×
29.05.2018
218.016.5987

Результат интеллектуальной деятельности: Устройство для глубокого охлаждения природного и попутного нефтяного газов

Вид РИД

Изобретение

Аннотация: Изобретение относится к области подготовки природного и попутного нефтяного газов перед подачей потребителю. Устройство для глубокого охлаждения природного и попутного нефтяного газов содержит вихревую трубку Ранка-Хилша и сопла Лаваля, последовательно соединенные между собой в одном корпусе. Представляют собой две ступени охлаждения газа. Соединение ступеней охлаждения выполнено с каналами с возможностью образования и отделения жидкой составляющей пропан-бутановой фракции после первой ступени и этана после второй - в сопле Лаваля. Внутренняя стенка корпуса снабжена наклонными плоскостями для пристенного растекания абсорбента, обеспечивающего дополнительное охлаждение и поглощение газообразного этана. Вторая ступень охлаждения происходит в сопле Лаваля. Сопло Лаваля содержит внутреннюю обойму в металлическом корпусе, выполненную из эластомера с винтообразными канавками. Переменная высота подъема винта h соответствует соотношению h=πd⋅tgα, где d - переменный диаметр проходного сечения сопла в данном сечении; α - угол подъема винта. Устройство также включает подачу абсорбента - охлажденного пропан-бутана, который поглощает жидкий и газообразный этан, тем самым повышает эффект разделения метана от этана. Изобретение обеспечивает большее снижение температуры газа в устройстве в оптимальном режиме. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области подготовки природного и попутного нефтяного газов перед подачей потребителю.

Известна установка для извлечения этана из смеси с метаном (патент №97277), содержащая абсорбер, отгонную секцию, десорбер, компрессор, насос, турбодетандер, ускоритель завихрения, зонт для формирования пленки жидкости-поглотителя, регулятор давления «до себя», холодильник, этановую и метановую линии. Основным элементом, обеспечивающим глубокое охлаждение метано-этановой смеси, является турбодетандер.

Недостатком технического решения является большое количество применяемого оборудования с высокой стоимостью и сложностью в эксплуатации и требует значительных увеличений капитальных и эксплуатационных затрат.

Близким по существу получения холодного потока газа является устройство по способу охлаждения газового потока, в котором охлаждение проводят двустадийно от 0°С до -20°С с микродозами воды, причем на первой стадии в вихревой трубке Ранка-Хилша с температур 20-24°С до температур от 10-14°С до 1-2°С при давлении газового потока на входе 1-4 атм и посредством сопла Лаваля до температур от 0 до -20°С на второй стадии (патент №2524871).

Недостатком данного технического решения является: низкое давление газа, ограничивающее создавать высокие перепады давления, следовательно - получать более низкую температуру газа; отсутствие элементов отвода «горячего потока», вследствие чего неиспользованное тепло «горячего потока» снижает эффективность технологии.

Заявляемое изобретение решает задачу четкого отделения высокомолекулярных углеводородов, содержащихся в природном и попутном нефтяном газах от метана, благодаря глубокому охлаждению газа. Эффект сепарации достигается в оптимальном режиме, т.е. с минимальной затратой перепада давления и количества оборудования, чему способствует наличие каналов для своевременного отвода «горячего потоков», обеспечивающих отвод каждого из компонентов по мере перехода его в жидкое состояние - сначала в аппарате Ранка-Хилша, затем в сопле Лаваля, а также наличие наклонных поверхностей, увеличивающих поверхности контакта между абсорбентом и углеводородами С2+выс. Газообразный этан, который благодаря большему молекулярному весу, чем этан, в закручивающемся потоке сопла Лаваля занимает периферийную область, т.е. ближе к абсорбенту, стекающему по внутренней стенке корпуса, и поглощается им, что также способствует более четкому отделению этана от метана.

Устройство из последовательно соединенных между собой в одном корпусе трубки Ранка-Хилша и сопла Лаваля выполнено с каналами для подачи в область течения абсорбента, растекание и пристенное движение которого поддерживается наклонными плоскостями.

Сопло Лаваля содержит внутреннюю обойму в металлическом корпусе, выполненную из эластомера с винтообразными канавками, создающими центробежные силы, причем переменная высота подъема винта hi соответствует соотношению

hi=(πdi⋅tgα),

где hi - высота подъема винта, мм; di - переменный диаметр проходного сечения сопла, мм; α - угол подъема винта, градусы.

Пример расчета высоты подъема винта

а) у входа в сопло (в расширенном интервале по среднему значению d)

h1=(3,14*120⋅tg20)=137 мм,

б) в суженном интервале (по среднему значению) сопла

h2=(3,14*88⋅tg20)=100 мм.

Суммарная длина сопла до максимального сужения

h=h1+h2=137+100=237 мм.

Высота винта до максимального сужения h=237 мм, следовательно, поток газа совершает два полных оборота.

При постоянном значении угла подъема винта высота подъема винта hi по мере сужения канала уменьшается, что сопровождается ускорением радиального движения потока, следовательно, повышением его центробежной силы, оптимальная его величина устанавливается исходя из условия минимизации гидравлических потерь, которые возникают от вынужденного вращательного движения потока.

Техническим результатом изобретения является большее снижение температуры газа в устройстве в оптимальном режиме.

Указанный технический результат достигается тем, что в устройстве для глубокого охлаждения природного и попутного нефтяного газов, содержащем вихревую трубку Ранка-Хилша и сопла Лаваля, последовательно соединенных между собой в одном корпусе и представляющие две ступени охлаждения газа, согласно изобретению соединение ступеней охлаждения выполнено с образованием каналов для отведения пропан-бутановой фракции после первой ступени, а этана - после второй, а внутренняя стенка корпуса снабжена наклонными плоскостями для пристенного растекания абсорбента, увеличивающими поверхности контактов между взаимодействующими компонентами.

Вторая ступень охлаждения происходит в сопле Лаваля, который содержит внутреннюю обойму в металлическом корпусе, выполненную из эластомера с винтообразными канавками, причем переменная высота подъема винта hi соответствует соотношению hi=πdi⋅tgα, где di - переменный диаметр проходного сечения сопла в данном сечении, мм; α - угол подъема винта, градусы. устройство также включает подачу абсорбента - охлажденного пропан-бутана, который поглощает жидкий и газообразный этан, тем самым повышает эффект разделения метана от этана.

Сущность изобретения поясняет приведенный чертеж на фиг. 1.

Устройство для глубокого охлаждения природного и попутного нефтяного газов содержит корпус 1, в котором помещены улитка 2 и сепарационная секция 3 трубки Ранка-Хилша; сопло Лаваля, технологически соединенное с трубкой Ранка-Хилша, включает корпус 4 и винтообразную обойму 5; патрубок 6 для образования кольцевого пространства 7 между патрубком и корпусом; тангенциальный ввод абсорбента 8; разливную наклонную поверхность 9; направляющий козырек 10; поддон для сбора жидкости 11; патрубок для отвода отделившихся от метана углеводородов (этана + высшие) 12; 13 и 14 - каналы для отвода отделившихся от метана углеводородов и подачи в область течения абсорбента. А-А - сечение наименьшего диаметра сопла Лаваля.

Устройство выполняет свое назначение в следующей последовательности. Сырой газ с линейной скоростью не менее 30 м/с поступает в улитку 2, где каждый компонент приобретает инерционные силы в соответствии с его плотностью, затем в сепарационной трубке 3 происходит их дифференциация на слои. Внешний слой имеет температуру выше первоначального, а внутренний - ниже. Внешний слой через верхний край трубки сепарационной секции поступает в поддон для сбора жидкости 11, чему способствует и сливающийся около стенки корпуса абсорбент. Охлажденный внутренний холодный поток далее поступает в сопло Лаваля 4, где дополнительно приобретает вращательное движение в винтовой обойме 5. По мере приближения потока к сечению наименьшего диаметра А-А, благодаря постепенному сокращению высоты подъема винта, возрастает ускорение потока, соответственно - и радиальные инерционные силы, отбрасывающие более тяжелый жидкий этан в периферийную область. В сопле Лаваля также происходит и температурное разделение на «холодный» и «горячий потоки». При этом «холодный поток», выработанный в сопле Лаваля, становится более охлажденным за счет передачи своего тепла «горячему потоку». К тому же, за счет закручивания путь движения газа в сопле Лаваля удлиняется, и, очевидно, процесс охлаждения газа становится более глубоким и стабильным.

После прохождения сопла Лаваля более тяжелые молекулы этана, приведенные в жидкое состояние, а заодно захваченные жидким потоком газообразные, преимущественно занимающие периферийные слои потока, смываются абсорбентом, стекающим по разливной наклонной плоскости 9.

Абсорбент, представляющий жидкий пропан-бутан, в кольцевое пространство между корпусом 1 и патрубком 6 подается через тангенциальный ввод 8 с тем, чтобы он растекался по всей внутренней поверхности корпуса, чему также способствует наклонный характер поверхностей 9 и 10. Для направления жидких фракций в область течения абсорбента имеются дополнительные каналы 13 и 14.

Изобретение направлено на извлечение высших углеводородов из смеси с метаном путем превращения высших углеводородов в жидкость, за счет использования разности молекулярных масс в поле инерционных сил и селективного поглощения этана жидким пропаном, как близким по своей природе компонентом, чем метан.

Превращение высших углеводородов в жидкость осуществляется путем охлаждения газа. Первую ступень охлаждения у нас представляет трубка Ранка-Хилша, вторую - сопло Лаваля. Возможность получения холода глубиной минус 50°С в предложенном устройстве, при котором 60…70% этана переходит в жидкое состояние, подтверждает следующий расчет первой ступени охлаждения.

Расчет вихревой камеры.

Рассчитать температуру охлаждения внутреннего холодного потока газа, поступающего в вихревую камеру температурой Т1=15°С, давлением р1=6,4 МПа. Давление холодного потока на выходе из вихревой камеры Рх=1,6 МПа, средняя теплоемкость газа Ср=0,24 ккал/кг⋅°С; показатель адиабаты равен 1,4.

Если давление газа у входа, p1 задано (следовательно, известна степень расширения газа λ, то температурную эффективность η находим по формуле

где Δtx - эффект охлаждения в вихревой камере; Δts - охлаждение при изоэнтропном расширении газа.

В вычислительных работах используем обобщенную характеристику вихревой камеры, составленной А.П. Меркуловым (фиг. 2).

Параметр η введен Р. Хилшем и выражается как отношение эффекта охлаждения в вихревой камере к эффекту охлаждения при изоэнтропном расширении газа с совершением внешней работы от параметров у входа.

1. Потребный эффект охлаждения для получения температуры газа минус 30 градусов составляет

Δtx=T1-Tx=15+30=45°С.

2. Задаемся относительным массовым расходом холодного потока μ, который для максимального охлаждения газа принимается μ=0,3.

3. По кривым фиг. 2 находим μ⋅η=0,15.

4. Вычисляем η=0,15/0,3=0,5.

5. Степень расширения газа в вихревой камере находим по формуле

где k - показатель адиабаты.

,

что согласуется с условием поставленной задачи.

Таким образом, пропустив газовую смесь через аппарат Ранка-Хилша, получили 0,3 доли газа с температурой минус 30 градусов. Эта доля газа, по логике центробежного разделения компонентов, состоит из метана и этана.

Дальнейшее их разделение требует большего их охлаждения, для чего предусмотрена вторая ступень - сопло Лаваля. В данном случае применение сопла Лаваля с винтообразной поверхностью помимо получения большого охлаждения газа обеспечивает и большие радиальные скорости газового потока, при котором молекулы этана, независимо от превращения этана в жидкость, центробежными силами будут отброшены в периферийную зону и сливаться в один поток с абсорбентом.


Устройство для глубокого охлаждения природного и попутного нефтяного газов
Устройство для глубокого охлаждения природного и попутного нефтяного газов
Устройство для глубокого охлаждения природного и попутного нефтяного газов
Источник поступления информации: Роспатент

Показаны записи 131-140 из 167.
18.07.2020
№220.018.346d

Устройство для откачки газа из затрубного пространства

Изобретение относится к области нефтегазодобывающей промышленности и предназначено для привода скважинных штанговых насосов. Технический результат - повышение надежности работы устройства за счет снижения нагрузок на узлы привода штангового насоса, уменьшения количества подвижных сочленений,...
Тип: Изобретение
Номер охранного документа: 0002726720
Дата охранного документа: 15.07.2020
18.07.2020
№220.018.3494

Способ разработки многопластовой нефтяной залежи с применением гидравлического разрыва пласта

Изобретение относится к нефтедобывающей промышленности и может быть применено при разработке многопластовой нефтяной залежи с применением гидравлического разрыва пласта (ГРП). Способ включает закачку вытесняющего агента через нагнетательные скважины, отбор пластовых флюидов через добывающие...
Тип: Изобретение
Номер охранного документа: 0002726694
Дата охранного документа: 15.07.2020
24.07.2020
№220.018.380d

Способ внутритрубной послестроительной диагностики трубопровода и устройство для его осуществления

Изобретение относится к области трубопроводного транспорта и может быть использовано после завершения строительно-монтажных работ при строительстве трубопровода до ввода его в эксплуатацию. Способ внутритрубной послестроительной диагностики трубопровода, включающий применение внутритрубного...
Тип: Изобретение
Номер охранного документа: 0002727732
Дата охранного документа: 23.07.2020
31.07.2020
№220.018.3a8b

Скважинная насосная установка

Изобретение относится к технике добычи нефти и, в частности, к установкам скважинных штанговых насосов. Скважинная штанговая насосная установка содержит устьевую арматуру, колонну насосных труб и штанг, глубинный штанговый насос. Устьевой сферический пневмокомпенсатор размещен на выкидной линии...
Тип: Изобретение
Номер охранного документа: 0002728114
Дата охранного документа: 28.07.2020
31.07.2020
№220.018.3adb

Способ количественной диагностики отложений в трубопроводе

Изобретение относится к области транспортировки парафинистой нефти по трубопроводной системе нефтедобывающего предприятия. Способ количественной диагностики отложений в трубопроводе заключается в организации перемещения в трубопроводе разделителя жидкостей и фиксации давления в начале и в конце...
Тип: Изобретение
Номер охранного документа: 0002728011
Дата охранного документа: 28.07.2020
06.08.2020
№220.018.3cfb

Способ оценки технического состояния кабельной линии

Использование: для оценки технического состояния кабельных линий. Сущность изобретения заключается в том, что способ оценки технического состояния кабельных линий включает подачу испытательного электрического сигнала от задающего генератора и регистрацию переходной характеристики,...
Тип: Изобретение
Номер охранного документа: 0002729173
Дата охранного документа: 04.08.2020
12.04.2023
№223.018.423a

Способ получения цис-2,3-гидроксиметил-гем-дихлорциклопропана

Изобретение относится к способу получения цис-2,3-гидроксиметил-гем-дихлорциклопропана взаимодействием серной кислоты и 8,8-дихлоро-4-изопропил-3,5-диоксабициклооктана при температуре 100°С в течение 5 часов. Технический результат - уменьшение времени реакции и увеличение выхода целевого...
Тип: Изобретение
Номер охранного документа: 0002770053
Дата охранного документа: 14.04.2022
12.04.2023
№223.018.4276

Способ складирования твердых бытовых и твердых коммунальных отходов

Изобретение относится к способам обработки и размещения на полигонах твердых бытовых и коммунальных отходов. Способ складирования твердых бытовых отходов и твердых коммунальных отходов включает послойное размещение твердых отходов и биодобавок. При этом в основание полигона на стадии...
Тип: Изобретение
Номер охранного документа: 0002762720
Дата охранного документа: 22.12.2021
12.04.2023
№223.018.4538

Способ измерения уровня жидкости и массы в топливных баках и танках при качке и наклонах и устройство для его осуществления

Изобретение относится к измерительной технике, а именно к способам и средствам для измерения уровня, объема и массы жидкостей в резервуарах с нефтью, нефтепродуктами, сжиженными газами и др., и может найти применение в устройствах для измерения запаса топлива в баках судов и транспортных...
Тип: Изобретение
Номер охранного документа: 0002759208
Дата охранного документа: 10.11.2021
12.04.2023
№223.018.46c2

Пластифицирующая композиция полифункционального действия для хлорсодержащих полимеров и способ её получения

Изобретение относится к пластифицирующей композиции полифункционального действия для хлорсодержащих полимеров на основе эфиров алифатических дикарбоновых кислот и к способу ее получения. Способ получения пластифицирующей композиции полифункционального действия для хлорсодержащих полимеров...
Тип: Изобретение
Номер охранного документа: 0002762325
Дата охранного документа: 17.12.2021
Показаны записи 1-2 из 2.
10.08.2014
№216.012.e7a5

Устройство для оценки технического состояния установок электроцентробежных насосов в процессе эксплуатации

Изобретение относится к области контроля и измерения технологических параметров работы погружного электродвигателя и насосного агрегата при эксплуатации установок электроцентробежных насосов (УЭЦН). Техническим результатом является повышение точности определения технического состояния УЭЦН за...
Тип: Изобретение
Номер охранного документа: 0002525094
Дата охранного документа: 10.08.2014
17.06.2023
№223.018.7daa

Стенд цепного привода скважинного штангового насоса

Изобретение относится к исследованиям в области добычи нефти, в частности к лабораторно-измерительной технике для моделирования процессов работы установок скважинных штанговых насосов. Стенд цепного привода скважинного штангового насоса содержит раму, электродвигатель 2 с редуктором 3,...
Тип: Изобретение
Номер охранного документа: 0002783050
Дата охранного документа: 08.11.2022
+ добавить свой РИД