×
09.06.2018
218.016.5ba5

Результат интеллектуальной деятельности: УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗВЕШЕННЫХ ЧАСТИЦ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области для определения параметров взвешенных частиц. Устройство определения параметров взвешенных частиц содержит воздуховод, лазерный излучатель, объектив, матрицу ПЗС для регистрации и обработки не менее двух изображений плоской области потока частиц, «вырезаемой» световым ножом, а также содержит последовательно соединенные акустический излучатель, усилители мощности, цифроаналоговые преобразователи, датчик температуры, усилители, аналого-цифровые преобразователи, DSP-процессор, ЭВМ, интерфейс сопряжения с внешними устройствами, цифровой индикатор. Технический результат - повышение информативности данных и определение поля скоростей, размер, форму, плотность и массу взвешенных частиц. 2 ил.

Изобретение относится к технике измерений, в частности к оптическим методам контроля, и может использоваться в электронной и химической промышленности, в медицине, биологии, экологии, порошковой металлургии и других областях науки и техники, связанных с определением параметров взвешенных частиц.

Известен способ анализа взвешенных частиц (АС SU 507807, G01N 15/02 от 08.01.1974 г.), основанный на облучении исследуемого объекта электромагнитным и акустическим излучениями и регистрации рассеянного частицами электромагнитного излучения, в котором с целью повышения точности анализа облучение осуществляют одновременно обоими видами излучений, регистрируют изменение частоты: моночастотного электромагнитного излучения, а размер частиц находят по формуле R = где η - коэффициент вязкости среды; V0 - амплитуда скорости частиц под действием акустических колебаний; Δf - максимальное изменение частот отраженного моночастотного электромагнитного излучения; λ - длина волны моночастотного электромагнитного излучения; ρ - плотность частицы; F - частота акустических колебаний.

Недостатком способа является сложность реализации и малая точность при определения размеров и плотности вещества частиц, обусловленные высокой методической погрешностью.

Известен способ визуализации течения газа или жидкости на поверхности объекта (патент RU 2288476, G01P 5/20, G01M 9/06, от 14.03.2005 г.), который включает размещение на исследуемой поверхности объекта слоя вязкой жидкости с оптически инородными частицами, помещение объекта в поток газа или жидкости и получение картины течения газа или жидкости на поверхности объекта. В качестве оптически инородных частиц используют нерастворимые в вязкой жидкости оптически инородные частицы, которые помещают на поверхности вязкой жидкости или в ее толщу. Для получения картины течения газа или жидкости на поверхности объекта регистрируют при интересующем режиме потока газа или жидкости два или более последовательных изображения распределения частиц на исследуемой поверхности объекта так, чтобы смещение свободной поверхности слоя вязкой жидкости под действием внешнего потока за время проведения регистрации серии последовательных изображений на исследуемом режиме обтекания составляло порядка 0,1-1% от размера регистрируемой поверхности, и этот слой мог быть использован для визуализации другого режима течения газа или жидкости. Далее определяют параметры движения частиц в слое вязкой жидкости путем анализа зарегистрированной последовательности изображений и из полученных параметров движения частиц восстанавливают картину течения газа или жидкости на поверхности объекта.

Недостатком способа является малая информативность, позволяющая только визуализировать распределение твердых частиц в течении газов или жидкости, т.е. размер, форма и плотность частиц не определяются.

Известен фотоэлектрический способ измерения размеров и концентрации взвешенных частиц (АС SU 1520399, G01N 15/02 от 18.02.1988 г), в котором в потоке частиц, освещенных неподвижным пучком света, возбуждают акустическое колебание в направлении, перпендикулярном направлению потока и оси пучка, и регистрируют "пачки" импульсов рассеянного частицами света, возникающие при пересечении пучка света колеблющимися частицами, по амплитудам которых судят о размерах частиц, а по средней частоте повторения "пачек" - о концентрации частиц.

Недостатком способа является отсутствие возможности определения массы и плотности взвешенных частиц.

Известен способ определения параметров дисперсных частиц (Пат. RU 2346261, G01N 15/02 от 09.07.2007 г.), в котором объем с дисперсными частицами зондируют пучком маломощного лазерного излучения и одновременно с зондирующим лазерным излучением исследуемый объем подвергают воздействию ультразвуковых колебаний. По динамической составляющей рассеянного и отраженного (под малыми углами относительно направления распространения) от дисперсных частиц излучения определяют их собственные частоты механических колебаний, из которых находят размер частиц.

Недостатком способа является отсутствие возможности определения массы и плотности взвешенных частиц.

Известен оптический способ бесконтактного измерения скорости течений жидкости и газа, основанный на лазерной доплеровской анемометрии (ЛДА), позволяющий измерять скорости сопутствующих потоку частиц в фиксированной точке течения (Albrecht Н.Е., Borys М., Damascke N., Тгореа С. Laser Doppler and Phase Doppler Measurement Techniques. Berlin: Springer. 2003, 738 p.).

Недостатком указанного способа является малая информативность - способ позволяет определять только скорость течения жидкости или газа и не позволяет определять размерные параметры, плотность вещества и массу частиц.

Известны способ и устройство измерения скорости, размеров и концентрации частиц в потоке (Патент GB 2480440, G06T 7/20 от 30.06.2010), основанные на совместном использовании лазерной доплеровской анемометрии (ЛДА) и цифровой трассерной визуализации (particle image velocimetry- PIV). Изобретение позволяет одновременно проводить измерения потока и частиц (как сферических, так и не сферических до нано/микроразмеров) и обеспечивает высокую скорость обработки полученных изображений за счет использования высокоскоростного приемника изображений.

Недостатком способа является отсутствие возможности определения массы и плотности взвешенных частиц в потоке.

Известны способ и устройство для оптического измерения размера или скорости объекта, движущегося в жидкости через поле (пат. FR 2689247, G01P 3/38, 5/00, 5/22, G01N 15/02, G01B 11/00, от 24.03.1992 г.), в котором первое изображение движущегося объекта или жидкости берется вдоль оптической оси для первого момента времени, фиксируется с помощью датчика ПЗС-матрицы камеры, после чего во второй момент времени фиксируется второе изображение движущегося объекта или жидкости по той же оптической оси с помощью датчика ПЗС-матрицы камеры и далее полученные изображения одновременно обрабатываются для того, чтобы определить размер и скорость объекта путем вычитания одного сигнала из другого или вывести скорость жидкости с помощью автокорреляционной функции.

Недостатком способа и основанного на нем устройства является отсутствие возможности определения массы и плотности движущегося объекта в потоке жидкости.

Известны способ и устройство для измерения перемещения изображений частиц для многократного экспонирования велосиметрии (пат. US 4729109, G01P 5/00, G01P 5/18, H04N 13/00 от 29.05.1985 г.), в котором описан цифровой метод измерения смещений компактных изображений, в частности изображения частиц, записанных на любой носитель записи. Метод сжимает двумерное изображение поля частиц двух изображений. Смещение частиц между несколькими экспозициями определяется путем оцифровки двух одномерных изображений, вычисления их автокорреляции и поиска пиков этих автокорреляций. Этот метод особенно пригоден для измерения поля скоростей жидкостей, содержащих много мелких частиц.

Недостатком указанного способа и устройства является то, что он позволяет определять только поле скорости жидкости, содержащей много мелких частиц и не позволяет определять размер, форму, плотность вещества и массу частиц.

Наиболее близким по технической сути к предлагаемому способу является способ цифровой трассерной визуализация - PIV (particle image velocimetry) для анализа поля скорости потока в фиксированном сечении по трекам частиц (М. Raffel, С. Willert and J. Kompenhans, Particle Image Velocimetry, a Practical Guide, Springer, Berlin, 1998), сущность которого заключается в измерении перемещения частиц примеси, находящихся в плоскости сечения, за фиксированный интервал времени. Измерительной областью потока считается плоскость, «вырезаемая» световым ножом. Частицы в измерительной плоскости потока должны быть освещены минимум дважды. Образы частиц регистрируются на цифровую камеру. Последующая обработка изображений позволяет рассчитать смещения частиц за время между вспышками источника света и построить поле скорости.

Недостатком указанного способа является малая информативность - способ позволяют определять лишь поле скорости потока в фиксированном сечении по трекам частиц и не позволяет определять размер, форму, плотность вещества и массу частиц.

Технический результат, который может быть получен при осуществлении предлагаемого изобретения, состоит в повышении информативности и точности данных при измерении параметров частиц за счет введения дополнительного акустического излучения и регистрации получаемых при этом изображений колебаний частиц потока.

Этот результат достигается тем, что устройство определения параметров взвешенных частиц, содержащее воздуховод, лазерный излучатель, объектив, матрицу ПЗС для регистрации и обработки не менее двух изображений «вырезаемую» световым ножом плоскую область потока частиц, отличающееся тем, что дополнительно содержит последовательно соединенные акустический излучатель, усилители мощности, цифроаналоговые преобразователи, датчик температуры, усилители, аналого-цифровые преобразователи, DSP- процессор, ЭВМ, интерфейс сопряжения с внешними устройствами, цифровой индикатор.

На фиг. 1 представлена схема устройства, а на фиг. 2 - общая схема устройства регистрации изображения перемещения частиц примеси в плоскости светового ножа.

На схеме, поясняющей работу устройства, показано следующее: воздушный поток 1 с частицами 2, плоскость регистрации ПЗС 3, линза, формирующая световой нож 4, смотровое окно, прозрачное для световых волн 5, лазерный излучатель 6, усилители мощности 7, 17, цифроаналоговые преобразватели (ЦАП) 8, 18, датчик температуры 9, усилители 10, 13, аналого-цифровые преобразователи (АЦП) 11, 14, матрица ПЗС 12 с объективом 12', DSP- процессор 15, акустический излучатель 16, ЭВМ (микроконтроллер) 19, интерфейс сопряжения с внешними устройствами 20, цифровой индикатор 21, узкий световой поток в плоскости (световой нож) 22, воздуховод для пропускания потока через плоскость регистрации ПЗС 23, акустическое излучение 24.

Устройство работает следующим образом.

Воздушный поток 1, содержащий частицы 2, через смотровое окно 5 освещают световым пучком в виде светового ножа 22, формируемого лазерным излучателем 6 и объективом 4. Лазерный излучатель 6 управляется микроконтроллером 19 через цифроаналоговый преобразователь 8 и усилитель мощности 7.

В начале измерения в измерительной плоскости 3, «вырезаемой» световым ножом 22 (в плоскости регистрации ПЗС), поток частиц освещается серией последовательных вспышек лазерным излучателей 6. Полученные изображения регистрируются матрицей ПЗС 12 с объективом 12' и далее через усилитель 13 и АЦП 14 поступают на DSP-процессор, который проводит обработку полученных изображений и рассчитывает смещения частиц за время между вспышками лазерного излучателя. Далее информация поступает на ЭВМ (микроконтроллер) 19, который строит поле скоростей потока частиц с помощью вычисления автокорреляции двух последовательных изображений и поиска пиков этих автокорреляций (М. Raffel, С. Willert and J. Kompenhans, Particle Image Velocimetry, a Practical Guide, Springer, Berlin, 1998), а также определяет размер частиц с помощью цифровой обработки полученных изображений.

Далее начинает работать акустический излучатель 16, амплитуда и частота излучаемых волн которого направляется перпендикулярно потоку частиц. Амплитуда и частота акустического излучения 24 задается алгоритмом работы ЭВМ (микроконтроллера) 19 при помощи формирования управляющих импульсов через ЦАП 18 и усилителя мощности 17 на вход акустического излучателя 16. В измерительной плоскости 3, «вырезаемой» световым ножом 22, в которой поток частиц освещаются лазерным излучателем 6 и акустическим излучателем 16 в течение минимум двух периодов звуковых колебаний с учетом релаксации частиц, и полученные серии колеблющихся изображений потока частиц регистрируются матрицей ПЗС 12 через объектив 12' и далее через усилитель 13 и АЦП 14 поступают на DSP-процессор 15, который проводит предварительную обработку полученных изображений. Затем полученные данные подаются на микроконтроллер 19, который, с учетом температуры среды (газа, жидкости) измеряемого потока, получаемого при помощи датчика температуры 9, усилителя 10 и АЦП 11, рассчитывает плотность и массу частиц, попавших в плоскость регистрации по формулам приведенным ниже в зависимости от амплитуды и частоты звуковых колебаний с учетом данных, полученных в начале измерения.

В результате устройство позволяет определить параметры движения потока - поле скоростей потока и размер и форму частиц с использованием светового излучения, а плотность и массу вещества взвешенных частиц в потоке с использованием светового и акустического излучения.

Результаты проведенных измерений выдаются на жидкокристаллический экран 21, а также могут быть переданы на внешние устройства при помощи интерфейса сопряжения с устройствами 20.

Воздуховод для пропускания потока через плоскость регистрации ПЗС 23 может иметь (фиг. 2) как прямоугольную форму, так и цилиндрическую форму, причем последняя предпочтительней из-за более симметричного распределения воздушного потока, не нарушающего требования изокинетичности отбора пробы для непрерывного измерения.

Алгоритмом ЭВМ (микроконтроллера) 19 устройства предусмотрена оценка коэффициентов увлечения аэрозольных частиц по получаемым при помощи описанного устройства изображениям колеблющихся частиц и определение плотности и массы этих частиц в исследуемом потоке.

В результате работы микроконтроллера 19 по заданному алгоритму с помощью регистрации не менее двух изображений потока частиц определяются параметры движения потока - поле скоростей потока, размер, форма частиц, и с помощью регистрации серий изображений в течение минимум двух периодов звуковых колебаний с учетом релаксации частиц в потоке колеблющихся частиц в акустическом поле определяются значения плотности и массы веществ, взвешенных в потоке частиц с учетом всех полученных ранее данных.

Таким образом, рассмотренное устройство, в отличие от известных, позволяет существенно повысить информативность данных и определять поля скоростей, размер, форму, плотность и массу взвешенных частиц.

Устройство определения параметров взвешенных частиц, содержащее воздуховод, лазерный излучатель, объектив, матрицу ПЗС для регистрации и обработки не менее двух изображений плоской области потока частиц, «вырезаемой» световым ножом, отличающееся тем, что дополнительно содержит последовательно соединенные акустический излучатель, усилители мощности, цифроаналоговые преобразователи, датчик температуры, усилители, аналого-цифровые преобразователи, DSP-процессор, ЭВМ, интерфейс сопряжения с внешними устройствами, цифровой индикатор.
УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗВЕШЕННЫХ ЧАСТИЦ
УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗВЕШЕННЫХ ЧАСТИЦ
УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗВЕШЕННЫХ ЧАСТИЦ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 186.
13.06.2019
№219.017.811a

Способ тоновой аппроксимации палитры монохромного полутонового изображения

Изобретение относится к вычислительной технике. Технический результат − обеспечение оптимальности тоновой аппроксимации монохромного мультитонового изображения. Способ тоновой аппроксимации палитры монохромного полутонового изображения включает: выбор количества различающихся тонов,...
Тип: Изобретение
Номер охранного документа: 0002691082
Дата охранного документа: 10.06.2019
20.06.2019
№219.017.8da7

Оптический пылемер

Пылемер может быть использован для управления вентиляционным оборудованием, а также для определения общей доли респирабельной фракции пыли, вызывающей профессиональные легочные заболевания. Пылемер содержит источник света, два светоделительных зеркала, две диафрагмы, два фотоприемника,...
Тип: Изобретение
Номер охранного документа: 0002691978
Дата охранного документа: 19.06.2019
27.06.2019
№219.017.98a2

Токовый пороговый логический элемент "неравнозначность"

Изобретение относится к области радиотехники и аналоговой микроэлектроники и может быть использовано в быстродействующих аналоговых и аналого-цифровых интерфейсах для обработки сигналов датчиков. Технический результат: создание токового порогового логического элемента «Неравнозначность», в...
Тип: Изобретение
Номер охранного документа: 0002692573
Дата охранного документа: 25.06.2019
02.07.2019
№219.017.a2e8

Активный rc-фильтр для обработки сигналов пьезоэлектрических датчиков

Изобретение относится к измерительной технике и может использоваться в составе электромеханических систем балансировки роторов. Технический результат заключается в увеличении гарантированного затухания амплитудно-частотной характеристики активного RC-фильтра для обработки пьезоэлектрических...
Тип: Изобретение
Номер охранного документа: 0002692967
Дата охранного документа: 28.06.2019
05.07.2019
№219.017.a59f

Токовый пороговый логический элемент обратного циклического сдвига

Изобретение относится к области радиотехники и аналоговой микроэлектроники. Технический результат заключается в повышении быстродействия устройств преобразования информации. Технический результат достигается за счет токового порогового логического элемента обратного циклического сдвига,...
Тип: Изобретение
Номер охранного документа: 0002693590
Дата охранного документа: 03.07.2019
11.07.2019
№219.017.b296

Полосовой arc-фильтр на двух операционных усилителях с повышением частоты полюса и независимой подстройкой основных параметров

Изобретение относится к средствам ограничения спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций. Технический результат заключается в повышении частоты полюса, которая обеспечивает независимую подстройку трех основных...
Тип: Изобретение
Номер охранного документа: 0002694134
Дата охранного документа: 09.07.2019
11.07.2019
№219.017.b2d4

Arc-фильтр верхних частот с независимой подстройкой основных параметров

Изобретение относится к средствам ограничения спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций. Технический результат заключается в обеспечении независимой подстройки таких параметров амплитудно-частотной характеристики,...
Тип: Изобретение
Номер охранного документа: 0002694135
Дата охранного документа: 09.07.2019
19.07.2019
№219.017.b646

Широкополосный избирательный rc-фильтр с дифференциальным входом

Изобретение относится к измерительной техники. Технический результат заключается в увеличение гарантированного затухания амплитудно-частотной характеристики активного RC-фильтра для обработки пьезоэлектрических сигналов датчиков за пределами полосы пропускания полезного сигнала, что...
Тип: Изобретение
Номер охранного документа: 0002694740
Дата охранного документа: 16.07.2019
25.07.2019
№219.017.b84d

Способ помехоустойчивого градиентного выделения контуров объектов на цифровых полутоновых изображениях

Изобретение относится к обработке изображений и может быть использовано в фото, видео, оптико-локационной и оптико-электронной технике при решении задач распознавания образов по их контурам на изображениях. Техническим результатом изобретения является повышение скорости выделения контуров...
Тип: Изобретение
Номер охранного документа: 0002695417
Дата охранного документа: 23.07.2019
25.07.2019
№219.017.b889

Устройство для улучшения качества изображений

Предлагаемое изобретение относится к области вычислительной техники и может быть использовано в системах анализа и обработки изображений, цифровом телевидении. Технический результат заявленного предложения заключается в улучшении изображения за счет разбиения изображения на блоки разных...
Тип: Изобретение
Номер охранного документа: 0002695424
Дата охранного документа: 23.07.2019
Показаны записи 21-27 из 27.
10.05.2018
№218.016.4f02

Устройство определения распределения взвешенных частиц по массе

Изобретение относится к технике измерений, в частности к оптическим методам контроля, и может использоваться в электронной и химической промышленности, в медицине, биологии, экологии, порошковой металлургии и других областях науки и техники, связанных с определением параметров взвешенных...
Тип: Изобретение
Номер охранного документа: 0002652662
Дата охранного документа: 28.04.2018
10.05.2018
№218.016.4f3a

Способ определения распределения взвешенных частиц по массе

Изобретение относится к технике измерений, в частности к оптическим методам контроля, и может использоваться в электронной и химической промышленности, в медицине, биологии, экологии, порошковой металлургии и других областях науки и техники, связанных с определением параметров взвешенных...
Тип: Изобретение
Номер охранного документа: 0002652654
Дата охранного документа: 28.04.2018
27.04.2019
№219.017.3cdf

Фотоэлектрический способ определения средней концентрации и среднего размера частиц пыли

Изобретение относится к измерительной технике. Фотоэлектрический способ определения среднего размера и средней концентрации частиц пыли включает преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком, разделение светового потока,...
Тип: Изобретение
Номер охранного документа: 0002686401
Дата охранного документа: 25.04.2019
20.06.2019
№219.017.8da7

Оптический пылемер

Пылемер может быть использован для управления вентиляционным оборудованием, а также для определения общей доли респирабельной фракции пыли, вызывающей профессиональные легочные заболевания. Пылемер содержит источник света, два светоделительных зеркала, две диафрагмы, два фотоприемника,...
Тип: Изобретение
Номер охранного документа: 0002691978
Дата охранного документа: 19.06.2019
31.07.2020
№220.018.3a42

Система электроснабжения робота

Изобретение относится к области электротехники, в частности к системам электроснабжения робота, включающая в себя солнечную фотоэлектрическую установку. Технический результат заключается в расширении функциональных возможностей системы электроснабжения робота и в том числе в обеспечении ее...
Тип: Изобретение
Номер охранного документа: 0002727967
Дата охранного документа: 28.07.2020
17.06.2023
№223.018.8059

Устройство для испытания манжетного уплотнения

Использование: в технике измерений, для контроля рабочих характеристик эластомерных уплотнений, например манжетных. Сущность: устройство для испытания манжетного уплотнения, установленного в заполненной электропроводящей жидкостью полости корпуса, снабженное выходящими на поверхность контакта...
Тип: Изобретение
Номер охранного документа: 0002761769
Дата охранного документа: 13.12.2021
17.06.2023
№223.018.8078

Способ испытания манжетных уплотнений

Изобретение относится к области измерительной техники и может быть использовано для контроля рабочих характеристик эластомерных уплотнений, например манжетных, широко применяемых в различных отраслях техники (машиностроении, автомобиле- и тракторостроении, авиации и т.д.). Сущность изобретения...
Тип: Изобретение
Номер охранного документа: 0002761765
Дата охранного документа: 13.12.2021
+ добавить свой РИД