×
09.06.2018
218.016.5ca4

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ РАССТОЯНИЯ ДО ГРАНИЦ ОБЪЕКТА

Вид РИД

Изобретение

Аннотация: Способ определения расстояния до границ объекта включает измерение размера изображения в плоскости изображений оптического прибора со светочувствительной матрицей, осуществление перемещения прибора вдоль его линии визирования по направлению к объекту или от него на фиксированное расстояние, вновь измерение размера изображения объекта. Аналоговый сигнал от матрицы преобразуют в цифровой, размер изображения определяют в пикселях матрицы, результаты запоминают и используют для определения углов обзора границ объекта относительно линии визирования до и после перемещения прибора и расстояний до дальней D и ближней D, границы объекта по формулам где α и α - углы обзора ближней и дальней границы объекта до перемещения прибора в одной плоскости, град.; β и β- углы обзора ближней и дальней границы объекта после перемещения прибора в той же плоскости, град.; N и N - максимальные линейные размеры изображения объекта выше линии визирования до и после перемещения прибора соответственно, пиксель; N и N - максимальные линейные размеры изображения объекта ниже линии визирования до и после перемещения прибора, пиксель; N - разрешающая способность светочувствительной матрицы по горизонтальной или вертикальной координате, пиксель; γ - угол обзора прибора со светочувствительной матрицей по горизонтальной или вертикальной координате, град.; S - фиксированное расстояние, на которое осуществляют перемещение прибора вдоль его линии визирования, м. Технический результат – возможность определения расстояния до границ объекта в случаях, если он расположен несимметрично и не перпендикулярно линии визирования и имеет ближнюю и дальнюю границы, и определения углов между линией визирования и границами объекта. 2 ил.

Изобретение относится к измерительной технике, а именно к измерению расстояний по линии визирования путем фокусирования, и может быть использовано для определения расстояния от перемещающегося измерительного устройства до границ неподвижного объекта, например, с целью избегания столкновения с ним.

Известен способ определения расстояния до объекта, основанный на методе триангуляции [Р. Фейнман, Р. Лейтон, М. Сэндс. «Фейнмановские лекции по физике», Том 1, - С. 94], включающий использование одновременных снимков объекта двумя камерами с известным расстоянием между ними, измерение углов между прямой линией, связывающей камеры и линиями визирования объекта и определение расстояния до объекта по известной геометрической формуле.

Недостатками этого способа является использование двух камер наблюдения, разнесенных на определенное расстояние, и необходимость вращения камер и измерения указанных углов.

Известен моностатический способ определения расстояния до объекта [RU 2340872 С1, МПК G01C 3/32 (2006.01), опубл. 10.12.2008], при котором дважды измеряют размер изображения объекта в плоскости изображения фотоприемника, причем изображения объекта получают разными по масштабу посредством перестройки оптической системы фотоприемника, которая имеет два известных фокусных расстояния. Затем определяют расстояние D до объекта по формуле

где и - граничные фокусные расстояния оптической системы;

и - размеры изображения объекта при и соответственно.

Этот способ требует неподвижности фотоприемника и не позволяет достоверно измерить расстояние во время его перемещения. Кроме этого, если объект имеет несимметричные границы, этот способ не позволяет определить расстояние до ближней и дальней границы объекта и дает только некоторое усредненное значение расстояния до объекта.

Известен способ определения расстояния до объекта при помощи оптического прибора [RU 2095756 С1, МПК G01C 3/32 (1995.01), опубл. 10.11.1997], выбранный в качестве прототипа, при котором измеряют размер изображения в плоскости изображений оптического прибора, осуществляют перемещение оптического прибора вдоль его линии визирования по направлению к объекту или от него на фиксированное расстояние, вновь измеряют размер изображения объекта и определяют расстояние D до объекта по формуле

где N0 - размер изображения объекта до перемещения;

Nt - размер изображения объекта после перемещения;

St - фиксированное расстояние, на которое переместили оптический прибор.

Такой способ позволяет определить только расстояние до объекта по линии визирования оптического прибора, но если объект имеет несимметричные границы, то невозможно определить расстояние до ближней и дальней границы объекта за одно измерение.

Технической проблемой, на решение которой направлено предлагаемое изобретение, является создание способа определения расстояния до границ объекта.

Предложенный способ определения расстояния до границ объекта, также как в прототипе, включает измерение размера изображения в плоскости изображений оптического прибора, перемещение оптического прибора вдоль его линии визирования по направлению к объекту или от него на фиксированное расстояние и вновь измерение размера изображения объекта.

Согласно изобретению, используют оптический прибор со светочувствительной матрицей, аналоговый сигнал от которой преобразуют в цифровой, размер изображения определяют в пикселях светочувствительной матрицы, результаты запоминают и используют для определения углов обзора границ объекта относительно линии визирования до и после перемещения оптического прибора и расстояний до дальней Dd и ближней Db границы объекта по формулам

где α1 и α2 - углы обзора ближней и дальней границы объекта до перемещения оптического прибора в одной плоскости, град.;

β1 и β2 - углы обзора ближней и дальней границы объекта после перемещения оптического прибора в той же плоскости, град.;

N1 и N1t - максимальные линейные размеры изображения объекта выше линии визирования до и после перемещения оптического прибора соответственно, пиксель;

N2 и N2t, - максимальные линейные размеры изображения объекта ниже линии визирования до и после перемещения оптического прибора, пиксель;

N0 - разрешающая способность светочувствительной матрицы по горизонтальной или вертикальной координате, пиксель;

γ - угол обзора оптического прибора со светочувствительной матрицей по горизонтальной или вертикальной координате, град.;

St - фиксированное расстояние, на которое осуществляют перемещение оптического прибора вдоль его линии визирования, м.

Если наблюдаемый объект расположен несимметрично и не перпендикулярно линии визирования, как видно из фиг. 1, то он имеет ближнюю и дальнюю границы от точки наблюдения. В задаче избегания столкновений с препятствиями, например, для беспилотных летательных аппаратов, важно, чтобы оптический прибор позволял получать именно эту информацию, а не только некоторое «среднее» расстояние до объекта по линии визирования оптического прибора. Для этого необходимо знать углы обзора границ объекта, как видно из формул (3) и (4), которые получены из следующих соотношений в обозначениях, представленных на фиг. 1:

СЕ=С'Е'=tgα2⋅АЕ=tgβ2⋅А'Е'=tgβ2⋅(AЕ-St),

BD=B'D'=tgα1⋅AD=tgβ1⋅A'D'=tgβ1⋅(AD-St),

Предложенный способ включает неочевидную операцию определения углов обзора границ объекта. Эта операция возможна при использовании в оптическом приборе светочувствительной матрицы с известной разрешающей способностью и размером, а оптический прибор при этом имеет известный угол обзора.

Таким образом, достигается технический результат, который заключается в определении расстояния до границ объекта, в том числе, если он расположен несимметрично и не перпендикулярно линии визирования и имеет ближнюю и дальнюю границы, а также в определении углов между линией визирования и границами объекта.

На фиг. 1 представлено взаимное расположение оптического прибора и наблюдаемого объекта, где а) - в момент t0 до перемещения оптического прибора, б) - в момент t после перемещения оптического прибора на фиксированное расстояние St.

На фиг. 2 представлена схема реализации способа определения расстояния до границ объекта.

Способ определения расстояния до границ объекта может быть реализован с помощью оптического прибора 1 (ОП) со светочувствительной матрицей 2, на которой фокусируют изображение объекта 3. Выход светочувствительной матрицы 2 соединен с входом аналогово-цифрового преобразователя 4 (АЦП), выход которого подключен к входу блока выделения контура 5 (БВК), выход которого соединен со входом блока определения линейных размеров контура 6 (БЛР), выход которого соединен со входом блока памяти 7 (БП), выход которого подключен к блоку определения углов обзора объекта и расстояний до его ближней и дальней границы 8 (БУР). Управляющие входы оптического прибора 1 (ОП), аналогово-цифрового преобразователя 4 (АЦП), блока выделения контура 5 (БВК), блока определения линейных размеров контура 6 (БЛР), блока памяти 7 (БП), блока определения углов обзора объекта и расстояний до его ближней и дальней границы 8 (БУР) соединены с выходами управляющего устройства 9 (УУ). К выходу блока определения углов обзора объекта и расстояний до его ближней и дальней границы 8 (БУР) через соответствующие преобразователи может быть подключен индикатор для отображения определенных углов и расстояний или радиоканал для передачи данных удаленному оператору.

Оптическим прибором 1 (ОП) является любая управляемая фотовидеокамера со светочувствительной матрицей. В качестве аналогово-цифрового преобразователя 4 (АЦП) и блока памяти 7 (БП) использованы микросхемы, выпускаемые серийно. Блок выделения контура 5 (БВК) реализован с помощью микросхем дифференцирования цифрового представления изображения и компараторов для сравнения результатов дифференцирования с заданным порогом. Блок выделения линейных размеров контура 6 (БЛР) реализован с помощью схемы поиска максимального расстояния между координатами контура, расположенными на одной вертикальной или горизонтальной координате. Блок определения углов обзора объекта 3 и расстояний до его ближней и дальней границы 8 (БУР) реализован с помощью схем умножения, деления, вычитания и вычисления тригонометрических функций. Управляющее устройство 9 (УУ) реализовано на микропроцессоре, выпускаемом серийно, и устройствах согласования выходных сигналов микропроцессора с управляющими входами всех перечисленных блоков.

Предварительно в блок памяти 7 (БП) заносят значение разрешающей способности в пикселях светочувствительной матрицы 2 (по горизонтальной и вертикальной координате), угол обзора оптического прибора 1 (ОП) и фиксированное расстояние St на которое будут перемещать оптический прибор 1 (ОП).

Разрешающая способность, размер матрицы и углы обзора по двум координатам входят в состав технических характеристик современных фото- и видеокамер со светочувствительными матрицами. При разных фокусных расстояниях объектива углы обзора камеры разные даже при одинаковой светочувствительной матрице. В технических характеристиках указывают максимальный угол обзора камеры. Поэтому реальный угол обзора камеры целесообразно измерить экспериментально, сделав снимки размеченных по горизонтали и вертикали линеек на плоскости, перпендикулярной линии визирования. Например, светочувствительная матрица оптического прибора позволяет делать снимки 600×800 пикселей (разрешающая способность по вертикальной и горизонтальной координатам). С помощью этого оптического прибора предварительно снимают размеченные по горизонтали и вертикали линейки, расположенные на известном расстоянии до центра оптического прибора по линии визирования, например 5 м. Затем по снимку размеченных линеек определяют, какой линейный размер точно помещается в кадр, например 3×4 м. По этим числам определяют углы обзора камеры γверт и γгориз по вертикальной и горизонтальной координатам:

Соответственно 1 пиксель по вертикальной координате имеет угловое разрешение 61,9/600=0,103°, а по горизонтальной координате 77,3/800=0,096°.

При определении расстояния до границ объекта 3, например, до рекламного щита (фиг. 1) в начальный момент времени t0 по сигналу с управляющего устройства 9 (УУ) произвели снимок объекта 3 с помощью оптического прибора 1 (ОП) со светочувствительной матрицей 2, аналоговый сигнал с которой с помощью аналого-цифрового преобразователя 4 (АЦП) преобразовали в цифровой. С помощью блока выделения контура 5 (БВК) выделили контур объекта 3. Определили максимальный горизонтальный размер изображения объекта 3 в пикселях с помощью блока выделения линейных размеров контура 6 (БЛР). Результаты N1=100 и N2=100 (размеры изображения объекта 3 в пикселях левее и правее центра кадра) занесли в блок памяти 7 (БП).

По сигналу с управляющего устройства 9 (УУ) переместили оптический прибор 1 (ОП) на фиксированное расстояние St=1 м вдоль его линии визирования по направлению к объекту и произвели второй снимок объекта 3 в момент t. Полученный аналоговый сигнал со светочувствительной матрицы 2 с помощью аналого-цифрового преобразователя 4 (АЦП) преобразовали в цифровой. С помощью блока выделения контура 5 (БВК) выделили контур объекта 3 и определили максимальный размер изображения объекта в пикселях по той же координате с помощью блока выделения линейных размеров контура 6 (БЛР). Результаты N1t=130 и N2t=115 (размеры изображения объекта 3 в пикселях левее и правее центра кадра) занесли в блок памяти 7 (БП).

По сигналу с управляющего устройства 9 (УУ) блок определения углов обзора объекта 3 и расстояний до его ближней и дальней границы 8 (БУР) считывал из блока памяти 7 (БП) записанные данные (N1, N2, N1t, N2t, N0, St γ) и по формулам (3) и (4) определил углы обзора границ объекта 3 и расстояние до них от места расположения оптического прибора 1 (ОП): в момент t:

Полученные результаты передали на выход устройства.

Очевидно, что расстояние до объекта, определенное по формуле (2) способа-прототипа (200/(130+115-200))*1=4,44 м, является некоторым «усредненным» расстоянием до объекта и в задаче избегания столкновений такой информации недостаточно, поскольку одна из границ объекта находится существенно ближе (более чем на 30%).

Аналогично определяют расстояния до границ объекта 3 по вертикальной координате.

Таким образом, предлагаемый способ позволяет определять расстояния до границ объекта в том числе, если он расположен несимметрично и не перпендикулярно линии визирования и имеет ближнюю и дальнюю границы, а также определять углы между линией визирования и границами объекта, что позволяет более точно решать задачу избегания столкновений, например, беспилотных движущихся аппаратов с препятствиями.


СПОСОБ ОПРЕДЕЛЕНИЯ РАССТОЯНИЯ ДО ГРАНИЦ ОБЪЕКТА
СПОСОБ ОПРЕДЕЛЕНИЯ РАССТОЯНИЯ ДО ГРАНИЦ ОБЪЕКТА
СПОСОБ ОПРЕДЕЛЕНИЯ РАССТОЯНИЯ ДО ГРАНИЦ ОБЪЕКТА
СПОСОБ ОПРЕДЕЛЕНИЯ РАССТОЯНИЯ ДО ГРАНИЦ ОБЪЕКТА
СПОСОБ ОПРЕДЕЛЕНИЯ РАССТОЯНИЯ ДО ГРАНИЦ ОБЪЕКТА
СПОСОБ ОПРЕДЕЛЕНИЯ РАССТОЯНИЯ ДО ГРАНИЦ ОБЪЕКТА
СПОСОБ ОПРЕДЕЛЕНИЯ РАССТОЯНИЯ ДО ГРАНИЦ ОБЪЕКТА
СПОСОБ ОПРЕДЕЛЕНИЯ РАССТОЯНИЯ ДО ГРАНИЦ ОБЪЕКТА
СПОСОБ ОПРЕДЕЛЕНИЯ РАССТОЯНИЯ ДО ГРАНИЦ ОБЪЕКТА
СПОСОБ ОПРЕДЕЛЕНИЯ РАССТОЯНИЯ ДО ГРАНИЦ ОБЪЕКТА
СПОСОБ ОПРЕДЕЛЕНИЯ РАССТОЯНИЯ ДО ГРАНИЦ ОБЪЕКТА
Источник поступления информации: Роспатент

Показаны записи 81-90 из 255.
26.08.2017
№217.015.d5e8

Устройство и способ подачи и отвода контактной жидкости в процессе ультразвукового контроля объекта, преимущественно сварного соединения

Изобретения относятся к методам дефектоскопии объектов с использованием ультразвукового метода с фазированной антенной решеткой и могут быть использованы в технике для ручного контроля сварных соединений. Предлагаемое устройство подачи и отвода контактной жидкости включает блок датчика...
Тип: Изобретение
Номер охранного документа: 0002623191
Дата охранного документа: 22.06.2017
26.08.2017
№217.015.ddc4

Способ определения роданида с использованием полиметакрилатной матрицы

Изобретение относится к области аналитической химии и касается способа определения роданида с использованием полиметакрилатной матрицы. Способ включает в себя образование окрашенного комплекса с роданидом, измерение оптического сигнала в максимуме светопоглощения окрашенного комплекса и оценку...
Тип: Изобретение
Номер охранного документа: 0002624797
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.ddf6

Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления висмута из интерметаллического соединения rhbi

Изобретение относится к аналитической химии. Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления висмута из интерметаллического соединения RhBi заключается в том, что родий (III) в растворе переводят в хлоридный комплекс, в...
Тип: Изобретение
Номер охранного документа: 0002624800
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.ddf9

Способ получения композиционного скэффолда для восстановления дефектов костной ткани

Изобретение относится к медицине. Описан способ получения композиционного скэффолда для восстановления дефектов костной ткани, который заключается в том, что синтезируют полимерный раствор с концентрацией 9 мас. % путем растворения гранулированного порошка поликапролактона в хлороформе. К...
Тип: Изобретение
Номер охранного документа: 0002624854
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.de0b

Устройство для неразрушающего контроля шероховатости поверхностного слоя металла

Изобретение относится к области неразрушающего контроля и может быть использовано для контроля шероховатости поверхностного слоя металла контролируемого изделия. Устройство для неразрушающего контроля шероховатости поверхностного слоя металла содержит нагреватель с возможностью теплового...
Тип: Изобретение
Номер охранного документа: 0002624787
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.de54

Система получения очищенного горючего газа из твердого топлива

Изобретение относится к области производства газов, содержащих монооксид углерода и водород, из твердых углеродсодержащих веществ при помощи процессов частичного окисления и может быть использовано в энергетике. Система для получения очищенного горючего газа из твердого топлива содержит...
Тип: Изобретение
Номер охранного документа: 0002624694
Дата охранного документа: 05.07.2017
26.08.2017
№217.015.de59

Способ пуска однофазного асинхронного электродвигателя

Изобретение относится к электротехнике, а именно к однофазным асинхронным электродвигателям. Способ пуска однофазного асинхронного электродвигателя состоит в одновременной с подачей переменного напряжения на основную и вспомогательную обмотки статора подачи на дополнительные обмотки статора...
Тип: Изобретение
Номер охранного документа: 0002624777
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.de96

Способ отвода электростатического заряда с полимерных сыпучих материалов

Изобретение относится к способу отвода электростатического заряда с полимерных сыпучих веществ, которые могут быть использованы для заполнения полупроводниковых устройств. Электростатический заряд снимают заливкой полимерного сыпучего материала, нагретого до 80-90°С, церезином в металлическом...
Тип: Изобретение
Номер охранного документа: 0002624774
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.de9c

Устройство для ограничения токов короткого замыкания

Использование: в области электротехники для защиты электрооборудования. Технический результат: ограничение токов короткого замыкания, коммутируемых высоковольтным вакуумным выключателем в операциях включения и отключения. Устройство содержит водно-растворный резистор и вакуумный выключатель....
Тип: Изобретение
Номер охранного документа: 0002624779
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.debb

Устройство для максимальной токовой защиты электроустановки на герконах

Использование: в области электротехники. Технический результат – повышение чувствительности устройства. Устройство для максимальной токовой защиты электроустановки на герконах содержит корпус с крышкой, выполненный в форме параллелепипеда. В одной части корпуса, на его дне, выполнен выступ...
Тип: Изобретение
Номер охранного документа: 0002624907
Дата охранного документа: 10.07.2017
Показаны записи 1-2 из 2.
10.07.2015
№216.013.61a2

Способ обнаружения лесного пожара

Изобретение относится к области предупреждения пожаров при возгораниях на больших площадях и может быть использовано для раннего обнаружения лесного пожара в отдаленных районах. Способ обнаружения вида лесного пожара путем отслеживания изменения температуры с помощью n-го количества датчиков,...
Тип: Изобретение
Номер охранного документа: 0002556536
Дата охранного документа: 10.07.2015
25.08.2017
№217.015.bf65

Система раннего обнаружения и определения типа лесного пожара

Изобретение относится к области предупреждения пожаров при возгораниях на больших площадях и может быть использовано для раннего обнаружения и определения типа лесного пожара (низовой, верховой). Система раннего обнаружения и определения типа лесного пожара содержит n датчиков, каждый их...
Тип: Изобретение
Номер охранного документа: 0002617138
Дата охранного документа: 21.04.2017
+ добавить свой РИД