×
18.05.2018
218.016.51ee

Результат интеллектуальной деятельности: Способ измерения диаграммы направленности антенны источника радиоизлучения, местоположение которого неизвестно

Вид РИД

Изобретение

Аннотация: Изобретение относится к антенной технике и области радиотехнических систем и может быть использовано, например, в системах радиотехнического контроля. Формируют маршрут измерений в процессе движения ЛПС на высоте Н по критерию ƒ=ƒ-ƒ→0, где ƒ - значение частоты Доплера; ƒ - значение частоты излучения ИРИ, измеренное на ЛПС; ƒ - априорно известная частота излучения ИРИ, в процессе движения ЛПС по маршруту измерений одновременно с измерением параметра сигнала D фиксируют длину пройденного пути от начала движения по маршруту измерений с частотой выдачи данных навигационной системой ЛПС, в момент возвращения ЛПС в начальную точку маршрута измерений О(B,L,H) завершают формирование маршрута, прием сигнала ИРИ и измерения его параметра D, фиксируют конечную длину пройденного пути L, представляют измерения в виде функции от длины пройденного пути D (), где , определяют ДНА ИРИ в виде где . Техническим результатом является реализация измерения ДНА ИРИ с использованием ЛПС в условиях отсутствия информации о ее местоположении. 1 табл., 1 ил.

Изобретение относится к антенной технике и области радиотехнических систем и может быть использовано, например, в системах радиотехнического контроля.

Известны различные способы измерения диаграмм направленности антенн источников радиоизлучения (ИРИ), местоположение которых известно.

В частности, известен способ измерения азимутальной диаграммы направленности антенны (ДНА) [1, Патент РФ №2298198, Способ измерения азимутальной диаграммы направленности антенны. МПК G01S 3/46, опубл. 27.04.2007, бюл. №12], включающий измерение на выбранной частоте азимутальной диаграммы направленности антенны, установленной на оси проводящего диска, заклепанного на поворотном устройстве стенда антенных измерений, при этом на той же частоте и при том же начальном приближении поворотного устройства производят измерения азимутальной диаграммы направленности вспомогательной штыревой антенны, а искомую азимутальную диаграмму направленности исследуемой антенны получают путем вычитания значений, полученных при измерении азимутальной диаграммы направленности исследуемой антенны и последующего нормирования полученной разностной функции.

Недостатком способа является их нереализуемость в случае неизвестного положения исследуемой антенны относительно измерительной антенны.

Известны способы измерения ДНА с известным положением методом ее облета самолетом или иным летно-подъемным средством (ЛПС) [2, Патент SU №1778713, Способ измерения пространственных характеристик передающей антенны. МПК G01R 29/10, опубл. 30.11.1992, бюл. №44], [3, с. 256-259 - Фрадин А.Э., Рыжков Е.В. Измерения параметров антенно-фидерных устройств. 2-е доп. изд. - М.: Связь, 1972. - 317 с], [4, с. 128-135 - Цейтлина Н.М. Методы измерения характеристик антенн СВЧ. - М.: Радио и связь, 1985. - 368 с.]; [5, Мартыненко Ю.Н., Сергеев В.Л., Страхов А.Ф., Тарасов Н.С. О комплексной автоматизации измерений радиотехнических параметров антенн // Материалы всесоюзной научно-технической конференции по радиотехническим измерениям. - Новосибирск: СНИИМ, 1970] [6, с. 44 - Толкачев А.А., Шилов А.В. Технологии радиолокации. - М.: Вече, 2010. - 424 с.], [7, с. 218 - Вартанесян В.А., Гойхман Э.Ш., Рогаткин М.И. Радиопеленгация. - М.: Воениздат МО СССР, 1966. - 248 с.].

Недостатком этих способов является их нереализуемость в случае неизвестного положения исследуемой антенны.

Также известен способ измерения параметров излучения крупноапертурных антенн с помощью беспилотного летательного аппарата [8, с. 95-103 - Классен В.И., Просвиркин И.А. Измерение параметров излучения крупноапертурных ФАР с помощью беспилотного летательного аппарата. // Радиотехника. - 2014. - №4. - С. 95-103], направленный на измерение ДНА, принятый за прототип, который включает в себя:

- формирование маршрута измерений в виде последовательности точек траектории , , как результата решения прямой геодезической задачи с исходными данными: заданным местоположением фазового центра антенной системы ИРИ ОИРИИРИ,LИРИИРИ), фиксированными значениями расстояния и углом места, при различных азимутальных углах, принимающих значения из интервала от 0 до 360 градусов;

- вывод ЛПС в начальную точку маршрута измерений Оначнач,Lначнач);

- в процессе движения ЛПС по маршруту измерений прием сигнала ИРИ, измерение его параметра DDНA, для которого определяется ДНА;

- сохранение координат точек ,

где , в которых эти измерения проводились;

- в момент возвращения в конечную точку маршрута измерений завершения измерений и представление измерений в виде функции от геодезических координат ,

где заданной в Nизм точках.

- определение ДНА ИРИ на основе решения обратной геодезической задачи:

,

где , а ƒ - функция определения азимутального угла на основе решения обратной геодезической задачи.

Способ обеспечивает возможность измерения диаграммы направленности крупноапертурных антенн на известной частоте и с известным местоположением при помощи летно-подъемного средства (ЛПС). Данный способ представлен в еще одном источнике литературы [9, с. 60-65 - Классен В., Просвиркин И., Измерение параметров излучения крупноапертурных антенн с помощью беспилотного летательного аппарата. // Технологии и средства связи. - 2014. - №1. - С. 60-65].

Недостатком способа-прототипа является его нереализуемость в случае неизвестного положения исследуемой антенны.

Задачей изобретения является расширение арсенала технических средств измерения ДНА ИРИ в условиях отсутствия информации о ее местоположении.

Для решения поставленной задачи предлагается способ измерения ДНА ИРИ, местоположение которого неизвестно, при котором выполняют движение ЛПС в начальную точку маршрута измерений Оначнач,Lначнач), принимают сигнал ИРИ и измеряют его параметр DДНА, для которого определяется ДНА, в процессе движения ЛПС по маршруту измерений.

Согласно изобретению, формируют маршрут измерений в процессе движения ЛПС на высоте Ннач по критерию

ƒДопизм.изл→0,

где ƒДоп - значение частоты Доплера;

ƒизм - значение частоты излучения ИРИ, измеренное на ЛПС;

ƒизл - априорно известная частота излучения ИРИ,

в процессе движения ЛПС по маршруту измерений, одновременно с измерением параметра сигнала DДНА и фиксируют длину пройденного пути от начала движения по маршруту измерений с частотой выдачи данных навигационной системой ЛПС, в момент возвращения ЛПС в начальную точку маршрута измерений Оначнач,Lначнач) завершают формирование маршрута, прием сигнала ИРИ и измерения его параметра DДHA, фиксируют конечную длину пройденного пути LПП, представляют измерения в виде функции от длины пройденного пути ,

где , формируют ДНА ИРИ в виде

где .

Техническим результатом является реализация измерения ДНА ИРИ с использованием ЛПС в условиях отсутствия информации о ее местоположении.

Указанный технический результат достигают за счет введения новых операций: измерения маршрута измерений в процессе движения ЛПС на высоте Ннач по критерию ƒДопизм.изл→0,

где ƒДоп - значение частоты Доплера;

ƒизм. - значение частоты излучения ИРИ, измеренное на ЛПС;

ƒизл - априорно известная частота излучения ИРИ,

в процессе движения ЛПС по маршруту измерений, одновременно с измерением параметра сигнала DДHA, фиксирования длины пройденного пути от начала движения по маршруту измерений с частотой выдачи данных навигационной системой ЛПС, в момент возвращения ЛПС в начальную точку маршрута измерений Оначнач,Lначнач) завершения формирования маршрута, приема сигнала ИРИ и измерения его параметра DДНA, фиксирования конечной длины пройденного пути LПП, представления измерений в виде функции от длины пройденного пути ,

где , определения ДНА ИРИ в виде

где .

На чертеже приведена структурная схема устройства, реализующего предлагаемый способ измерения ДНА ИРИ, местоположение которого неизвестно.

Сочетание отличительных признаков и свойств предлагаемого способа из литературы неизвестны, поэтому он соответствует критериям новизны и изобретательского уровня.

Способ измерения ДНА ИРИ, местоположение которого неизвестно, реализуется следующим образом:

1. Выполняют движение ЛПС в начальную точку маршрута измерений Оначнач,Lначнач).

2. Формируют маршрут измерений в процессе движения ЛПС на высоте Ннач по критерию ƒДопизм.изл→0,

где ƒДoп - значение частоты Доплера;

ƒизм. - значение частоты излучения ИРИ, измеренное на ЛПС;

fизл - априорно известная частота излучения ИРИ.

3. В процессе движения ЛПС по маршруту измерений принимают сигнал ИРИ и измеряют его параметр DДHA, для которого определяется ДНА.

4. В процессе движения ЛПС по маршруту измерений, одновременно с измерением параметра сигнала DДHA, фиксируют длину пройденного пути от начала движения по маршруту измерений с частотой выдачи данных навигационной системой ЛПС.

5. В момент возвращения ЛПС в начальную точку маршрута измерений Оначнач,Lначнач) завершают формирование маршрута, прием сигнала ИРИ и измерения его параметра DДHA, фиксируют конечную длину пройденного пути LПП.

6. Представляют измерения в виде функции от длины пройденного пути ,

где .

7. Определяют диаграмму направленности ИРИ в виде

где .

Для реализации пункта 1, выполняют движение ЛПС в выбранную точку в пространстве Оначнач,Lначнач), которая будет являться начальной для формирования маршрута измерений, и запоминают ее координаты.

Для выполнения пункта 2 измеряют частоту излучения ИРИ ƒизм., начиная с момента выхода ЛПС в начальную точку маршрута измерений Оначнач,Lначнач), и производят вычисления значения частоты Доплера ƒДоп=/ƒизм.изл. По значению ƒДоп в соответствии с функциональной связью

где с - скорость распространения радиоволны;

- вектор скорости ЛПС;

Θ - угол между вектором скорости ЛПС и направлением на ИРИ относительно ЛПС;

- операция определения модуля, средствами управления ЛПС изменяют направление вектора его скорости v таким образом, чтобы ƒДоп=0, а высота полета оставалась равной Ннач.

Для определения ДНА ИРИ необходимым условием выполнения измерений при движении ЛПС по траектории полета является обладание точками этой траектории Oi, i=1, 2,… следующими свойствами:

- равное удаление точек Oi, i=1, 2,… от точки ОИРИ местоположения фазового центра антенной системы ИРИ (si=s, i=1, 2,…);

- равенство углов места βi точек Oi, i=1, 2,… относительно плоскости местного горизонта π1 в точке ОИРИi=β, i=1, 2,…).

Покажем, что при выполнении, в процессе движения ЛПС на заданной высотой Ннач, условия fДоп=0, точки траектории Оi, i=1, 2,… обладают требуемыми перечисленными свойствами.

Поскольку геометрические размеры траектории полета при измерении ДНА ИРИ малы по сравнению с размерами земного эллипсоида, то поверхность Земли в окрестностях точки ОИРИ можно считать плоской. В частности, в качестве этой поверхности примем плоскость местного горизонта в точке ОИРИ, т.е. плоскость π1. Тогда, т.к. высота Ннач постоянна на всем маршруте полета ЛПС, то можно считать, что все точки Oi, i=1, 2,… траектории полета ЛПС лежат в плоскости π2, причем

Так как при движении ЛПС по траектории выполняется условие ƒДоп=0, то радиальная скорость ЛПС, определяемая выражением

где с - скорость распространения радиоволны;

ƒизл - априорно известная частота излучения ИРИ [10, с. 68 - Зырянов Ю.Т., Белоусов О.А. Основы радиотехнических систем. - ФГБОУ ВПО «ТГТУ», 2011. - 146 с], равна 0.

Если νp=0, то ЛПС не приближается и не удаляется от неподвижного ИРИ, т.е. точки траектории Oi равноудалены от точки ОИРИ местоположения фазового центра антенной системы ИРИ: si=s, i=1,2,…, и первое из требуемых свойств выполняется.

Поскольку геометрическое место точек в пространстве, равноудаленных от некоторой точки, - есть сфера [11, с. 242 - Бескин Л.Н. Стереометрия. - М.: Просвещение, 1971. - 415 с], то точки траектории полета ЛПС Oi, i=1,2,… принадлежат сфере с радиусом s и центром в точке ОИРИ.

Так как точки траектории полета ЛПС Oi, i=1, 2,… принадлежат одновременно плоскости π2 и сфере с центром в точке ОИРИ, а пересечением сферы с плоскостью является окружность [11, с. 243], то траектория полета ЛПС - окружность.

Так как траектория полета ЛПС в виде окружности представляет непрерывную линию, а прямые (OИРИ, Oi) проходят через одну точку ОИРИ, не принадлежащую этой линии, и пересекают непрерывную линию, образованную множеством точек траектории полета ЛПС Oi, i=1, 2,…, то (OИРИ, Oi) образуют коническую поверхность κпов [11, с. 170].

Поскольку тело, ограниченное замкнутой конической поверхностью и плоскостью, пересекающей все ее образующие, является конусом [11, с. 175], то тело, ограниченное κпов и частью плоскости π2, ограниченной траекторией полета ЛПС в виде окружности, будет являться конусом Kкон с вершиной в точке ОИРИ, основанием которого будет являться круг.

Возьмем произвольную плоскость, проходящую через точку вершины ОИРИ конуса Kкон и отрезок - диаметр круга основания этого конуса, концами которого являются точки траектории. Поскольку для всех отрезков [ОИРИ, Oi] их длины , i=1, 2,…, то пересечением этой произвольной плоскости и конуса Kкон будет являться равнобедренный треугольник с вершиной в точке ОИРИ и прилежащими к ней катетами длиной s. При этом диаметр включает в себя точку, являющуюся центром круга основания конуса Kкон. Так как рассматриваемый треугольник - равнобедренный, то биссектриса его угла ОИРИ будет являться одновременно и медианой, и высотой h [12, с. 35 - Киселев А.П. Геометрия / под ред. Глаголева Н.А. - М.: ФИЗМАЛИТ, 2004. - 328 с.]. Отсюда следует, что вершина ОИРИ проектируется в центр основания конуса Kкон, поэтому конус Kкон будет прямым и круговым [11, с.182].

Свойствами прямого кругового конуса является наличие двух определяющих его параметров [11, с. 186]. Например, такими параметрами могут являться длина образующих и угол α между ними и высотой конуса h, являющейся нормалью к плоскости π2 Т.к. плоскости π1 и π2 параллельны, то высота конуса h, также будет является нормалью к плоскости π1 и угол места β1 каждой точки Оi, i=1, 2,… относительно плоскости местного горизонта π1 в точке ОИРИ будет равен β1=90°-α=β. Т.е. второе из требуемых свойств выполняется.

Отсюда следует, что при выполнении движения ЛПС на заданной высоте Ннач в условиях ƒДоп=0 точки траектории Oi, i=1, 2,… обладают требуемыми свойствами:

- равное удаление точек Oi, i=1, 2,… от точки ОИРИ местоположения фазового центра антенной системы ИРИ (si=s, i=1,2,…);

- равенство углов места β1 точек Oi, i=1, 2,… относительно плоскости местного горизонта π1 в точке ОИРИi=β, i=1, 2,…), и выполняется необходимое условие измерений для определения ДНА ИРИ.

Для выполнения пунктов 3 и 4 в процессе движения ЛПС по маршруту измерений одновременно фиксируют длину пройденного пути , принимают сигнал ИРИ и измеряют его параметр DДНА, для которого определяется ДНА.

Для выполнения пунктов 5 и 6, в момент возвращения ЛПС в начальную точку маршрута измерений Оначнач,Lначнач) завершают формирование маршрута измерений, прием сигнала и измерения его параметра DДНA, фиксируют конечную длину пройденного пути LПП, сохраняют сформированный маршрут измерений и измеренные значения параметра сигнала DДНA, представляют сохраненные измерения в виде функции зависимости измеренного значения параметра ИРИ DДНА от длины пройденного пути ,

где .

Для выполнения пункта 7 определяют ДНА ИРИ в виде функции от азимутального угла θ через функцию значения измеренного параметра DДНA от длины пройденного пути , т.е. ,

где .

Таким образом, предлагаемый способ имеет следующие отличительные признаки в последовательности его реализации от способа-прототипа, которые представлены в таблице 1.

Из представленной таблицы сравнения последовательностей реализации способа-прототипа и предлагаемого способа видно, что в предлагаемом способе относительно способа-прототипа дополнительно формируют маршрут измерений в процессе движения ЛПС на высоте Ннач по критерию ƒДопизм.изл→0,

где ƒДоп - значение частоты Доплера;

ƒизм. - значение частоты излучения ИРИ, измеренное на ЛПС;

ƒизл - априорно известная частота излучения ИРИ,

в процессе движения по маршруту измерений одновременно: измеряют параметр сигнала DДНA и фиксируют длину пройденного пути от начала движения по маршруту измерений с частотой выдачи данных навигационной системой ЛПС, в момент возвращения ЛПС в начальную точку маршрута измерений Оначнач,Lначнач) завершают формирование маршрута, прием сигнала ИРИ и измерения его параметра DДНA, фиксируют конечную длину пройденного пути LПП, представляют измерения в виде функции от длины пройденного пути ,

где ,

определяют ДНА ИРИ в виде

где .

Что приводит к положительному эффекту - реализации измерения ДНА ИРИ с использованием ЛПС в условиях отсутствия информации о ее местоположении.

Структурная схема устройства, реализующего предлагаемый способ, изображена на чертеже. В состав устройства входят: антенная система (АС) 01, радиоприемное устройство (РПУ) 02, измеритель частоты 03, измеритель параметра сигнала 04, запоминающее устройство (ЗУ) 05, навигационная система ЛПС 06, вычислительное устройство (ВУ) 07, блок определения диаграммы направленности (БО ДНА) 08, система управления (СУ) ЛПС 09.

AC 01 соединена с РПУ 02, выход которого подключен к входам измерителя частоты 03 и измерителя параметра сигнала 04. Выходы измерителя частоты 03, измерителя параметра сигнала 04 подключены к первому входу ЗУ 05, а выход навигационной системы ЛПС 06 подключен к второму входу ЗУ 05, выход ЗУ 05 соединен с входом ВУ 07. Первый выход ВУ 07 подключен к входу БО ДНА 08, а второй выход ВУ 07 подключен к входу СУ ЛПС 09.

Сигнал ИРИ поступает на АС 01, а затем в РПУ 02, где выполняется прием сигнала и его аналого-цифровое преобразование. Далее цифровой сигнал поступает в измеритель частоты 03, в котором выполняется определение значения частоты принятого сигнала ƒизм., и в измеритель параметра сигнала 04, который определяет параметр DДHA для определения диаграммы направленности. Результаты измерений ƒизм. и DДНA из измерителя частоты 03 и измерителя параметра сигнала 04, соответственно, передаются в ЗУ 05, в то же время в ЗУ 05 поступают данные из навигационной системы ЛПС 06. Из ЗУ 05 эти данные поступают в ВУ 07, где происходит вычисление частоты Доплера, расчет длины пройденного пути и параметров коррекции траектории полета для системы управления ЛПС 09. Из ВУ 07 параметры коррекции траектории полета поступают в систему управления ЛПС 09, где обеспечивается движение ЛПС на высоте Ннач по критерию ƒДоп→0. При возвращении ЛПС в начальную точку маршрута измерений, выходные данные из ВУ 07: значения измеренного параметра, им соответствующие длины пройденного пути, конечная длина пройденного пути LПП, - поступают в БО ДНА 08 для определения ДНА.

Варианты реализации АС 01, рассмотрены в литературе [13, Шпиндлер Э. Практические конструкции антенн - М.: МИР, 1989. - 448 с.], тип используемых антенных элементов определяется местом размещения АС 01. Под фюзеляжем в ЛПС, как правило, используются ненаправленные антенные элементы. РПУ 02 может быть выполнено в виде известных устройств, описанных, например, в [14, с. 37-110 - Сиверса А.П. Проектирование радиоприемных устройств. - М.: Советское радио, 1976. - 486 с.] или [15, с. 28-106 - Рембовский A.M. Мониторинг. Задачи, методы, средства. - М.: Горячая линия - Телеком, 2010. - 624 с.], выбор РПУ будет зависеть от типа принимаемых сигналов и возможности его размещения на используемом ЛПС. Измеритель частоты 03, измеритель параметра сигнала 04, ВУ 07, БО ДНА 08 могут быть реализованы в виде аппаратно-программного средства, например, на микросхемах программируемой логики, описанных в [16, Грушвицкий Р.И. Проектирование систем на микросхемах программируемой логики. - Санкт-Петербург: БХВ, 2002. - 607 с.], обеспечивающих малые габариты и позволяющих использование в ЛПС. Для цифрового сигнала примеры реализуемых подходов измерителя частоты 03, измерителя параметра сигнала 04, если измеряемым параметром является амплитуда сигнала ИРИ, описаны в [17, с. 130-196 - Подлесный С.А. Устройства приема обработки сигналов. - Красноярск: ИПК СФУ, 2008. - 291 с.] или [18, с. 204-265 - Рембовский A.M. Мониторинг. Задачи, методы, средства. - М.: Горячая линия - Телеком, 2010. -624 с.]. Реализация ЗУ 05 описана в [19, Горденов А.Ю. Большие интегральные схемы запоминающих устройств. Справочник. - М.: Радио и связь, 1990. - 288 с.], [20, Лебедев О.Н. Микросхемы памяти и их применение. - М.: Радио и связь, 1990]. Навигационная система ЛПС 06 и СУ ЛПС 09, являются стандартными и входят в состав ЛПС. Тип навигационной системы ЛПС 06 и тип СУ ЛПС 09 определяется используемым ЛПС.

Таким образом, предлагаемый способ, так же как и способ-прототип, позволяет измерять диаграмму направленности антенны. Кроме того, приведенная сравнительная оценка эффективности предлагаемого способа относительно способа-прототипа показывает реализацию измерения ДНА ИРИ с использованием ЛПС на случай отсутствия информации о ее местоположении.


Способ измерения диаграммы направленности антенны источника радиоизлучения, местоположение которого неизвестно
Способ измерения диаграммы направленности антенны источника радиоизлучения, местоположение которого неизвестно
Способ измерения диаграммы направленности антенны источника радиоизлучения, местоположение которого неизвестно
Способ измерения диаграммы направленности антенны источника радиоизлучения, местоположение которого неизвестно
Способ измерения диаграммы направленности антенны источника радиоизлучения, местоположение которого неизвестно
Способ измерения диаграммы направленности антенны источника радиоизлучения, местоположение которого неизвестно
Источник поступления информации: Портал edrid.ru

Показаны записи 1-10 из 105.
10.01.2013
№216.012.1a72

Симметричный вибратор укв

Изобретение относится к антенной технике и предназначено для построения фазированных антенных решеток. Техническим результатом является увеличение ширины диаграммы направленности, повышение вибропрочности и оперативности установки вибратора. Плечи симметричного вибратора УКВ выполнены из...
Тип: Изобретение
Номер охранного документа: 0002472262
Дата охранного документа: 10.01.2013
27.01.2013
№216.012.2142

Симметричный вибратор

Изобретение относится к антенной технике и предназначено для построения фазированных антенных решеток из состава антенно-фидерных устройств систем радиосвязи или радиолокационных устройств. Техническим результатом является увеличение ширины диаграммы направленности, повышение вибропрочности и...
Тип: Изобретение
Номер охранного документа: 0002474015
Дата охранного документа: 27.01.2013
27.06.2013
№216.012.5237

Волноводно-микрополосковый переход с запредельной нагрузкой

Изобретение относится к области сверхвысокочастотной (СВЧ) радиотехники, а именно к устройствам переноса энергии на волноводных и микрополосковых линиях. Техническим результатом является увеличение рабочей полосы частот перехода при сохранении величины коэффициента передачи....
Тип: Изобретение
Номер охранного документа: 0002486640
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.523a

Антенная решетка

Изобретение относится к антенной технике и предназначено для построения фазированных антенных решеток из состава антенных устройств систем радиосвязи или радиолокационных устройств. Техническим результатом является расширение области применения за счет обеспечения независимости регулировки...
Тип: Изобретение
Номер охранного документа: 0002486643
Дата охранного документа: 27.06.2013
27.08.2013
№216.012.65db

Резонатор на поверхностных акустических волнах с использованием отражателей в качестве нагревательных элементов

Изобретение относится к радиоэлектронике, в частности к устройствам стабилизации частоты резонатора на ПАВ, и может использоваться в устройствах, использующих высокостабильные резонаторы. Техническим результатом является снижение времени выхода на рабочую частоту резонатора, исключение...
Тип: Изобретение
Номер охранного документа: 0002491712
Дата охранного документа: 27.08.2013
27.09.2013
№216.012.70b1

Способ и устройство электрического управления фазой волноводного фазовращателя

Изобретение относится к области радиотехники сверхвысоких частот (СВЧ), а более конкретно к волноводным фазовращателям и предназначено, главным образом, для построения антенных решеток с электронным сканированием луча, например, миллиметрового диапазона длин волн. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002494500
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.70b2

Запредельная волноводная нагрузка

Изобретение относится к области сверхвысокочастотной (СВЧ) радиотехники и может быть использовано в волноводной измерительной, антенной технике, приемных и передающих устройствах СВЧ. Технический результат - обеспечение полного синфазного отражения волны нагрузкой в широкой полосе частот (до...
Тип: Изобретение
Номер охранного документа: 0002494501
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.70b3

Миниатюрный широкополосный квадратурный направленный ответвитель на элементах с сосредоточенными параметрами

Изобретение относится к области радиотехники и может быть использовано в радиолокации, радионавигации, связи, антенных системах и радиоизмерениях как самостоятельное устройство. Техническим результатом является увеличение рабочей полосы частот при одновременном уменьшении габаритных размеров....
Тип: Изобретение
Номер охранного документа: 0002494502
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.745e

Способ формирования диаграммы направленности

Использование: изобретение относится к антенной технике и предназначено для построения диаграммы направленности фазированных антенных решеток из состава антенных устройств систем радиосвязи или радиолокационных устройств. Сущность: в способе принимают сигналы посредством плоской антенной...
Тип: Изобретение
Номер охранного документа: 0002495447
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.7460

Устройство формирования диаграммы направленности активной фазированной антенной решетки

Изобретение относится к антенной технике и предназначено для формирования диаграммы направленности (ДН) в связных или радиолокационных активных фазированных антенных решетках (АФАР). Технический результат - расширение функциональных возможностей устройства за счет увеличения динамического...
Тип: Изобретение
Номер охранного документа: 0002495449
Дата охранного документа: 10.10.2013
Показаны записи 1-10 из 18.
10.09.2014
№216.012.f36a

Многолучевая зеркальная сканирующая антенна

Изобретение относится к области радиотехники и может быть использовано в приемных и радиолокационных системах. Техническим результатом является сокращение скорости вращения облучателей. Для этого предлагается многолучевая зеркальная сканирующая антенна, содержащая зеркало, выполненное в форме...
Тип: Изобретение
Номер охранного документа: 0002528136
Дата охранного документа: 10.09.2014
20.07.2015
№216.013.6240

Способ пеленгации источников радиоизлучения на одной частоте

Изобретение относится к радиотехнике, в частности к радиопеленгации. Достигаемый технический результат - отсутствие ограничений на применение способа по рабочему сектору углового положения источников радиоизлучений (ИРИ) и совокупности полученных реальных измерений; упрощение процесса получения...
Тип: Изобретение
Номер охранного документа: 0002556699
Дата охранного документа: 20.07.2015
10.11.2015
№216.013.8aba

Односферовая антенная система с частичной металлизацией радиопрозрачного защитного кожуха

Изобретение относится к антенной технике. Односферовая антенная система содержит радиопрозрачный защитный кожух с частичной металлизацией, выполненный в виде сферы. Часть внутренней поверхности сферы металлизирована и является зеркалом антенны. Сфера с использованием одношариковых подшипников...
Тип: Изобретение
Номер охранного документа: 0002567121
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8b01

Двухсферовая антенная система с частичной металлизацией радиопрозрачного защитного кожуха

Изобретение относится к антенной технике. Двухсферовая антенная система с частичной металлизацией радиопрозрачного защитного кожуха содержит первый радиопрозрачный защитный кожух, закрепляемый растяжками, зеркало антенны, выполненное металлизацией внутренней части второго радиопрозрачного...
Тип: Изобретение
Номер охранного документа: 0002567192
Дата охранного документа: 10.11.2015
20.12.2015
№216.013.9c3c

Антенная система

Изобретение относится к области радиотехники и может быть использовано при создании антенных систем, изготавливаемых с привлечением новых технологий. Технический результат - упрощение конструкции антенной системы и наведения антенны по азимуту и углу места, повышение качества фокусировки...
Тип: Изобретение
Номер охранного документа: 0002571621
Дата охранного документа: 20.12.2015
27.01.2016
№216.014.bc6a

Способ калибровки мобильного пеленгатора - корреляционного интерферометра с применением навигационной аппаратуры потребителя глобальной навигационной спутниковой системы

Изобретение относится к радиотехнике, в частности к радиопеленгации. Техническим результатом является уменьшение временных затрат на калибровку мобильного пеленгатора - корреляционного интерферометра при сохранении высокой точности калибровки. Указанный технический результат достигается за счет...
Тип: Изобретение
Номер охранного документа: 0002573819
Дата охранного документа: 27.01.2016
13.01.2017
№217.015.86cb

Способ пеленгования источника радиоизлучения

Изобретение относится к области радиотехнических систем определения угловых координат источника сигнала. Достигаемый результат - повышение точности пеленгования источника радиоизлучения широкополосного сигнала при сохранении единственности измерения сигналов на выходах пеленгационных каналов....
Тип: Изобретение
Номер охранного документа: 0002603356
Дата охранного документа: 27.11.2016
26.08.2017
№217.015.e2d6

Статичная антенная система

Изобретение относится к области радиотехники и может быть использовано при разработке и изготовлении статичных антенных систем спутниковых и радиорелейных линий связи, а также приемных антенных систем радиолокационных станций. Техническим результатом является создание антенной системы без...
Тип: Изобретение
Номер охранного документа: 0002626058
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e5a7

Способ определения местоположения воздушных объектов по сигналам их бортовых ответчиков систем контроля воздушного движения

Изобретение относится к радиотехнике и может быть использовано для определения местоположения воздушных объектов. Достигаемый технический результат - повышение качества обработки сигналов бортовых ответчиков систем контроля воздушного движения. Указанный результат достигается за счет операций,...
Тип: Изобретение
Номер охранного документа: 0002626765
Дата охранного документа: 01.08.2017
29.12.2017
№217.015.fc3d

Способ определения координат источника радиоизлучений с борта летательного аппарата по двум азимутальным пеленгам

Изобретение относится к радиотехнике и может быть использовано для определения местоположения источника радиоизлучения с борта летательного аппарата. Достигаемый технический результат - повышениее точности определения координат источников радиоизлучения УКВ диапазона на дальностях до...
Тип: Изобретение
Номер охранного документа: 0002638177
Дата охранного документа: 12.12.2017
+ добавить свой РИД