×
29.05.2018
218.016.598a

Результат интеллектуальной деятельности: СПОСОБ СИНТЕЗА НАНОДИСПЕРСНОГО НИТРИДА ТИТАНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к физике низкотемпературной плазмы и плазмохимии, к электротехнике и электрофизике, а именно к ускорительной технике. Способ синтеза нанодисперсного нитрида титана осуществляют путем распыления электроразрядной плазмы титана коаксиального магнитоплазменного ускорителя с титановыми электродами в камеру-реактор, заполненную газообразным азотом при атмосферном давлении, при этом синтез ведут в камере-реакторе объемом от 0,022 м до 0,055 м и от 0,057 м до 0,098 м при температуре от 0°C до 19°C и от 21°C до 40°C соответственно. Технический результат: регулирование дисперсности нитрида титана в интервале 9-86 нм. 1 ил., 1 табл.

Изобретение относится к физике низкотемпературной плазмы и плазмохимии, а также к области электротехники и электрофизики, а именно к ускорительной технике, и может быть использовано для синтеза нанодисперсного нитрида титана путем распыления электроразрядной плазмы титана в камеру-реактор, заполненную газообразным азотом.

Известен способ синтеза нанодисперсного нитрида титана (Сивков А.А., Сайгаш А.С., Герасимов Д.Ю., Привезенцев С.И., Шарипов P.P. Динамический синтез нанодисперсных порошкообразных кристаллических материалов на основе титана // "Нано-2007". II Всероссийская конференция по наноматериалам. "Наноструктурные материалы-2007". IV Международный семинар. Сборник тезисов. Беларусь-Россия, Новосибирск. 13-16 марта 2007. - С. 227), который осуществляют путем распыления электроразрядной плазмы титана в камеру-реактор, заполненную газообразным азотом при нормальном давлении и температуре.

Недостатком известного способа является синтез нитрида титана недостаточной чистоты с содержанием не прореагировавшего титана.

Известен способ синтеза нанодисперсного нитрида титана, выбранный в качестве прототипа (Сивков А.А., Найден Е.П., Герасимов Д.Ю. Прямой динамический синтез нанодисперсного нитрида титана в высокоскоростной импульсной струе электроэрозионной плазмы. Сверхтвердые материалы, 2008, №5. - С. 33-39), который осуществляют путем распыления электроразрядной плазмы титана коаксиального магнитоплазменного ускорителя с титановыми электродами в камеру-реактор объемом 0,056 м3, заполненную газообразным азотом при близком к атмосферному давлении и комнатной температуре.

Недостатком прототипа является отсутствие возможности регулирования дисперсности синтезируемого нитрида титана за счет изменения объема камеры-реактора и температуры газообразного азота.

Задачей изобретения является создание способа синтеза нанодисперсного нитрида титана.

Указанную задачу достигают тем, что так же, как в прототипе, способ синтеза нанодисперсного нитрида титана осуществляют путем распыления электроразрядной плазмы титана коаксиального магнитоплазменного ускорителя с титановыми электродами в камеру-реактор объемом 0,056 м3, заполненную газообразным азотом при атмосферном давлении и температуре 20°С.

Согласно изобретению синтез ведут в камере-реакторе объемом от 0,022 м3 до 0,055 м3 и от 0,057 м3 до 0,098 м3 при температуре от 0°С до 19°С и от 21°С до 40°С.

Объем камеры-реактора и температура азота в указанных диапазонах обеспечивают регулирование дисперсности получаемого в процессе синтеза нанодисперсного нитрида титана. Это обусловлено изменением времени кристаллизации частиц, что непосредственно влияет на их размер.

На фиг. 1 изображено устройство для реализации способа синтеза нанодисперсного нитрида титана.

В таблице 1 представлены значения основных параметров и результатов экспериментов.

Предложенный способ синтеза нанодисперсного нитрида титана был реализован с использованием коаксиального магнитоплазменного ускорителя (фиг. 1), состоящего из цилиндрического электропроводящего титанового ствола 1, центрального титанового электрода 2, соединяющей их плавкой перемычки 3, состоящей из титановых проволочек, расходящихся от центрального электрода 2 и огибающих торцевую часть изолятора 4 центрального электрода 2. Корпус 5 узла центрального электрода 2, выполненный из магнитного материала, конструкционной стали, сопряжен со стволом 1, укрепляя узел центрального электрода 2 и перекрывая зону размещения грибообразной плавкой перемычки 3. Длина части перекрывающей зону размещения титановой плавкой перемычки 3 составляет 40-50 мм, а ее внешняя поверхность выполнена конусообразной. Соленоид 6 выполнен за одно целое с фланцем 7 и цилиндрической частью 8, в котором размещен корпус 5 узла центрального электрода 2 и закреплен резьбовой заглушкой 9. Соленоид 6 укреплен прочным стеклопластиковым корпусом 10 и стянут мощными токопроводящими шпильками 11 между фланцем 7 и стеклопластиковым упорным кольцом 12. Токопроводящие шпильки 11 электрически соединены токопроводящим кольцом 13, а к токопроводящим шпилькам 11 присоединен шинопровод 14 внешней схемы электропитания. Второй шинопровод 15 схемы электропитания присоединен к центральному электроду 2. К шинопроводу 15 последовательно присоединены ключ 16 и конденсаторная батарея 17, связанная с шинопроводом 14. На торцевую часть титанового ствола 1 установлена цилиндрическая вставка 18 из стали Ст.3, длиной 15-20 мм и толщиной 3-5 мм. Ускоритель через ствол 1 состыковывается с камерой-реактором объемом от 0,022 м3 до 0,098 м3, заполненной газообразным азотом при атмосферном давлении и температуре от 0°С до 40°С.

Работа устройства заключается в следующем. При замыкании ключа 16 в контуре электропитания ускорителя начинает протекать ток от конденсаторной батареи 17, по шинопроводу 14, токопроводящему кольцу 13, шпилькам 11, фланцу 7, виткам соленоида 6, корпусу 5, стволу 1, плавкой перемычке 3, центральному электроду 2, шинопроводу 15, через ключ 16 и к конденсатору 17. При достижении нарастающим током I(t) некоторого уровня плавкая перемычка 3 взрывается с образованием сильноточного дугового разряда, начальная форма плазменной структуры которого задается конфигурацией и расположением проволочек плавкой перемычки 3. Плазма сильноточного разряда сжимается магнитным полем собственного тока, магнитным полем соленоида 6 и приобретает грибообразную форму. Конусообразная часть корпуса 5 узла центрального электрода 2, перекрывает зону размещения плавкой перемычки 3 и формирования плазменной структуры, экранирует эту зону в течение некоторого времени и исключает вращение грибообразной плазменной перемычки, уменьшая эрозию ствола 1 на его начальном участке. Цилиндрическая вставка 18 создает ступенчатое изменение толщины стенки ствола 1, создает "магнитную пробку" движению плазмы сильноточного дугового разряда, выравнивает эрозионный износ ствола 1 и тем самым позволяет эффективно использовать расходный материал - ствол 1 коаксиального магнитоплазменного ускорителя.

Предложенный способ был испытан при следующих параметрах: емкость конденсаторной батареи 17 С=28,8 мФ; зарядное напряжение UЗАР=3,5 кВ; диаметр ствола 1 dC=21 мм; длина ствола =150 мм; давление газообразного азота PN=0,1 МПа. В опытах изменяли объем камеры-реактора VКР от 0,022 м3 до 0,098 м3 и температуру газообразного азота tN от 0°С до 40°С. Примеры соответствия объема камеры-реактора, температуры азота и параметров продукта синтеза приведены в таблице 1. Основные параметры генерируемой плазменной струи: амплитуда импульса тока 210 к А, мощность разряда 330 MBА, подведенная энергия 90 кДж.

Как видно из таблицы 1, при увеличении объема камеры-реактора от 0,022 м3 до 0,098 м3 и при уменьшении температуры азота от 40°С до 0°С происходит уменьшение среднего размера частиц нитрида титана от 86 нм до 9 нм.

Способ синтеза нанодисперсного нитрида титана путем распыления электроразрядной плазмы титана коаксиального магнитоплазменного ускорителя с титановыми электродами в камеру-реактор, заполненную газообразным азотом при атмосферном давлении, отличающийся тем, что синтез ведут в камере-реакторе объемом от 0,022 м до 0,055 м и от 0,057 м до 0,098 м при температуре от 0°C до 19°C и от 21°C до 40°C.
СПОСОБ СИНТЕЗА НАНОДИСПЕРСНОГО НИТРИДА ТИТАНА
Источник поступления информации: Роспатент

Показаны записи 221-230 из 255.
31.05.2019
№219.017.7019

Способ определения интенсивности и количества дождевых осадков

Изобретение относится к области метеорологии и может быть использовано для определения интенсивности и количества дождевых осадков в приземном слое атмосферы. Сущность: в период выпадения дождевых осадков производят непрерывные измерения плотности потока бета-излучения на некоторой высоте от...
Тип: Изобретение
Номер охранного документа: 0002689839
Дата охранного документа: 29.05.2019
01.06.2019
№219.017.71d4

Способ измерения активной мощности в трехфазной симметричной сети

Изобретение относится к измерению электрических величин и может быть использовано для определения активной мощности в трехфазных сетях переменного тока. Способ измерения активной мощности в трехфазной симметричной сети заключается в том, что измеряют датчиками тока и напряжения, работающими на...
Тип: Изобретение
Номер охранного документа: 0002689994
Дата охранного документа: 30.05.2019
01.06.2019
№219.017.7249

Устройство для измерения изменений во времени давления жидкости или газа

Изобретение относится к измерительной технике, а именно к приборам для измерения изменений во времени давления жидкости или газа, и может быть использовано в нефтегазодобывающей, нефтехимической, химической, пищевой и других отраслях промышленности, в коммунальном хозяйстве. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002690010
Дата охранного документа: 30.05.2019
28.06.2019
№219.017.9947

Способ получения оптических изомеров мета-хлорбензгидриламина

Изобретение относится к области органической химии, а именно к способу получения оптических изомеров (R)-(-)- и (S)-(+)-мета-хлорбензгидриламина. Способ заключается в перетирании рацемического мета-хлорбензгидриламина с оптически активной винной кислотой в условиях отсутствия растворителя в...
Тип: Изобретение
Номер охранного документа: 0002692684
Дата охранного документа: 26.06.2019
10.07.2019
№219.017.a9d0

Устройство для моделирования передачи постоянного тока в энергетической системе

Изобретение относится к области обработки данных и может быть использовано для моделирования передачи постоянного тока в энергетической системе. Техническим результатом является обеспечение воспроизведения в реальном времени непрерывного спектра нормальных и анормальных процессов передачи...
Тип: Изобретение
Номер охранного документа: 0002694014
Дата охранного документа: 08.07.2019
11.07.2019
№219.017.b2c9

Способ определения влагозапаса в снежном покрове

Изобретение относится к области метеорологии и может быть использовано для определения влагозапаса снежного покрова. Сущность: измеряют плотность потока бета-излучения над снежным покровом в период перед началом таяния снега в дневное время суток не менее чем через 3,5 часа после выпадения...
Тип: Изобретение
Номер охранного документа: 0002694080
Дата охранного документа: 09.07.2019
13.07.2019
№219.017.b33b

Дисмембратор

Изобретение относится к устройствам для измельчения различных материалов и может быть использовано в строительной, химической и других отраслях промышленности, в частности для переработки твердого кускового сырья, например фторангидрита. Дисмембратор содержит цилиндрический корпус с загрузочным...
Тип: Изобретение
Номер охранного документа: 0002694313
Дата охранного документа: 11.07.2019
25.07.2019
№219.017.b897

Устройство для моделирования многотерминальной передачи постоянного тока в энергетической системе

Изобретение относится к области моделирования объектов энергетических систем. Техническим результатом является обеспечение воспроизведения в реальном времени непрерывного спектра нормальных и анормальных процессов функционирования многотерминальной передачи постоянного тока и функционирование...
Тип: Изобретение
Номер охранного документа: 0002695501
Дата охранного документа: 23.07.2019
31.07.2019
№219.017.ba41

Способ определения влагозапаса в снежном покрове

Изобретение относится к области метеорологии и может быть использовано для определения влагозапаса снежного покрова. Сущность: проводят три измерения мощности дозы гамма-излучения в приземной атмосфере. Первое измерение производят до начала установления снежного покрова, второе - при толщине...
Тип: Изобретение
Номер охранного документа: 0002695949
Дата охранного документа: 29.07.2019
01.08.2019
№219.017.baea

Способ ультразвукового контроля дефектности металлических изделий

Использование: для дефектоскопии металлических изделий сложной формы. Сущность изобретения заключается в том, что способ ультразвукового контроля дефектности металлических изделий включает измерение двумерного профиля поверхности изделия с помощью электрического щупа, выбирая три реперные точки...
Тип: Изобретение
Номер охранного документа: 0002695950
Дата охранного документа: 29.07.2019
Показаны записи 1-8 из 8.
10.08.2015
№216.013.6d30

Способ синтеза нанокристаллического карбида кремния

Изобретение относится к технологии получения нанокристаллического карбида кремния. Способ включает плазмодинамический синтез карбида кремния в гиперскоростной струе электроразрядной плазмы, содержащей кремний и углерод в соотношении 3,0:1, которую генерируют коаксиальным магнитоплазменным...
Тип: Изобретение
Номер охранного документа: 0002559510
Дата охранного документа: 10.08.2015
01.12.2019
№219.017.e82f

Устройство для формирования покрытия из кубического карбида вольфрама

Изобретение относится к химическому нанесению покрытия осаждением соединения с использованием электрических разрядов и плазменных струй, и может быть использовано в двигателестроении, авиастроении и машиностроении. Устройство для формирования покрытия из кубического карбида вольфрама на...
Тип: Изобретение
Номер охранного документа: 0002707688
Дата охранного документа: 28.11.2019
01.12.2019
№219.017.e844

Способ формирования покрытия из кубического карбида вольфрама

Изобретение относится к области металлургии, а именно к химическому нанесению покрытия осаждением соединения с использованием электрических разрядов и плазменных струй, и может быть использовано в двигателестроении, авиастроении и машиностроении. Способ формирования покрытия из кубического...
Тип: Изобретение
Номер охранного документа: 0002707673
Дата охранного документа: 28.11.2019
21.04.2023
№223.018.4fcb

Способ получения нанокристаллического диоксида титана со структурой анатаз

Изобретение относится к области материаловедения и нанотехнологий, а именно к получению диоксида титана, который может быть использован в водородной энергетике и технологиях очистки воды. Способ включает генерирование титановой электроразрядной плазмы в первую камеру 19, предварительно...
Тип: Изобретение
Номер охранного документа: 0002749736
Дата охранного документа: 16.06.2021
21.04.2023
№223.018.4fe3

Способ получения порошка, содержащего нанокристаллический кубический карбид вольфрама

Изобретение относится к области материаловедения и нанотехнологий, а именно к способу получения порошка, содержащего нанокристаллический кубический карбид вольфрама. Способ включает предварительное вакуумирование камеры, наполнение ее аргоном при нормальном атмосферном давлении и комнатной...
Тип: Изобретение
Номер охранного документа: 0002747329
Дата охранного документа: 04.05.2021
21.04.2023
№223.018.5017

Способ получения нанокристаллического кубического карбида молибдена

Изобретение относится к области получения неорганических функциональных материалов, а именно к способу получения нанокристаллического кубического карбида молибдена, который может найти применение в качестве каталитического материала в реакциях получения водорода. Способ включает использование...
Тип: Изобретение
Номер охранного документа: 0002748929
Дата охранного документа: 01.06.2021
22.05.2023
№223.018.6b9a

Способ получения магнетита

Изобретение относится к получению оксида железа (FeO) в виде магнетита, который может быть использован в устройствах поглощения электромагнитной энергии в радиочастотном диапазоне. Магнетит получают генерированием железосодержащей электроразрядной плазмы в основную камеру. Камеру вакуумируют и...
Тип: Изобретение
Номер охранного документа: 0002795776
Дата охранного документа: 11.05.2023
27.05.2023
№223.018.7188

Способ получения нанокристаллической эпсилон-фазы оксида железа

Изобретение относится к области материаловедения и нанотехнологий, а именно к получению нанокристаллической эпсилон-фазы оксида FeO, который может быть использован в водородной энергетике и средствах магнитной записи информации. Способ включает генерирование четырех последовательных импульсов...
Тип: Изобретение
Номер охранного документа: 0002752330
Дата охранного документа: 26.07.2021
+ добавить свой РИД