×
29.05.2018
218.016.5830

Результат интеллектуальной деятельности: ОПТОВОЛОКОННЫЙ ДАТЧИК ДЛЯ СКВАЖИННЫХ СЕЙСМИЧЕСКИХ ИССЛЕДОВАНИЙ

Вид РИД

Изобретение

№ охранного документа
0002654973
Дата охранного документа
23.05.2018
Аннотация: Изобретение относится к области геофизики и может быть использовано при проведении скважинных сейсморазведочных работ. Оптоволоконный датчик для скважинной сейсморазведки содержит оптоволоконный кабель, опускаемый в скважину, и по меньшей мере одну группу резонаторов, расположенную на оптоволоконном кабеле. Каждая группа резонаторов содержит по меньшей мере один активный элемент, имеющий собственную резонансную частоту в диапазоне частот измеряемых сейсмоволн. Технический результат – повышение точности и информативности получаемых данных. 5 з.п. ф-лы, 4 ил.

Изобретение относится к скважинной сейсморазведке и, в частности, к обнаружению сейсмических и микросейсмических проявлений при помощи оптоволоконных распределенных датчиков.

В нефтегазовой промышленности акустические приборы используются для оперативного получения важной информации о сейсмических проявлениях, возникающих на этапе разведки новых месторождений и на этапе добычи на существующих месторождениях. Данные скважинной сейсморазведки можно использовать для изучения геологического строения и уточнения данных наземной сейсморазведки. Кроме того, данные скважинной сейсморазведки можно собирать на постоянной основе или периодически, чтобы контролировать состояние толщи пород и резервуаров во время добычи из скважины. Сбор сейсмоданных на постоянной основе облегчает добычу из газовых или нефтяных залежей.

Как правило, скважинная сейсморазведка осуществляется путем регистрации сейсмических сигналов при помощи одного или группы сейсмоприемников, расположенных в скважине. Сейсмосигналы могут генерироваться одним или несколькими сейсмоисточниками, расположенными на поверхности земли, в скважине, в которой осуществляют регистрацию сигналов, в соседней скважине и (или) в пласте, окружающем скважину. Энергию сейсмоволн, генерируемую источником сейсмосигналов, можно регистрировать при помощи сейсмодатчиков различного типа, например гидрофонов, геофонов, акселерометров или их комбинации. Обычно такие датчики объединяют с электрическими компонентами в скважине, которые усиливают и оцифровывают электрические сигналы, генерируемые датчиками в ответ на обнаружение сейсмического события. Затем цифровые сигналы можно передать дальше (например, по электропроводу, оптоволоконному кабелю, при помощи телеметрии по гидроимпульсному каналу связи и т.п.). Необходимость использования электронной аппаратуры в скважине приводит к увеличению размеров и стоимости, а также к усложнению оборудования для каротажа, особенно с учетом того, что электронная аппаратура должна быть устойчива к воздействиям высокой температуры и давления внутри скважины в течение длительного времени или защищена от таких воздействий.

Например, в патентной заявке США №10/104320, озаглавленной «Метод и прибор для скважинных измерений», описан стандартный прибор для скважинной разведки.

Сейсмические и микросейсмические сигналы, распространяющиеся сквозь толщу пород, можно обнаружить при помощи оптоволоконных распределенных датчиков вибрации, расположенных в скважине. Небольшой диаметр оптоволокна позволяет поместить оптоволоконный распределенный датчик внутри колонны НКТ или бурильной колонны либо за ними. Кроме того, оптоволоконная система регистрации сейсмосигналов не требует дорогостоящей скважинной электроники. Вместо этого все электронное оборудование, необходимое для сбора сейсмоданных с оптоволоконного датчика, может быть размещено разместить на поверхности. Оптоволоконные системы для измерения сейсмосигналов описаны, например, в патенте США 8605542 или в патентной заявке США 20140064028. Одним из недостатков этих систем среди прочих является ограничение сбора векторных сигналов в связи с использованием ненаправленных систем измерения таких сигналов.

Предлагаемый прибор для скважинной сейсморазведки обеспечивает усовершенствованные характеристики измерений, выполняемых системой сбора данных, по сравнению с существующими приборами. Выбранные частоты усиливаются, обеспечивая более высокое соотношение сигнала к шуму. Простота конструкции позволяет легко увеличить количество групп приемников. Данное ограничение присуще существующим системам и связано с весом, каналами связи и т.п. Обеспечивается ускорение сбора данных и одновременно уменьшение трубной волны за счет фильтрации скоростей, благодаря чему данный прибор может стать предпочтительной альтернативой геофонам прижимного типа.

Один из вариантов осуществления изобретения представляет собой оптоволоконный датчик для скважинной сейсморазведки, который содержит оптоволоконный кабель, опускаемый в скважину, и по меньшей мере одну группу резонаторов, расположенную на оптоволоконном кабеле; все группы резонаторов содержат по меньшей мере один активный элемент, имеющий собственную резонансную частоту в диапазоне частот измеряемых сейсмоволн.

Активные элементы каждой группы резонаторов могут представлять собой диски, сферы или цилиндры.

Активные элементы каждой группы резонаторов могут быть изготовлены из пьезокерамики.

В некоторых вариантах конструкций, группы резонаторов размещают в затворах; каждый затвор содержит по меньшей мере одну группу резонаторов.

Некоторые варианты осуществления изобретения будут описаны ниже со ссылкой на прилагаемые чертежи, на которых одинаковые элементы обозначены одинаковыми номерами позиций. Следует понимать, что прилагаемые чертежи только иллюстрируют различные варианты реализации изобретения, описываемые в данном документе, и не подразумевают ограничения объема применения описанных здесь различных технологий.

На Фиг. 1a изображена группа резонаторов с активными элементами в виде дисков в соответствии с одним из вариантов осуществления изобретения.

На Фиг. 1b изображена группа резонаторов с активными элементами в виде цилиндров в соответствии с одним из вариантов осуществления изобретения.

На Фиг. 1c изображена группа резонаторов с активными элементами в виде сфер в соответствии с одним из вариантов осуществления изобретения.

На Фиг. 2 изображена блок-схема примерной системы запросов и сбора данных для получения информации от оптоволоконного сейсмодатчика, размещаемого в скважине, в соответствии с одним из вариантов осуществления изобретения.

Настоящее изобретение представляет собой скважинный оптоволоконный контактный датчик для измерения сейсмических и микросейсмических проявлений в скважине.

Как показано на фиг. 1a, 1b и 1c, прибор содержит оптоволоконный кабель 1, опускаемый в скважину, и одну группу датчиков, расположенную на оптоволоконном кабеле 1; группа датчиков содержит по меньшей мере один активный элемент (резонатор) 2. Материал, форма и конструкция активного элемента 2 могут быть разными. Например, активные элементы могут быть выполнены в форме дисков, цилиндров или сфер, как показано на фиг. 1 a, b и c. Группа на фиг. 1a и 1b содержит пять активных элементов, а группа на фиг. 1c - четыре активных элемента. Размеры и количество активных элементов могут меняться в зависимости от частот, которые необходимо измерять, и используемых материалов. Эти активные элементы имеют собственные специально рассчитанные частоты в диапазоне измеряемых сейсмических и микросейсмических волн. Активные элементы могут быть изготовлены из пьезокерамики, кварца и т.п.

Сейсмоисточник генерирует сейсмоволны, которые при приближении к группе резонаторов вызывают колебания каждого активного элемента 2 на его собственной частоте 3. Резонансные колебания активных элементов 2 вызывают напряжение в оптоволоконном кабеле 1, на котором они установлены. Это приводит к сдвигу отражаемой световой волны, распространяющейся в оптоволоконном кабеле 1. Его можно измерить и сопоставить с величиной напряжения и вибрации. Все активные элементы 2 обладают высокой чувствительностью к изменениям напряжения на определенном участке оптоволоконного кабеля в точке, где установлен датчик для конкретной частоты. Группа таких активных элементов 2 может охватывать любую полосу измеряемых частот. Также каждый активный элемент 2 действует как местный фильтр и усилитель сигнала.

Группы резонаторов можно разместить в затворах (не показано); каждый затвор содержит по меньшей мере одну группу резонаторов для получения необходимой конфигурации, оптимальной для каждого сейсмоисследования, например вертикального сейсмопрофилирования (ВСП), микросейсмических исследований и т.п.

Можно использовать любую оптоволоконную систему запросов. На фиг. 2 представлен пример выполнения системы запросов и сбора данных 6, который можно использовать для выполнения измерений при помощи оптоволоконного контактного сейсмодатчика 8. Система 6 состоит из источника 9 оптического излучения, который генерирует оптический сигнал, например оптический импульс, для направления запроса на оптоволоконный датчик 8, расположенный в скважине (не показана на Фиг. 2); датчик состоит из N затворов 7, каждый из которых включает группы активных элементов 2. В некоторых вариантах осуществления источник 9 оптического излучения может содержать узкополосный лазер и модулятор, который выбирает короткие импульсы из выходных сигналов лазера. При желании оптический усилитель можно использовать для увеличения максимальной мощности импульсов. В некоторых вариантах реализации этот усилитель можно размещать после модулятора. После модулятора также можно установить фильтр для фильтрации в диапазоне частот (при помощи полосного фильтра) и (или) во временном интервале (при помощи дополнительного модулятора).

Импульсы, излучаемые источником 9 оптического излучения, могут быть направлены на оптоволоконный датчик 8 через направленный ответвитель 10, который разделяет исходящие и приходящие сигналы и направляет последние на оптический детектор 4. Направленный ответвитель 10 может быть выполнен в виде объемного оптического элемента, использующего светоделитель, или может содержать оптоволоконный соединитель, циркулятор или быстродействующий переключатель (например, электрооптический или опто-акустический).

Обратно-рассеянный оптический сигнал, возвращающийся с оптоволоконного датчика 8 в ответ на импульсы запросов, может быть обнаружен и преобразован в электрический сигнал на детекторе 4. Детектор 4 может включать любой подходящий компонент, выполненный с возможностью преобразования световых сигналов, получаемых с направленного ответвителя 10, в электрический сигнал, пригодный для обработки. Данный электросигнал может быть передан на модуль 5 обработки сигналов, который может включать любое подходящее устройство для обработки сигналов (например, микропроцессор, микроконтроллер, процессор цифровой обработки сигналов, компьютер и т.п.), сконфигурированное для обработки данных, получаемых с датчиков.

Система может включать контроллер 11; это может быть любая подходящая аппаратура для обработки данных, выполненная с возможностью генерации сигналов для управления источником 9 оптического излучения и для обработки сигналов, получаемых с детектора 4. Это стандартная схема для традиционных оптоволоконных измерительных систем.

В примерах вариантов осуществления изобретения оптоволоконный сейсмодатчик может быть опущен в скважину с использованием хорошо известных методов спуска кабеля в скважины, например, на контрольной линии, содержащей оптоволоконный кабель, или на гибких НКТ, содержащих оптоволоконный кабель, или на каротажном кабеле с интегрированным оптоволокном и другими методами. В некоторых вариантах осуществления изобретения группы датчиков размещаются на постоянной основе для непрерывного контроля за эксплуатационной скважиной. Как только датчик установлен в заданном положении, можно активировать виброустройство или другой источник сейсмических сигналов.

Для контроля сейсмосигналов оптические импульсы направляют на оптоволоконный датчик, и отраженный или рассеянный световой сигнал, генерируемый в ответ на импульсы, регистрируется в течение продолжительного периода времени. Отраженный свет, генерируемый в то время, когда сейсмоволны, возникающие за пределами скважины, проходят вдоль оптоволоконного распределенного датчика, может предоставить информацию о характеристиках пород, окружающих скважину, в том числе об изменениях в этих характеристиках с течением времени. Такие характеристики могут включать следующие данные: распространение, геометрия и неоднородность коллектора, а также характер насыщенности и поровое давление пласта, механические свойства пород, результаты применения методов повышения нефтеотдачи, результаты применения секвестрации CO2, параметры упругой анизотропии, геометрия искусственно образованных трещин и пространственная ориентация и интенсивность природных трещин.

В данном описании представлены различные варианты осуществления устройства для регистрации данных скважинной сейсморазведки в соответствии с настоящим изобретением и иллюстрации к ним. Несмотря на то что здесь содержится описание конкретных вариантов осуществления изобретения, это не означает, что изобретение ограничено только этими вариантами. Для специалистов в данной области будет совершенно очевидно, что в описанное здесь изобретение могут быть внесены различные изменения и модификации без отступления от сути изобретения и объема прилагаемых пунктов формулы изобретения.


ОПТОВОЛОКОННЫЙ ДАТЧИК ДЛЯ СКВАЖИННЫХ СЕЙСМИЧЕСКИХ ИССЛЕДОВАНИЙ
ОПТОВОЛОКОННЫЙ ДАТЧИК ДЛЯ СКВАЖИННЫХ СЕЙСМИЧЕСКИХ ИССЛЕДОВАНИЙ
ОПТОВОЛОКОННЫЙ ДАТЧИК ДЛЯ СКВАЖИННЫХ СЕЙСМИЧЕСКИХ ИССЛЕДОВАНИЙ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 112.
10.04.2016
№216.015.3218

Способ размещения приемников сейсмических сигналов для системы наблюдений в сейсморазведке

Изобретение относится к области геофизики и может быть использовано при проведении сейсморазведки. Выбирают стандартную систему наблюдений, содержащую источники сейсмических сигналов, расположенные на поверхности возмущения, и приемники сейсмических сигналов, расположенные на поверхности...
Тип: Изобретение
Номер охранного документа: 0002580206
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3298

Способ акустического каротажа

Изобретение относится к средствам акустического каротажа в скважине. Техническим результатом является повышение качества получаемых в процессе каротажа акустических данных за счет компенсации вращения прибора акустического каротажа во время проведения измерений в скважине. Предложен способ...
Тип: Изобретение
Номер охранного документа: 0002581074
Дата охранного документа: 10.04.2016
13.01.2017
№217.015.68ec

Способ ориентирования трещин гидравлического разрыва в подземном пласте, вскрытом горизонтальными стволами

Изобретение относится к горному делу и может быть применено при гидравлическом разрыве пласта. Для обеспечения контролируемого инициирования и распространения трещин гидроразрыва осуществляют закачку первой жидкости гидроразрыва в первый горизонтальный ствол, сообщающийся с пластом по меньшей...
Тип: Изобретение
Номер охранного документа: 0002591999
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.80cb

Способ определения характеристик газонефтяной переходной зоны в необсаженной скважине

Изобретение относится к способам геофизических исследований скважин для нефтяных залежей с газовыми шапками с известным минералогическим составом слагающих пород. Для определения характеристик газонефтяной переходной зоны берут по меньшей мере по одной пробе из газовой части и из нефтяной части...
Тип: Изобретение
Номер охранного документа: 0002602249
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.9cc0

Способ определения температурного коэффициента линейного расширения материала и устройство для его осуществления

Изобретение относится к области исследования механических и тепловых свойств материалов. Способ определения температурного коэффициента линейного расширения материала предусматривает перемещение относительно друг друга образца исследуемого материала и источника нагрева поверхности образца. В...
Тип: Изобретение
Номер охранного документа: 0002610550
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.9d2f

Способ определения расходов фаз двухфазной смеси в трубопроводе

Изобретение относится к измерениям параметров многофазных смесей при их транспортировке по трубопроводам. Для определения расходов фаз двухфазной смеси в трубопроводе формируют нестационарный импульсный режим течения многофазной смеси, обеспечивающий на выходе трубопровода пульсирующие выплески...
Тип: Изобретение
Номер охранного документа: 0002610548
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.a2ba

Измерительная ячейка дифференциального сканирующего калориметра

Изобретение относится к области термопорометрии, в частности к устройствам для проведения измерений распределения размера пор пористых сред, и может найти применение в различных отраслях промышленности, например нефтегазовой, химической и пищевой. Измерительная ячейка дифференциального...
Тип: Изобретение
Номер охранного документа: 0002607265
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a61d

Способ гидроразрыва подземного пласта

Изобретение относится к горному делу и может быть применено для гидроразрыва подземного пласта. Для создания в расклиненных трещинах стабилизированных каналов высокой проводимости в ствол скважины сначала закачивают первую гидроразрывную жидкость, не содержащую частиц проппанта, а затем вторую...
Тип: Изобретение
Номер охранного документа: 0002608380
Дата охранного документа: 18.01.2017
25.08.2017
№217.015.b384

Способ количественного анализа распределения твердых частиц загрязнителя, проникших в пористую среду при фильтрации

Изобретение относится к анализу образцов пористых материалов применительно к исследованию свойств околоскважинной зоны нефте/газосодержащих пластов. Смешивают окрашенные катионным красителем твердые частицы с гранулами сыпучей среды, близкой по цвету к исследуемой пористой среде, и...
Тип: Изобретение
Номер охранного документа: 0002613903
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b387

Способ разработки нефтеносного пласта

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке месторождений вторичным методом. Способ разработки нефтеносного пласта содержит бурение и чередование через один ряд, размещая на первом расстоянии друг от друга, рядов горизонтальных эксплуатационных...
Тип: Изобретение
Номер охранного документа: 0002613713
Дата охранного документа: 21.03.2017
Показаны записи 1-1 из 1.
20.08.2013
№216.012.61cc

Направленный стержневой пьезокерамический излучатель для устройства акустического каротажа, устройство и способ акустического каротажа

Изобретение относится к области геофизики и может быть использовано при проведении акустического каротажа скважин. Заявлен стержневой пьезокерамический акустический излучатель давления с односторонней лучевой диаграммой направленности, содержащий корпус из стали в виде трубки, активирующий...
Тип: Изобретение
Номер охранного документа: 0002490668
Дата охранного документа: 20.08.2013
+ добавить свой РИД