×
09.06.2018
218.016.5ba5

Результат интеллектуальной деятельности: УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗВЕШЕННЫХ ЧАСТИЦ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области для определения параметров взвешенных частиц. Устройство определения параметров взвешенных частиц содержит воздуховод, лазерный излучатель, объектив, матрицу ПЗС для регистрации и обработки не менее двух изображений плоской области потока частиц, «вырезаемой» световым ножом, а также содержит последовательно соединенные акустический излучатель, усилители мощности, цифроаналоговые преобразователи, датчик температуры, усилители, аналого-цифровые преобразователи, DSP-процессор, ЭВМ, интерфейс сопряжения с внешними устройствами, цифровой индикатор. Технический результат - повышение информативности данных и определение поля скоростей, размер, форму, плотность и массу взвешенных частиц. 2 ил.

Изобретение относится к технике измерений, в частности к оптическим методам контроля, и может использоваться в электронной и химической промышленности, в медицине, биологии, экологии, порошковой металлургии и других областях науки и техники, связанных с определением параметров взвешенных частиц.

Известен способ анализа взвешенных частиц (АС SU 507807, G01N 15/02 от 08.01.1974 г.), основанный на облучении исследуемого объекта электромагнитным и акустическим излучениями и регистрации рассеянного частицами электромагнитного излучения, в котором с целью повышения точности анализа облучение осуществляют одновременно обоими видами излучений, регистрируют изменение частоты: моночастотного электромагнитного излучения, а размер частиц находят по формуле R = где η - коэффициент вязкости среды; V0 - амплитуда скорости частиц под действием акустических колебаний; Δf - максимальное изменение частот отраженного моночастотного электромагнитного излучения; λ - длина волны моночастотного электромагнитного излучения; ρ - плотность частицы; F - частота акустических колебаний.

Недостатком способа является сложность реализации и малая точность при определения размеров и плотности вещества частиц, обусловленные высокой методической погрешностью.

Известен способ визуализации течения газа или жидкости на поверхности объекта (патент RU 2288476, G01P 5/20, G01M 9/06, от 14.03.2005 г.), который включает размещение на исследуемой поверхности объекта слоя вязкой жидкости с оптически инородными частицами, помещение объекта в поток газа или жидкости и получение картины течения газа или жидкости на поверхности объекта. В качестве оптически инородных частиц используют нерастворимые в вязкой жидкости оптически инородные частицы, которые помещают на поверхности вязкой жидкости или в ее толщу. Для получения картины течения газа или жидкости на поверхности объекта регистрируют при интересующем режиме потока газа или жидкости два или более последовательных изображения распределения частиц на исследуемой поверхности объекта так, чтобы смещение свободной поверхности слоя вязкой жидкости под действием внешнего потока за время проведения регистрации серии последовательных изображений на исследуемом режиме обтекания составляло порядка 0,1-1% от размера регистрируемой поверхности, и этот слой мог быть использован для визуализации другого режима течения газа или жидкости. Далее определяют параметры движения частиц в слое вязкой жидкости путем анализа зарегистрированной последовательности изображений и из полученных параметров движения частиц восстанавливают картину течения газа или жидкости на поверхности объекта.

Недостатком способа является малая информативность, позволяющая только визуализировать распределение твердых частиц в течении газов или жидкости, т.е. размер, форма и плотность частиц не определяются.

Известен фотоэлектрический способ измерения размеров и концентрации взвешенных частиц (АС SU 1520399, G01N 15/02 от 18.02.1988 г), в котором в потоке частиц, освещенных неподвижным пучком света, возбуждают акустическое колебание в направлении, перпендикулярном направлению потока и оси пучка, и регистрируют "пачки" импульсов рассеянного частицами света, возникающие при пересечении пучка света колеблющимися частицами, по амплитудам которых судят о размерах частиц, а по средней частоте повторения "пачек" - о концентрации частиц.

Недостатком способа является отсутствие возможности определения массы и плотности взвешенных частиц.

Известен способ определения параметров дисперсных частиц (Пат. RU 2346261, G01N 15/02 от 09.07.2007 г.), в котором объем с дисперсными частицами зондируют пучком маломощного лазерного излучения и одновременно с зондирующим лазерным излучением исследуемый объем подвергают воздействию ультразвуковых колебаний. По динамической составляющей рассеянного и отраженного (под малыми углами относительно направления распространения) от дисперсных частиц излучения определяют их собственные частоты механических колебаний, из которых находят размер частиц.

Недостатком способа является отсутствие возможности определения массы и плотности взвешенных частиц.

Известен оптический способ бесконтактного измерения скорости течений жидкости и газа, основанный на лазерной доплеровской анемометрии (ЛДА), позволяющий измерять скорости сопутствующих потоку частиц в фиксированной точке течения (Albrecht Н.Е., Borys М., Damascke N., Тгореа С. Laser Doppler and Phase Doppler Measurement Techniques. Berlin: Springer. 2003, 738 p.).

Недостатком указанного способа является малая информативность - способ позволяет определять только скорость течения жидкости или газа и не позволяет определять размерные параметры, плотность вещества и массу частиц.

Известны способ и устройство измерения скорости, размеров и концентрации частиц в потоке (Патент GB 2480440, G06T 7/20 от 30.06.2010), основанные на совместном использовании лазерной доплеровской анемометрии (ЛДА) и цифровой трассерной визуализации (particle image velocimetry- PIV). Изобретение позволяет одновременно проводить измерения потока и частиц (как сферических, так и не сферических до нано/микроразмеров) и обеспечивает высокую скорость обработки полученных изображений за счет использования высокоскоростного приемника изображений.

Недостатком способа является отсутствие возможности определения массы и плотности взвешенных частиц в потоке.

Известны способ и устройство для оптического измерения размера или скорости объекта, движущегося в жидкости через поле (пат. FR 2689247, G01P 3/38, 5/00, 5/22, G01N 15/02, G01B 11/00, от 24.03.1992 г.), в котором первое изображение движущегося объекта или жидкости берется вдоль оптической оси для первого момента времени, фиксируется с помощью датчика ПЗС-матрицы камеры, после чего во второй момент времени фиксируется второе изображение движущегося объекта или жидкости по той же оптической оси с помощью датчика ПЗС-матрицы камеры и далее полученные изображения одновременно обрабатываются для того, чтобы определить размер и скорость объекта путем вычитания одного сигнала из другого или вывести скорость жидкости с помощью автокорреляционной функции.

Недостатком способа и основанного на нем устройства является отсутствие возможности определения массы и плотности движущегося объекта в потоке жидкости.

Известны способ и устройство для измерения перемещения изображений частиц для многократного экспонирования велосиметрии (пат. US 4729109, G01P 5/00, G01P 5/18, H04N 13/00 от 29.05.1985 г.), в котором описан цифровой метод измерения смещений компактных изображений, в частности изображения частиц, записанных на любой носитель записи. Метод сжимает двумерное изображение поля частиц двух изображений. Смещение частиц между несколькими экспозициями определяется путем оцифровки двух одномерных изображений, вычисления их автокорреляции и поиска пиков этих автокорреляций. Этот метод особенно пригоден для измерения поля скоростей жидкостей, содержащих много мелких частиц.

Недостатком указанного способа и устройства является то, что он позволяет определять только поле скорости жидкости, содержащей много мелких частиц и не позволяет определять размер, форму, плотность вещества и массу частиц.

Наиболее близким по технической сути к предлагаемому способу является способ цифровой трассерной визуализация - PIV (particle image velocimetry) для анализа поля скорости потока в фиксированном сечении по трекам частиц (М. Raffel, С. Willert and J. Kompenhans, Particle Image Velocimetry, a Practical Guide, Springer, Berlin, 1998), сущность которого заключается в измерении перемещения частиц примеси, находящихся в плоскости сечения, за фиксированный интервал времени. Измерительной областью потока считается плоскость, «вырезаемая» световым ножом. Частицы в измерительной плоскости потока должны быть освещены минимум дважды. Образы частиц регистрируются на цифровую камеру. Последующая обработка изображений позволяет рассчитать смещения частиц за время между вспышками источника света и построить поле скорости.

Недостатком указанного способа является малая информативность - способ позволяют определять лишь поле скорости потока в фиксированном сечении по трекам частиц и не позволяет определять размер, форму, плотность вещества и массу частиц.

Технический результат, который может быть получен при осуществлении предлагаемого изобретения, состоит в повышении информативности и точности данных при измерении параметров частиц за счет введения дополнительного акустического излучения и регистрации получаемых при этом изображений колебаний частиц потока.

Этот результат достигается тем, что устройство определения параметров взвешенных частиц, содержащее воздуховод, лазерный излучатель, объектив, матрицу ПЗС для регистрации и обработки не менее двух изображений «вырезаемую» световым ножом плоскую область потока частиц, отличающееся тем, что дополнительно содержит последовательно соединенные акустический излучатель, усилители мощности, цифроаналоговые преобразователи, датчик температуры, усилители, аналого-цифровые преобразователи, DSP- процессор, ЭВМ, интерфейс сопряжения с внешними устройствами, цифровой индикатор.

На фиг. 1 представлена схема устройства, а на фиг. 2 - общая схема устройства регистрации изображения перемещения частиц примеси в плоскости светового ножа.

На схеме, поясняющей работу устройства, показано следующее: воздушный поток 1 с частицами 2, плоскость регистрации ПЗС 3, линза, формирующая световой нож 4, смотровое окно, прозрачное для световых волн 5, лазерный излучатель 6, усилители мощности 7, 17, цифроаналоговые преобразватели (ЦАП) 8, 18, датчик температуры 9, усилители 10, 13, аналого-цифровые преобразователи (АЦП) 11, 14, матрица ПЗС 12 с объективом 12', DSP- процессор 15, акустический излучатель 16, ЭВМ (микроконтроллер) 19, интерфейс сопряжения с внешними устройствами 20, цифровой индикатор 21, узкий световой поток в плоскости (световой нож) 22, воздуховод для пропускания потока через плоскость регистрации ПЗС 23, акустическое излучение 24.

Устройство работает следующим образом.

Воздушный поток 1, содержащий частицы 2, через смотровое окно 5 освещают световым пучком в виде светового ножа 22, формируемого лазерным излучателем 6 и объективом 4. Лазерный излучатель 6 управляется микроконтроллером 19 через цифроаналоговый преобразователь 8 и усилитель мощности 7.

В начале измерения в измерительной плоскости 3, «вырезаемой» световым ножом 22 (в плоскости регистрации ПЗС), поток частиц освещается серией последовательных вспышек лазерным излучателей 6. Полученные изображения регистрируются матрицей ПЗС 12 с объективом 12' и далее через усилитель 13 и АЦП 14 поступают на DSP-процессор, который проводит обработку полученных изображений и рассчитывает смещения частиц за время между вспышками лазерного излучателя. Далее информация поступает на ЭВМ (микроконтроллер) 19, который строит поле скоростей потока частиц с помощью вычисления автокорреляции двух последовательных изображений и поиска пиков этих автокорреляций (М. Raffel, С. Willert and J. Kompenhans, Particle Image Velocimetry, a Practical Guide, Springer, Berlin, 1998), а также определяет размер частиц с помощью цифровой обработки полученных изображений.

Далее начинает работать акустический излучатель 16, амплитуда и частота излучаемых волн которого направляется перпендикулярно потоку частиц. Амплитуда и частота акустического излучения 24 задается алгоритмом работы ЭВМ (микроконтроллера) 19 при помощи формирования управляющих импульсов через ЦАП 18 и усилителя мощности 17 на вход акустического излучателя 16. В измерительной плоскости 3, «вырезаемой» световым ножом 22, в которой поток частиц освещаются лазерным излучателем 6 и акустическим излучателем 16 в течение минимум двух периодов звуковых колебаний с учетом релаксации частиц, и полученные серии колеблющихся изображений потока частиц регистрируются матрицей ПЗС 12 через объектив 12' и далее через усилитель 13 и АЦП 14 поступают на DSP-процессор 15, который проводит предварительную обработку полученных изображений. Затем полученные данные подаются на микроконтроллер 19, который, с учетом температуры среды (газа, жидкости) измеряемого потока, получаемого при помощи датчика температуры 9, усилителя 10 и АЦП 11, рассчитывает плотность и массу частиц, попавших в плоскость регистрации по формулам приведенным ниже в зависимости от амплитуды и частоты звуковых колебаний с учетом данных, полученных в начале измерения.

В результате устройство позволяет определить параметры движения потока - поле скоростей потока и размер и форму частиц с использованием светового излучения, а плотность и массу вещества взвешенных частиц в потоке с использованием светового и акустического излучения.

Результаты проведенных измерений выдаются на жидкокристаллический экран 21, а также могут быть переданы на внешние устройства при помощи интерфейса сопряжения с устройствами 20.

Воздуховод для пропускания потока через плоскость регистрации ПЗС 23 может иметь (фиг. 2) как прямоугольную форму, так и цилиндрическую форму, причем последняя предпочтительней из-за более симметричного распределения воздушного потока, не нарушающего требования изокинетичности отбора пробы для непрерывного измерения.

Алгоритмом ЭВМ (микроконтроллера) 19 устройства предусмотрена оценка коэффициентов увлечения аэрозольных частиц по получаемым при помощи описанного устройства изображениям колеблющихся частиц и определение плотности и массы этих частиц в исследуемом потоке.

В результате работы микроконтроллера 19 по заданному алгоритму с помощью регистрации не менее двух изображений потока частиц определяются параметры движения потока - поле скоростей потока, размер, форма частиц, и с помощью регистрации серий изображений в течение минимум двух периодов звуковых колебаний с учетом релаксации частиц в потоке колеблющихся частиц в акустическом поле определяются значения плотности и массы веществ, взвешенных в потоке частиц с учетом всех полученных ранее данных.

Таким образом, рассмотренное устройство, в отличие от известных, позволяет существенно повысить информативность данных и определять поля скоростей, размер, форму, плотность и массу взвешенных частиц.

Устройство определения параметров взвешенных частиц, содержащее воздуховод, лазерный излучатель, объектив, матрицу ПЗС для регистрации и обработки не менее двух изображений плоской области потока частиц, «вырезаемой» световым ножом, отличающееся тем, что дополнительно содержит последовательно соединенные акустический излучатель, усилители мощности, цифроаналоговые преобразователи, датчик температуры, усилители, аналого-цифровые преобразователи, DSP-процессор, ЭВМ, интерфейс сопряжения с внешними устройствами, цифровой индикатор.
УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗВЕШЕННЫХ ЧАСТИЦ
УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗВЕШЕННЫХ ЧАСТИЦ
УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗВЕШЕННЫХ ЧАСТИЦ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 186.
04.04.2018
№218.016.350e

Измерительный мост с повышенным быстродействием

Изобретение относится к области измерительной техники и может быть использовано в датчиковых системах для преобразования сигналов сенсоров (ускорения, давления, радиации и т.п.) в напряжение. Технический результат - повышение быстродействия. Измерительный мост с повышенным быстродействием...
Тип: Изобретение
Номер охранного документа: 0002645867
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.36b2

Асинхронный пиковый детектор

Изобретение относится к области измерительной техники. Технический результат заключается в повышении надежности асинхронного пикового детектора в режиме разряда запоминающих конденсаторов. Асинхронный пиковый детектор содержит аналоговый вход (1) и аналоговый выход (2), первый (3) прецизионный...
Тип: Изобретение
Номер охранного документа: 0002646371
Дата охранного документа: 02.03.2018
10.05.2018
№218.016.47a7

Способ определения параметров взвешенных частиц

Использование: в технике измерений, при определении параметров взвешенных частиц. Способ определения параметров взвешенных частиц, сущность которого заключается в измерении перемещения частиц, находящихся в плоскости сечения, за фиксированный интервал времени в измерительной плоскости,...
Тип: Изобретение
Номер охранного документа: 0002650753
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4896

Дифференциальный усилитель токов

Изобретение относится к устройствам усиления широкополосных сигналов. Технический результат заключается в повышении коэффициента усиления по току ДУТ при сохранении у него опции rail-to-rail. Дифференциальный усилитель токов содержит первый, второй, третий и четвертый дополнительные...
Тип: Изобретение
Номер охранного документа: 0002651221
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4d3d

Быстродействующий дифференциальный операционный усилитель

Изобретение относится к области радиотехники и связи. Технический результат заключается в повышении максимальной скорости нарастания выходного напряжения при работе входных транзисторов ОУ на основе трех токовых зеркал с микроамперными статическими токами. Технический результат достигается за...
Тип: Изобретение
Номер охранного документа: 0002652504
Дата охранного документа: 26.04.2018
09.06.2018
№218.016.5d90

Способ гигротермической обработки зерна овса

Способ включает увлажнение зерна влажным насыщенным паром, получаемым внутри камеры путем нагрева воды, находящейся в нижней части камеры до температуры 60-80°С при остаточном давлении в ней 0,03-0,05 МПа. Увлажнение заканчивают при достижении остаточного давления 0,06-0,08 МПа. Способ...
Тип: Изобретение
Номер охранного документа: 0002656344
Дата охранного документа: 05.06.2018
09.06.2018
№218.016.5f90

Arc-фильтр нижних частот с независимой настройкой основных параметров

Изобретение относится к радиотехнике и связи и может быть использовано в качестве интерфейса для согласования источника сигнала, например, с аналого-цифровыми преобразователями различного функционального назначения. Технический результат: создание схемы ARC-фильтра нижних частот, которая...
Тип: Изобретение
Номер охранного документа: 0002656728
Дата охранного документа: 06.06.2018
25.06.2018
№218.016.667b

Дифференциальный преобразователь "напряжение-ток" с широким диапазоном линейной работы

Изобретение относится к области электроники и радиотехники и может быть использовано в качестве широкодиапазонного устройства преобразования входного дифференциального напряжения в пропорциональный выходной ток. Технический результат: уменьшение погрешности преобразования входного напряжения...
Тип: Изобретение
Номер охранного документа: 0002658818
Дата охранного документа: 22.06.2018
03.07.2018
№218.016.6a14

Быстродействующий дифференциальный операционный усилитель

Изобретение относится к области радиотехники и аналоговой микроэлектроники и может быть использовано в различных быстродействующих интерфейсах, устройствах преобразования сигналов. Технический результат: повышение на 1-2 порядка максимальной скорости нарастания выходного напряжения при работе...
Тип: Изобретение
Номер охранного документа: 0002659476
Дата охранного документа: 02.07.2018
12.09.2018
№218.016.8661

Способ получения рельефного изображения на металлической поверхности изделия

Изобретение относится к электрохимической размерной обработке и может быть использовано для получения рельефного изображения на металлической поверхности изделий, например, при изготовлении неглубоких пресс-форм, матриц для тиснения, печатных форм, печатных плат и для маркирования деталей....
Тип: Изобретение
Номер охранного документа: 0002666658
Дата охранного документа: 11.09.2018
Показаны записи 21-27 из 27.
10.05.2018
№218.016.4f02

Устройство определения распределения взвешенных частиц по массе

Изобретение относится к технике измерений, в частности к оптическим методам контроля, и может использоваться в электронной и химической промышленности, в медицине, биологии, экологии, порошковой металлургии и других областях науки и техники, связанных с определением параметров взвешенных...
Тип: Изобретение
Номер охранного документа: 0002652662
Дата охранного документа: 28.04.2018
10.05.2018
№218.016.4f3a

Способ определения распределения взвешенных частиц по массе

Изобретение относится к технике измерений, в частности к оптическим методам контроля, и может использоваться в электронной и химической промышленности, в медицине, биологии, экологии, порошковой металлургии и других областях науки и техники, связанных с определением параметров взвешенных...
Тип: Изобретение
Номер охранного документа: 0002652654
Дата охранного документа: 28.04.2018
27.04.2019
№219.017.3cdf

Фотоэлектрический способ определения средней концентрации и среднего размера частиц пыли

Изобретение относится к измерительной технике. Фотоэлектрический способ определения среднего размера и средней концентрации частиц пыли включает преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком, разделение светового потока,...
Тип: Изобретение
Номер охранного документа: 0002686401
Дата охранного документа: 25.04.2019
20.06.2019
№219.017.8da7

Оптический пылемер

Пылемер может быть использован для управления вентиляционным оборудованием, а также для определения общей доли респирабельной фракции пыли, вызывающей профессиональные легочные заболевания. Пылемер содержит источник света, два светоделительных зеркала, две диафрагмы, два фотоприемника,...
Тип: Изобретение
Номер охранного документа: 0002691978
Дата охранного документа: 19.06.2019
31.07.2020
№220.018.3a42

Система электроснабжения робота

Изобретение относится к области электротехники, в частности к системам электроснабжения робота, включающая в себя солнечную фотоэлектрическую установку. Технический результат заключается в расширении функциональных возможностей системы электроснабжения робота и в том числе в обеспечении ее...
Тип: Изобретение
Номер охранного документа: 0002727967
Дата охранного документа: 28.07.2020
17.06.2023
№223.018.8059

Устройство для испытания манжетного уплотнения

Использование: в технике измерений, для контроля рабочих характеристик эластомерных уплотнений, например манжетных. Сущность: устройство для испытания манжетного уплотнения, установленного в заполненной электропроводящей жидкостью полости корпуса, снабженное выходящими на поверхность контакта...
Тип: Изобретение
Номер охранного документа: 0002761769
Дата охранного документа: 13.12.2021
17.06.2023
№223.018.8078

Способ испытания манжетных уплотнений

Изобретение относится к области измерительной техники и может быть использовано для контроля рабочих характеристик эластомерных уплотнений, например манжетных, широко применяемых в различных отраслях техники (машиностроении, автомобиле- и тракторостроении, авиации и т.д.). Сущность изобретения...
Тип: Изобретение
Номер охранного документа: 0002761765
Дата охранного документа: 13.12.2021
+ добавить свой РИД