×
29.05.2018
218.016.527c

Результат интеллектуальной деятельности: Способ определения места повреждения кабельной линии

Вид РИД

Изобретение

№ охранного документа
0002653583
Дата охранного документа
11.05.2018
Аннотация: Изобретение относится к метрологии. Способ определения места повреждения кабеля заключается в том, что зондируют измеряемую кабельную линию импульсами напряжения, принимают импульсы, отраженные от неоднородностей волнового сопротивления, выделяют отраженные от неоднородностей волнового сопротивления импульсы на индикаторе с временной разверткой луча, соответствующие месту повреждения кабеля, вычисляют расстояние до места повреждения кабеля по временной задержке отраженного импульса относительно зондирующего по формуле, учитывающей расстояние до места повреждения кабеля, определенное по временной задержке отраженного импульса относительно зондирующего, скорость распространения электромагнитной волны в кабельной линии, время задержки отраженного сигнала относительно зондирующего, мкс; скорость распространения электромагнитной волны в вакууме, коэффициент укорочения электромагнитной волны в кабельной линии. Затем вычисляют коэффициент укрутки, с учетом которого вычисляют уточненное расстояние до места повреждения кабеля по формуле, учитывающей уточненное расстояние до места повреждения кабеля, коэффициент укрутки, расстояние до места повреждения кабеля, определенное по временной задержке отраженного импульса относительно зондирующего. Коэффициент укрутки вычисляют с учетом коэффициента укрутки, длины шага скрутки, шага скрутки, коэффициента скрутки. Технический результат – повышение точности измерений. 1 з.п. ф-лы, 2 табл.

Изобретение относится к области электротехники и электроники, а именно к эксплуатации кабельных линий электропередачи и связи, и может быть использовано при определении мест повреждения в них импульсным методом с помощью импульсных рефлектометров.

Известен способ определения места повреждения кабеля (а.с. №1817044 А1, авторы В.В. Кокарев и С.Г. Павлов), при котором в поврежденную цепь подземного кабеля посылают импульсный сигнал, фиксируют отраженный сигнал на импульсной характеристике поврежденной цепи, запоминают местоположение сигнала на импульсной характеристике поврежденного кабеля, затем посылают зондирующий сигнал во вспомогательную пару проводов, проложенных по поверхности Земли вдоль подземного кабеля, с искусственно выполненным первым повреждением в этой паре, запоминают отраженный сигнал от этого искусственно созданного повреждения и сравнивают с отраженным сигналом от повреждения в подземном кабеле, в случае несовпадения передних фронтов названных отраженных сигналов процесс зондирования искусственно выполненных второго, третьего и т.д. повреждений на вспомогательной паре и сравнения отраженных сигналов от этих повреждений и повреждения в подземном кабеле продолжают до тех пор, пока передние фронты отраженных импульсов от повреждения во вспомогательной паре и повреждения в подземном кабеле не совпадут, по месту расположения последнего искусственного повреждения определяют расположение места повреждения подземного кабеля.

Однако при реализации такого способа необходимо прокладывать по поверхности земли вспомогательную пару, сравнимую по длине с кабельной линией, которая может достигать от сотен метров до нескольких километров, что трудно выполнимо технически и невыгодно экономически.

Кроме того, такой способ не учитывает скрутку жил как подземного кабеля, так и вспомогательной пары, имеющих достаточно большое различие, влияющее на точность определения места повреждения подземного кабеля.

Кроме этого, известный способ не учитывает разницу в коэффициентах укорочения γ (γ=c/ν - коэффициент укорочения электромагнитной волны в кабельной линии, где ν - скорость распространения электромагнитной волны в кабельной линии, м/мкс; с - скорость распространения электромагнитной волны в вакууме (с=299,79 м/м)) в подземном кабеле и во вспомогательной паре, а в связи с тем, что диэлектрическая проницаемость материалов, из которых изготовлены жилы подземного кабеля и вспомогательной пары, различна, скорость распространения электромагнитной волны в них также различна, следовательно, погрешность определения места повреждения кабеля известным способом возрастает.

Наиболее близким к заявляемому изобретению по технической сущности и принятым авторами за прототип является метод импульсной рефлектометрии для определения повреждений кабельных линий (Техническое описание и инструкция по эксплуатации измерителя неоднородностей Р5-13, 1987, С. 3-8, Тарасов Н.А. Использование метода импульсной рефлектометрии для определения повреждений кабельных линий. http://reis205.narod.ru/metod.htm. найдено 9.12.2016 г.), при котором зондируют измеряемую кабельную линию импульсами напряжения, принимают импульсы, отраженные от неоднородностей волнового сопротивления, выделяют отраженные от неоднородностей волнового сопротивления импульсы на индикаторе с временной разверткой луча, соответствующие месту повреждения кабеля, вычисляют расстояние до места повреждения кабеля по временной задержке отраженного импульса относительно зондирующего по формуле:

где Lx - расстояние до неоднородности волнового сопротивления, принимаемое равным расстоянию до места повреждения кабеля, м; ν - скорость распространения электромагнитной волны (ЭМВ) в кабельной линии, м/мкс; tз - время задержки отраженного сигнала относительно зондирующего, мкс; с - скорость распространения ЭМВ в вакууме (с=299,79 м/мкс); γ=c/ν - коэффициент укорочения электромагнитной волны в кабельной линии.

Скорость ν распространения ЭМВ в кабельной линии зависит от материала изоляции жил кабеля, а точнее от диэлектрической проницаемости материала изоляции ε.

Импульс распространяется в кабеле со скоростью сигнала ν, которая является характеристикой кабеля. Эта скорость может быть примерно описана через относительную диэлектрическую проницаемость материала изоляции и вычислена по формуле:

где с - скорость распространения ЭМВ в вакууме (с=299,79 м/мкс), ε - диэлектрическая проницаемость материала изоляции.

Недостатком такого способа определения места повреждения кабельной линии является высокая погрешность, обусловленная тем, что в способе при определении расстояния до неоднородности волнового сопротивления (места повреждения кабеля) учитывается только электрическая длина кабеля и не учитывается скрутка жил кабеля. Известно (Превезенцев В.А., Ларина Э.Т. Силовые кабели и высоковольтные кабельные линии. М.: изд-во «Энергия», 1970, с. 245), что скрутка жил кабеля приводит к их укрутке, в результате чего геометрическая длина скрученных жил будет меньше их электрической длины. То есть геометрическая и электрическая длины кабеля, жилы которого скручены, не совпадают. Вследствие этого расстояние до неоднородности волнового сопротивления (места повреждения кабеля), определенное известным способом, не совпадает с фактическим расстоянием до неоднородности волнового сопротивления (места повреждения кабеля).

Скрутка жил кабеля характеризуется такими показателями, как шаг скрутки Н (длина одного полного витка скрученной жилы, измеренная вдоль оси кабеля), коэффициент скрутки m, диаметр кабеля D и коэффициент укрутки Ку.

Коэффициент скрутки определяется по формуле:

где m - коэффициент скрутки, Н - шаг скрутки, D - диаметр кабеля.

Если сделать развертку витка любой из скрученных жил измеренного вдоль оси кабеля, то его длина L1 определяется по формуле (Превезенцев В.А., Ларина Э.Т. Силовые кабели и высоковольтные кабельные линии. М.: изд-во «Энергия», 1970, с. 245):

где L1 - длина одного полного витка скрученной жилы, m - коэффициент скрутки, Н - шаг скрутки.

Укрутка (приращение длины L1 к шагу Н скрутки) равна:

Коэффициент укрутки Ку равен отношению длины L1 одного полного витка скрученной жилы к шагу скрутки H:

Задачей предлагаемого изобретения является усовершенствование способа определения места повреждения кабельной линии, обеспечивающее повышение точности определения места повреждения кабельной линии.

Технический результат заявленного изобретения состоит в уменьшении погрешности определения места повреждения кабельной линии с одновременным уменьшением объема выполняемых работ по устранению повреждения кабеля.

Технический результат достигается тем, что в способе определения места повреждения кабельной линии, заключающемся в том, что зондируют измеряемую кабельную линию импульсами напряжения, принимают импульсы, отраженные от неоднородностей волнового сопротивления, выделяют отраженные от неоднородностей волнового сопротивления импульсы на индикаторе с временной разверткой луча, соответствующие месту повреждения кабеля, вычисляют расстояние до места повреждения кабеля по временной задержке отраженного импульса относительно зондирующего по формуле (1):

где Lx - расстояние до места повреждения кабеля по временной задержке отраженного импульса относительно зондирующего, м; ν - скорость распространения электромагнитной волны в кабельной линии, м/мкс; tз - время задержки отраженного сигнала относительно зондирующего, мкс; с - скорость распространения электромагнитной волны в вакууме (с=299,79 м/мкс); γ=c/ν - коэффициент укорочения электромагнитной волны в кабельной линии, дополнительно вычисляют коэффициент укрутки, с учетом которого вычисляют уточненное расстояние до места повреждения кабеля по формуле:

где L - уточненное расстояние до места повреждения кабеля; Ку - коэффициент укрутки, Lx - расстояние до места повреждения кабеля по временной задержке отраженного импульса относительно зондирующего, м; при этом коэффициент укрутки вычисляют по формуле (6):

где L1 - длина одного полного витка скрученной жилы, m - коэффициент скрутки, Н - шаг скрутки, - укрутка (приращение длины L1 к шагу H скрутки).

Повышение точности определения места повреждения кабельной линии достигается за счет уточнения расстояния до места повреждения кабеля, вычисленного по временной задержке отраженного импульса относительно зондирующего, путем вычисления его с учетом коэффициента укрутки по формуле (6).

Уменьшение объема выполняемых работ (а именно земляных работ) по устранению повреждения кабеля обусловлено повышением точности определения места его повреждения.

Заявляемый способ определения места повреждения кабельной линии реализуется следующим образом:

- зондируют измеряемую кабельную линию импульсами напряжения,

- принимают импульсы, отраженные от неоднородностей волнового сопротивления,

- выделяют отраженные от неоднородностей волнового сопротивления импульсы на индикаторе с временной разверткой луча, соответствующие месту повреждения кабеля,

- вычисляют расстояние до места повреждения кабеля по временной задержке отраженного импульса относительно зондирующего по формуле (1),

- вычисляют коэффициент укрутки по формуле (6),

- вычисляют с учетом коэффициента укрутки уточненное расстояние до места повреждения кабеля по формуле (7).

Например, при сечении кабеля 240 мм2:

а) при реализации способа по прототипу - Lx=9087,52 м:

- зондируют измеряемую кабельную линию импульсами напряжения,

- принимают импульсы, отраженные от неоднородностей волнового сопротивления,

- выделяют отраженные от неоднородностей волнового сопротивления импульсы на индикаторе с временной разверткой луча, соответствующие месту повреждения кабеля,

- вычисляют расстояние до места повреждения кабеля по временной задержке отраженного импульса относительно зондирующего по формуле (1):

б) при реализации заявляемого способа - L=8979,76 м:

- зондируют измеряемую кабельную линию импульсами напряжения,

- принимают импульсы, отраженные от неоднородностей волнового сопротивления,

- выделяют отраженные от неоднородностей волнового сопротивления импульсы на индикаторе с временной разверткой луча, соответствующие месту повреждения кабеля,

- вычисляют расстояние до места повреждения кабеля по временной задержке отраженного импульса относительно зондирующего по формуле (1):

- вычисляют коэффициент укрутки по формуле (6):

и сводят коэффициенты скрутки и соответствующие им коэффициенты укрутки в таблицу 1.

На практике при изготовлении кабелей напряжением 6-10 кВ коэффициент скрутки m для круглых жил принимается равным 20-60. В таблице 1 приведены значения коэффициента укрутки Кy круглых жил, рассчитанные по формуле (6), в зависимости от коэффициента скрутки m [РД-16. 405-87, табл. 8].

- вычисляют с учетом коэффициента укрутки уточненное расстояние до места повреждения кабеля по формуле (7), которое оказалось равным

Тогда погрешность определения места повреждения кабеля, устраняемая предлагаемым способом, равна: ΔL=9087,52-8979,76=107,76 м.

В таблице 2 показаны расстояния до места повреждения кабеля сечением 240 мм2, определенные при коэффициенте скрутки m=20 и соответствующем ему коэффициенте укрутки Ку=1,012, определенные известным из прототипа способом (Lx=9087,52 м) и заявленным способом (L=8979,76 м). Погрешность определения места повреждения кабеля, устраняемая предлагаемым способом, равна ΔL=107,76 м.

Таким образом, из приведенного примера, сведенного в таблицу 2, видно, что предлагаемый способ позволяет более точно обнаружить место повреждения кабельной линии. Более точное обнаружение места повреждения кабельной линии позволяет в свою очередь уменьшить объем работ, выполняемых по устранению повреждения (а именно уменьшить объем земельных работ: уменьшение объема извлекаемого грунта, в котором уложена кабельная линия, и, соответственно, уменьшение объема работ по засыпке кабеля извлеченным грунтом после устранения повреждения).


Способ определения места повреждения кабельной линии
Способ определения места повреждения кабельной линии
Способ определения места повреждения кабельной линии
Источник поступления информации: Роспатент

Показаны записи 21-30 из 471.
10.08.2016
№216.015.5268

Способ определения площадей поверхностей металлических дисков при различной их энергоемкости в дисково-колодочных тормозных устройствах

Изобретение относится к области машиностроения и может быть использовано в дисково-колодочных тормозах автотранспортных средств, дорожных и строительных машин и железнодорожном транспорте. Способ определения площадей поверхностей металлических дисков при различной их энергоемкости в...
Тип: Изобретение
Номер охранного документа: 0002594044
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.52df

Устройство для охлаждения пар трения ленточно-колодочного тормоза

Изобретение относится к области машиностроения и может быть использовано в ленточно-колодочных тормозах буровых лебедок. Устройство содержит тормозной шкив, тормозную ленту с фрикционными накладками, охлаждающее устройство, выполненное в виде тепловой трубы, и привод. Тепловая труба состоит из...
Тип: Изобретение
Номер охранного документа: 0002594267
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.531b

Система и способ охлаждения пар трения ленточно-колодочного тормоза

Группа изобретений относится к области машиностроения и может быть использована в ленточно-колодочных тормозах буровых лебедок. Система охлаждения содержит тормозной шкив, тормозную ленту с фрикционными накладками, охлаждающую систему, выполненную в виде тепловой трубы, и привод. Тепловая труба...
Тип: Изобретение
Номер охранного документа: 0002594273
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.54d3

Устройство для измерения плотности сыпучих тел

Изобретение относится к области измерительной техники, а именно, к пневматическим устройствам для измерения плотности сыпучих материалов, и может быть использовано в различных отраслях промышленности. Устройство для измерения плотности сыпучих тел включает два одинаковых по объему...
Тип: Изобретение
Номер охранного документа: 0002593675
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5657

Установка для сепарирования нефти

Изобретение относится к нефтедобывающей отрасли промышленности, связанной с переработкой нефти, в частности к электрооборудованию для сепарирования нефти, и может быть использовано, например, для сепарирования нефти на нефтяных месторождениях, на судовых сепараторах для очистки нефти. Установка...
Тип: Изобретение
Номер охранного документа: 0002593626
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5b89

Устройство для изготовления ротора самотормозящегося асинхронного электродвигателя

Изобретение относится к электротехнике, а именно к технологическому оборудованию для изготовления роторов самотормозящихся асинхронных электродвигателей. Устройство для изготовления ротора самотормозящегося асинхронного электродвигателя содержит стакан, являющийся пресс-формой и выполненный...
Тип: Изобретение
Номер охранного документа: 0002589728
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5dfc

Способ повышения износостойкости изделий из твердых сплавов

Изобретение относится к технологиям, обеспечивающим повышение износостойкости режущего, штампового инструмента, а также конструкционных изделий из твердого сплава за счет изменения состава и структуры их поверхностных слоев, и может быть использовано для увеличения стойкости изделий к...
Тип: Изобретение
Номер охранного документа: 0002590433
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5eed

Способ азотирования изделия из стали в плазме тлеющего разряда

Изобретение относится к области металлургии, а именно к химико-термической обработке металлов в плазме тлеющего разряда, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин и режущего инструмента. Способ азотирования изделия из стали в плазме тлеющего разряда...
Тип: Изобретение
Номер охранного документа: 0002590439
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6509

Состав для производства сахарного печенья функционального назначения

Изобретение относится к пищевой промышленности, в частности к производству мучных кондитерских изделий. Предложен состав для производства сахарного печенья функционального назначения, включающий мучную смесь, содержащую пшеничную муку, подслащивающий агент в виде сахара, масло сливочное, молоко...
Тип: Изобретение
Номер охранного документа: 0002592107
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6593

Способ производства фитосоуса

Изобретение относится к пищевой промышленности и может быть использовано для производства соусов функционального назначения. Способ производства фитосоуса предусматривает смешивание томатного пюре с добавлением овощного пюре, введение в смесь сахара и соли в виде водного раствора с дальнейшим...
Тип: Изобретение
Номер охранного документа: 0002592105
Дата охранного документа: 20.07.2016
Показаны записи 21-30 из 47.
09.06.2018
№218.016.5a90

Синхронизированный аксиальный двухвходовый бесконтактный ветро-солнечный генератор

Изобретение относится к электротехнике, к электромеханическим преобразователям энергии, и может быть использовано в качестве преобразователя механической энергии вращения, например энергии ветра, подаваемой на механический вход машины, и электрической энергии постоянного тока, например световой...
Тип: Изобретение
Номер охранного документа: 0002655379
Дата охранного документа: 28.05.2018
25.06.2018
№218.016.672a

Многофазный ветрогенератор переменного тока

Изобретение относится к электротехнике, в частности к электромеханическим преобразователям энергии. Технический результат состоит в уменьшении осевого и диаметрального размеров, минимизации разности частоты номинального и фактического выходного напряжения, уменьшении порогового значения...
Тип: Изобретение
Номер охранного документа: 0002658316
Дата охранного документа: 20.06.2018
20.04.2019
№219.017.3532

Стабилизированная двухвходовая ветро-солнечная аксиально-радиальная электрическая машина-генератор

Изобретение относится к области электротехники и может быть использовано в преобразователях кинетической энергии ветра и световой энергии Солнца в суммарную электрическую энергию переменного тока. Технический результат - обеспечение возможности суммирования механической энергии и световой...
Тип: Изобретение
Номер охранного документа: 0002685424
Дата охранного документа: 18.04.2019
27.04.2019
№219.017.3cac

Аксиальный многофазный стабилизируемый трансформатор-фазорегулятор

Изобретение относится к области электротехники и может быть использовано, например, в лабораторных условиях для поверки электросчетчиков, в радиотехнических устройствах и т.д. Технический результат - стабилизация выходного напряжения трансформатора-фазорегулятора по величине, повышение...
Тип: Изобретение
Номер охранного документа: 0002686084
Дата охранного документа: 24.04.2019
24.05.2019
№219.017.5d7d

Индукционно-акустический кабелеискатель

Изобретение относится к электротехнике и может быть использовано для определения мест повреждения в силовых кабелях. Технический результат: повышение точности определения мест однофазного замыкания фазы на оболочку силового кабеля при больших переходных сопротивлениях в месте замыкания....
Тип: Изобретение
Номер охранного документа: 0002688854
Дата охранного документа: 22.05.2019
24.05.2019
№219.017.5d7f

Аксиальная многофазная двухвходовая электрическая машина-генератор

Изобретение относится к электротехнике. Технический результат – улучшение качества выходного напряжения, повышение надежности и КПД. Аксиальная многофазная двухвходовая электрическая машина-генератор содержит корпус, возбудитель и основной генератор, установленные на одном валу, закрепленном в...
Тип: Изобретение
Номер охранного документа: 0002688923
Дата охранного документа: 23.05.2019
24.05.2019
№219.017.5dc1

Стабилизированный вентильный аксиально-конический ветрогенератор постоянного тока

Изобретение относится к электротехнике и может быть использовано, например, в качестве преобразователя механической энергии воздушного потока (например, энергии набегающего воздушного потока при использовании на подвижных локальных объектах, энергии ветра при использовании на неподвижных...
Тип: Изобретение
Номер охранного документа: 0002688925
Дата охранного документа: 23.05.2019
26.05.2019
№219.017.60ea

Многофазный фазочастотный трансформатор-регулятор

Изобретение относится к области электротехники и может быть использовано, например, в лабораторных условиях для поверки электросчетчиков, для питания потребителей многофазного напряжения, критичных к его частоте и т.д. Технический результат - обеспечение возможности регулирования выходного...
Тип: Изобретение
Номер охранного документа: 0002689121
Дата охранного документа: 24.05.2019
29.05.2019
№219.017.6223

Стабилизированный вентильный аксиально-радиальный ветрогенератор постоянного тока

Изобретение относится к электротехнике, и может быть использовано, например, в качестве преобразователя механической энергии воздушного потока (например, энергии набегающего воздушного потока при использовании на подвижных локальных объектах, энергии ветра при использовании на неподвижных...
Тип: Изобретение
Номер охранного документа: 0002689211
Дата охранного документа: 27.05.2019
29.05.2019
№219.017.6238

Способ изготовления аксиальных магнитопроводов

Изобретение относится к области электротехники, а именно к технологии изготовления электрических машин, и может быть использовано при изготовлении магнитопроводов пакетов статора и ротора для аксиальных электрических машин, например пакетов статора и ротора аксиальных синхронных и асинхронных...
Тип: Изобретение
Номер охранного документа: 0002689249
Дата охранного документа: 27.05.2019
+ добавить свой РИД