуществляющего сравнение фаз прямых и отраженных волн, образуется сигнал, напряжение U которого пропорционально разности фаз Δϕ этих волн: U=acos(Δϕ+Δϕ0). Здесь Δϕ0 - фиксированный фазовый сдвиг в линии связи 4, направленных ответвителях 7 и 8. Коэффициент а учитывает затухание, вносимое схемными элементами. Выход фазового детектора 5 подсоединен к первому входу вычислительного устройства 9, ко второму входу которого подсоединен выход блок для измерения фазовой скорости электромагнитных волн 5. К выходу вычислительного устройства 9 подключен регистратор 10, выходной сигнал которого соответствует значению длины протяженного металлического изделия. В вычислительном устройстве 9 осуществляется операция умножения величин Δϕ и ƒp согласно формуле (3) и, тем самым, обеспечивается независимость результатов измерения длины от электрофизических параметров ε и μ окружающей среды.

Для контролируемых протяженных металлических изделий выбором частоты генератора можно оптимизировать чувствительность такого датчика длины металлического изделия в рабочем диапазоне ее изменения. При этом имеет место монотонность зависимости информативного параметра от этой длины. Данный способ измерения достаточно просто реализуем. Он может найти применение на практике там, где требуется производить высокоточные бесконтактные измерения длины металлической трубы в широких пределах ее изменения при наличии возможных изменений электрофизических параметров окружающей среды в области расположения измерительного участка трубы, где производят измерения длины металлического изделия.

Устройство для измерения длины протяженного металлического изделия, содержащее металлическую плоскость с размещенным изолированно над ней контролируемым изделием, совокупность которых образует отрезок длинной линии, генератор электромагнитных колебаний фиксированной частоты, соединенный линией связи с одним из концов отрезка длинной линии, включенные в линию связи входами направленные ответвители для прямой и отраженной электромагнитных волн, выход каждого из которых подсоединен к соответствующему входу фазового детектора, регистратор, отличающееся тем, что оно содержит блок для измерения фазовой скорости электромагнитных волн и вычислительное устройство, выход фазового детектора соединен с первым входом вычислительного устройства, ко второму входу которого подсоединен выход блока для измерения фазовой скорости электромагнитных волн, а к выходу - регистратор.
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДЛИНЫ ПРОТЯЖЕННОГО МЕТАЛЛИЧЕСКОГО ИЗДЕЛИЯ
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДЛИНЫ ПРОТЯЖЕННОГО МЕТАЛЛИЧЕСКОГО ИЗДЕЛИЯ
Источник поступления информации: Роспатент

Показаны записи 161-170 из 276.
20.01.2018
№218.016.1aee

Устройство для распознавания степени научности опубликованных построений

Изобретение относится к вычислительной технике и может быть использовано для распознавания степени научности опубликованных построений (ОП) в случаях необходимости определения ненаучного, протонаучного и научного исследования. Техническим результатом является обеспечение возможности...
Тип: Изобретение
Номер охранного документа: 0002635882
Дата охранного документа: 16.11.2017
04.04.2018
№218.016.2f8a

Спецпроцессор для задачи выполнимости булевых формул

Изобретение относится к средствам для решения задач о выполнении булевых функций. Технический результат заключается в решения задачи о выполнимости булевых функций, заданных в конъюнктивной нормальной форме, имеющих N переменных и до М=2 дизъюнктов. При этом упрощение структуры спецпроцессора...
Тип: Изобретение
Номер охранного документа: 0002644505
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.2fde

Перистальтический насос на пьезоэлектрических элементах

Изобретение относится к устройствам для перекачивания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред. Устройство для перекачивания текучих сред содержит пьезомодули, установленные в...
Тип: Изобретение
Номер охранного документа: 0002644643
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.3263

Устройство для измерения дифференциального тока

Изобретение относится к области измерительной техники и может быть использовано для измерения токов утечки в электропроводке и электрооборудовании. Техническим результатом заявляемого технического решения является упрощение процедуры преобразования сигнала вторичной обмотки дифференциального...
Тип: Изобретение
Номер охранного документа: 0002645434
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3426

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В...
Тип: Изобретение
Номер охранного документа: 0002645813
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.351d

Устройство преобразования механической энергии движения водной среды в электрическую энергию

Изобретение относится к области энергетики и может быть использовано для преобразования механической энергии движения водной среды в электрическую энергию. Устройство для преобразования энергии движения водной среды 1 в электрическую энергию содержит опору 2, герметизированное гибкое полотнище...
Тип: Изобретение
Номер охранного документа: 0002645842
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3578

Способ определения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором,...
Тип: Изобретение
Номер охранного документа: 0002645836
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.3976

Устройство для измерения толщины покрытий

Изобретение относится к области контрольно-измерительной техники. Техническим результатом является повышение точности измерения толщины покрытий. Технический результат достигается тем, что в устройство для измерения толщины покрытий, содержащее чувствительный элемент в виде трансформатора с...
Тип: Изобретение
Номер охранного документа: 0002647180
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.3995

Способ измерения положения границы раздела двух сред в емкости

Изобретение может быть использовано для высокоточного определения положения границы раздела двух сред, находящихся в емкости, в частности двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является повышение точности измерений. В емкости со средами размещают вертикально...
Тип: Изобретение
Номер охранного документа: 0002647182
Дата охранного документа: 14.03.2018
Показаны записи 81-86 из 86.
20.04.2023
№223.018.4c18

Способ измерения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины металлических труб. Техническим результатом изобретения является упрощение процесса измерения. Технический результат достигается тем, что в способе измерения длины металлической трубы, при...
Тип: Изобретение
Номер охранного документа: 0002765897
Дата охранного документа: 04.02.2022
15.05.2023
№223.018.57ec

Способ измерения физических свойств диэлектрической жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.)....
Тип: Изобретение
Номер охранного документа: 0002767585
Дата охранного документа: 17.03.2022
15.05.2023
№223.018.57ee

Устройство для измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике, в частности к устройствам для бесконтактного измерения внутреннего диаметра металлических труб. Техническим результатом является расширение функциональных возможностей устройства. Технический результат достигается тем, что устройство, содержащее...
Тип: Изобретение
Номер охранного документа: 0002767586
Дата охранного документа: 17.03.2022
21.05.2023
№223.018.6913

Устройство для измерения уровня диэлектрической жидкости в емкости

Изобретение относится к измерительной технике и служит для высокоточного определения уровня диэлектрической жидкости, находящейся в какой-либо емкости. Технический результат - повышение точности измерений. Результат достигается тем, что в устройстве для измерения уровня диэлектрической жидкости...
Тип: Изобретение
Номер охранного документа: 0002794447
Дата охранного документа: 18.04.2023
29.05.2023
№223.018.7271

Способ определения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Технический результат – повышение точности определения длины...
Тип: Изобретение
Номер охранного документа: 0002796388
Дата охранного документа: 22.05.2023
05.06.2023
№223.018.76c3

Способ измерения физической величины

Изобретение относится к области электротехники, а именно к волноводному резонатору для измерения диэлектрической проницаемости жидкости. Повышение точности измерений является техническим результатом, который достигается за счет того, что предварительно определяют номинальное значение...
Тип: Изобретение
Номер охранного документа: 0002786526
Дата охранного документа: 21.12.2022
+ добавить свой РИД