×
29.05.2018
218.016.52dc

СПОСОБ ПОЛУЧЕНИЯ МЯГКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к средствам получения мягкого рентгеновского излучения. В изобретении предусмотрена импульсная подача рабочего газа, представляющего собой неон; формирование потоков плазмы рабочего газа путем ионизации потоков рабочего газа; ускорение потоков плазмы рабочего газа; встречное столкновение потоков плазмы рабочего газа в продольном магнитном поле внутри вакуумного лайнера. Техническим результатом является получение мощного линейчатого излучения с длиной волны до 1,3 нм при эффективности преобразования энергии плазменного потока в энергию излучения не менее 50%. 2 н. и 6 з.п. ф-лы, 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к области генерации мягкого рентгеновского излучения и может быть использовано для исследования взаимодействия такого излучения с различными материалами и, соответственно, для получения покрытий с новыми свойствами, в частности, при изготовлении высокотехнологичного энергетического оборудования.

Способ получения рентгеновского излучения базируется на преобразовании кинетической энергии ускоренных потоков плазмы в тепловую энергию с последующей ее трансформацией в энергию излучения.

Устройствами, формирующими мощные потоки плазмы, служат плазменные ускорители, принципиальной особенностью которых является импульсный напуск газа в межэлектродный зазор с последующей подачей высоковольтного напряжения от конденсаторных батарей на коаксиальные электроды для ионизации газа и его электродинамического ускорения пондемоторными силами.

Известны способы получения мягкого рентгеновского излучения на базе плазменных ускорителей типа плазменный фокус, в которых в качестве рабочего газа используют неон [1]. Этот способ позволяет получить излучение с длиной волны до 1 нм, но энергия излучения невысокая и имеет широкий спектральный диапазон.

В качестве прототипа [2] выбран способ получения мягкого рентгеновского излучения при встречном столкновении высокоскоростных потоков азотной плазмы в продольном магнитном поле. В способе проведены спектральные и энергетические измерения излучения из центральной зоны взаимодействия плазменных потоков. Основная доля энергии из зоны столкновения сгустков азотной плазмы высвечивается в линиях гелие- и водородоподобных ионов азота. Энергия излучения азотной плазмы в режимах столкновения на скоростях 5⋅107 см/с составила до 1 кДж с погонного сантиметра. Длительность импульса излучения, лежащего в спектральном интервале от 2.4 нм до 2.9 нм, не превышала 5 мкс.

Однако этот способ был реализован для азотной плазмы и не позволяет получать линейчатое рентгеновское излучение с длиной волны менее 2 нм.

Техническим результатом данного изобретения является получение мощного линейчатого излучения с длиной волны до 1,3 нм при эффективности преобразования энергии плазменного потока в энергию излучения не менее 50%. Для достижения этого результата предложено усовершенствовать известный способ получения мягкого рентгеновского излучения, включающий импульсную подачу рабочего газа в разрядные камеры двух идентичных электродинамических ускорителей, посредством которых генерируются встречные высокоскоростные потоки плазмы с их последующим столкновением в вакуумном лайнере с продольным магнитным полем. Усовершенствование заключается в том, что в качестве рабочего газа используется неон, количество которого в каждом ускорителе составляет 1020÷1021 частиц, а энергозапас конденсаторных батарей достигает 200÷300 кДж.

Достижение технического результата возможно с помощью способа получения мягкого рентгеновского излучения, включающего: импульсную подачу встречно направленных потоков рабочего газа, причем рабочий газ представляет собой неон; формирование плазмы рабочего газа путем ионизации рабочего газа; ускорение потоков плазмы рабочего газа; встречное столкновение потоков плазмы рабочего газа в продольном магнитном поле внутри вакуумного лайнера. В соответствии с настоящим способом встречно подают по 1020÷1021 частиц рабочего газа.

Для реализации вышеописанного способа, предложено устройство для получения мягкого рентгеновского излучения, благодаря которому также достигается указанный технический результат. Устройство содержит: вакуумный лайнер с продольным магнитным полем; ускорители, встречно установленные на концах лайнера и содержащие электроды, размещенные с возможностью ионизации рабочего газа при подаче на них высокого электрического напряжения; источники рабочего газа, выполненные с возможностью импульсной подачи рабочего газа через внутренние электроды ускорителей, причем рабочий газ представляет собой неон.

В предпочтительном варианте поверх вакуумного лайнера могут быть установлены соленоиды, формирующие продольное магнитное поле в вакуумном лайнере. Ускорители могут быть выполнены в виде коаксиально установленных конусообразных электродов. Для обеспечения ионизации рабочего газа устройство может содержать конденсаторные батареи, выполненные с возможностью подачи на электроды ускорителей импульсов высоковольтного напряжения через управляемые вакуумные разрядники. В предпочтительном варианте конденсаторные батареи выполнены с возможностью запаса и импульсной подачи на каждый ускорители энергии в пределах 200÷300 кДж. Для реализации способа источники рабочего газа в устройство выполнены с возможностью импульсной подачи 1020÷1021 частиц рабочего газа за один импульс. Для этого источники рабочего газа могут быть снабжены импульсными газовыми клапанами, установленными с обеспечением управления подачей рабочего газа в ускорители.

Существо изобретения поясняется прилагаемой чертежом, на котором показана принципиальная схема возможного варианта выполнения устройства для реализации способа. Описана конкретная реализация устройства в целях пояснения принципа работы и, таким образом, не предназначенная для ограничения объема охраны. Необходимо понимать, что могут быть осуществлены и другие конфигурации устройства, также позволяющие выполнить способ по настоящему изобретению. Объем охраны устройства определяется формулой изобретения.

В состав устройства входят два идентичных электродинамических ускорителя. Каждый плазменный ускоритель состоит из двух конусных коаксиальных электродов - внутреннего 1 и внешнего 2, разделенных у оснований электродов кольцевыми изоляторами 3. Во внутренних электродах имеются каналы 4 для напуска рабочего газа из импульсных газовых клапанов 5. Электроды укорителей подключены через управляемые разрядники 6 к высоковольтным конденсаторным батареям 7. Между ускорителями установлен металлический вакуумный лайнер, выполненный в виде цилиндрической камеры 8, в которой с помощью многовитковых соленоидов 9 создается продольное магнитное поле.

Осуществляют способ следующим образом. Предварительно в разрядную камеру каждого ускорителя импульсные клапаны подают рабочий газ - неон в количестве 1020÷1021 частиц. Рабочий газ ионизируется вследствие его пробоя при подаче высокого напряжения на электроды ускорителей от конденсаторных батарей через управляемые вакуумные разрядники. Энергозапас конденсаторных батарей должен быть в пределах 200÷300 кДж. В результате прохождения разрядного тока через ионизированный рабочий газ пондеромоторные силы ускоряют плазменные потоки вдоль оси ускорителей до скоростей 4⋅107 см/с. После выхода из ускорителей плазменные потоки движутся в продольном магнитном поле навстречу друг другу и сталкиваются в центральном сечении вакуумного лайнера.

Термализация направленной кинетической энергии плазменных потоков приводит к быстрому росту электронной температуры, что позволяет преодолеть так называемый «радиационный барьер» [3] и достичь высокой кратности ионизации неона (Ne 8+), необходимой для генерации излучения мягкого рентгеновского диапазона с длиной волны вплоть до 1,3 нм.

Способ получения рентгеновского излучения базируется на преобразовании кинетической энергии ускоренных до 4⋅107 см/сек потоков плазмы неона в тепловую энергию с последующей ее трансформацией в энергию излучения.

Встречные высокоскоростные потоки плазмы генерируются двумя идентичными электродинамическими ускорителями с использованием в качестве рабочего газа - неона, с количеством частиц 1020÷1021 в каждом ускорителе. Столкновение потоков происходит в продольном магнитном поле до 2Тл, обеспечивающем достаточную термоизоляцию плазмы от стенок металлического вакуумного лайнера в зоне столкновения.

При энергозапасе конденсаторных батарей каждого ускорителя 200÷300 кДж обеспечивается выход мощного линейчатого излучения с длиной волны до 1,3 нм и длительностью ≤5 мкс.

Источники информации

[1] S.M.P. Kalaiselvi, T.L. Tan, A. Talebitaher, P. Lee, R.S. Rawat, "Optimization of neon soft X-rays emission from 200 J fast miniature dense plasma focus device: A potential source for soft X-ray lithography" // Physics Letters A, v.377, n. 18, 2013, pp. 1290-1296.

[2] Бахтин В.П., Волков Г.С., Еськов А.Г., Житлухин A.M., Топорков Д.А., Умрихин Н.М., «Рентгеновское излучение при встречном столкновении высокоскоростных потоков азотной плазмы» // 39 Звенигородская конференция по физике плазмы и управляемому термоядерному синтезу, 2012 г.

[3] Степанов А.Е., Сиднев В.В., «Об условиях преобразования кинетической энергии сверхзвукового плазменного потока в мягкое рентгеновское излучение» // Физика плазмы, 1989, т. 15, в. 8, с. 1000-1007.


СПОСОБ ПОЛУЧЕНИЯ МЯГКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ
СПОСОБ ПОЛУЧЕНИЯ МЯГКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 20.
20.07.2015
№216.013.64b2

Разрядная система эксимерного лазера (варианты)

Изобретение относится к лазерной технике. Разрядная система эксимерного лазера включает в себя расположенную в лазерной камере (1) зону объемного разряда (4) между первым и вторым электродами (2), (3), продольные оси которых параллельны друг другу, каждый блок предыонизации (5) содержит систему...
Тип: Изобретение
Номер охранного документа: 0002557325
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.64b4

Газоразрядный эксимерный лазер (варианты)

Изобретение относится к лазерной технике. Лазер включает газонаполненный корпус, на котором установлена керамическая разрядная камера с протяженным высоковольтным фланцем, расположенные в разрядной камере протяженные высоковольтный электрод, заземленный электрод и, по меньшей мере, один блок...
Тип: Изобретение
Номер охранного документа: 0002557327
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.6b4f

Разрядная система газового лазера

Изобретение относится к лазерной технике. Разрядная система газового лазера содержит расположенные в корпусе лазера протяженные первый и второй электроды лазера, УФ предыонизатор, расположенный сбоку от одного из электродов лазера и выполненный в виде системы зажигания скользящего разряда между...
Тип: Изобретение
Номер охранного документа: 0002559029
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6bde

Разрядная система лазера с частично прозрачным электродом

Изобретение относится к лазерной технике. Разрядная система лазера с частично прозрачным электродом содержит размещенный с обратной стороны частично прозрачного электрода УФ предыонизатор в виде протяженной системы зажигания завершенного скользящего разряда, включающей в себя металлическую...
Тип: Изобретение
Номер охранного документа: 0002559172
Дата охранного документа: 10.08.2015
10.04.2016
№216.015.2c8a

Плазменная обработка поверхности с использованием разряда пинчевого типа

Изобретение относится к технологии плазменной обработки поверхности материалов, в частности, для создания высоконадежных защитных покрытий оболочек тепловыделяющих элементов (твэл) ядерного реактора. Способ плазменной обработки поверхности металлического изделия включает перемещение изделия в...
Тип: Изобретение
Номер охранного документа: 0002579845
Дата охранного документа: 10.04.2016
27.08.2016
№216.015.50d5

Радиоизотопный фото-термоэлектрический генератор

Устройство относится к радиоизотопной энергетике и может быть использовано в энергетических установках, предназначенных для длительной автономной работы в труднодоступных и малонаселенных районах Земли, а также в условиях космического пространства. Устройство содержит замкнутый газодинамический...
Тип: Изобретение
Номер охранного документа: 0002595772
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.6f5e

Лазерный способ получения функциональных покрытий

Изобретение относится к способу получения функциональных покрытий (варианты) и может быть использовано в машиностроении, в химической и электронной промышленности, в атомной энергетике. Способ включает осаждение на обрабатываемую поверхность продуктов лазерной абляции частиц пылевого потока,...
Тип: Изобретение
Номер охранного документа: 0002597447
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7369

Мощный импульсно-периодический эксимерный лазер для технологических применений

Изобретение относится к лазерной технике. Эксимерный лазер содержит внешний корпус, обрамляющий заполненную рабочей средой лазерную камеру с газодинамическим трактом, два газоразрядных модуля, систему прокачки и охлаждения газового потока через эти модули и систему питания газоразрядных...
Тип: Изобретение
Номер охранного документа: 0002598142
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.881a

Многовитковый рельсотрон, секционированный по длине

Изобретение относится к многовитковым рельсотронам. Технический результат - повышение КПД. Многовитковый рельсотрон выполнен с секционированным по длине ускорительным каналом, содержащим N пар токопроводных параллельных рельсов, первые рельсы всех пар и вторые рельсы всех пар разделены...
Тип: Изобретение
Номер охранного документа: 0002602512
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.88a4

Многовитковый рельсотрон с тиристорными перемычками между витками

Изобретение относится к многовитковым рельсотронам. Технический результат - повышение КПД. Многовитковый рельсотрон с тиристорными перемычками между витками включает ускорительный канал, содержащий N пар токопроводных параллельных рельсов. Первые рельсы всех пар и вторые рельсы всех пар...
Тип: Изобретение
Номер охранного документа: 0002602510
Дата охранного документа: 20.11.2016
+ добавить свой РИД