×
18.05.2018
218.016.51e1

Результат интеллектуальной деятельности: СПОСОБ АДАПТИВНОГО ВЫБОРА ОПТИМАЛЬНОГО ПАРАМЕТРА АЛГОРИТМА КОРРЕКЦИИ СИГНАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике связи и может быть использовано в системах передачи данных с адаптивной коррекцией сигналов для выбора параметра алгоритма коррекции. Техническим результатом является выбор оптимального параметра алгоритма коррекции сигналов без знания априорной информации с увеличенной точностью оценки α. Для этого, используя алгоритм R{} на основе поступившего тестового сигнала u(t) рассчитывают импульсную характеристику корректирующего фильтра h(t,α), с помощью которой, используя алгоритм R{}, корректируют поступившие тестовые сигналы u(t)…u(t), задержанные на интервал, равный длине информационного сигнала L, в результате чего получают откорректированные тестовые сигналы K(t,α)…K(t,α), определяют значения ошибки , определяют зависимость значения ошибки еe от параметра α путем изменения значения этого параметра, в результате чего получают массив значений параметров α…α, обеспечивающий соответствующее минимальное значение ошибки е…e для каждого откорректированного тестового сигнала K(t,α)…K(t,α), после чего из массива α…α осуществляют окончательный выбор оптимального значения параметра α. 3 ил.

Изобретение относится к технике связи и может быть использовано в системах передачи данных с адаптивной коррекцией сигналов для выбора параметра алгоритма коррекции.

Во многих системах передачи данных для компенсации искажений, внесенных каналом связи, применяют алгоритмы адаптивной коррекции сигналов. Для этого в передаваемый сигнал осуществляют периодические вставки известного на приемной стороне тестового сигнала. Такой подход используется, например, в стандарте авиационной передачи данных ARINC-635 [1].

Известно большое количество различных методов, алгоритмов и их модификаций, используемых для коррекции сигналов, например метод наименьших квадратов или алгоритм LMS [2], алгоритм RLS [3], метод регуляризации Тихонова [4]. Во всех этих и многих других алгоритмах для обеспечения устойчивости и сходимости вводят некоторый параметр, в частности параметр регуляризации (алгоритм RLS, метод регуляризации Тихонова), размер шага сходимости (алгоритм LMS). Выбор того или иного параметра оказывает существенное влияние не только на устойчивость решения, но и на вероятность ошибки на бит после демодуляции откорректированного сигнала, т.е. на помехоустойчивость.

Как известно, задача адаптивной коррекции сводится к решению двух уравнений, которые можно записать в следующей форме:

где K(t) - передаваемый тестовый сигнал, u(t) - принимаемый тестовый сигнал, Km(t) - передаваемый информационный сигнал, um(t) - принимаемый информационный сигнал, h(t) - импульсная характеристика канала, * - оператор свертки.

Из уравнения (1) получают приближенную импульсную характеристику канала в общем случае в виде:

а результат коррекции в этом случае можно записать в виде:

где R{} - некоторый алгоритм расчета, α1, α2 - параметры, используемые для устойчивости алгоритма. Отметим, что в большинстве практических случаев допустимо принять:

тогда вместо (5) запишем:

Известны различные способы выбора оптимального значения этого параметра.

Наиболее близким к заявленному техническому решению является способ невязки, описанный в [5]. Этот способ часто применяют для выбора параметра регуляризации в методе регуляризации Тихонова. В условиях (3) (6) способ невязки заключается в том, что, используя алгоритм R{} на основе поступившего тестового сигнала u0(t), рассчитывают импульсную характеристику канала h(t,α) и корректирующего фильтра hкоp(t,α), с помощью которой, используя некоторый алгоритм R{}, корректируют поступивший информационный сигнал um(t), в результате чего получают откорректированный информационный сигнал Km(t,α), после чего определяют значение ошибки е, в качестве которой служит разница среднеквадратичного уклонения откорректированного информационного сигнала Km(t,α), свернутого с рассчитанной импульсной характеристикой канала h(t,α), от принятого информационного сигнала um(t) и дисперсии шумовой составляющей Δu, т.е. , после чего определяют зависимость значения ошибки е от параметра α путем изменения значения этого параметра, в результате чего получают оптимальное значение параметра αopt, обеспечивающего минимальное значение ошибки е.

Недостатком прототипа является необходимость знания определенной априорной информации, а именно дисперсии шумовой составляющей, оценка которой является отдельной достаточно сложной задачей и имеет определенную погрешность. Кроме того, при вычислении значения ошибки е вносится дополнительная погрешность при свертке приближенных (рассчитанных) значений Km(t,α) и h(t,α).

Целью изобретения является выбор оптимального параметра алгоритма коррекции сигналов без знания априорной информации и без внесения дополнительной погрешности, т.е. увеличение точности оценки αopt.

Поставленная цель достигается тем, что способ адаптивного выбора оптимального параметра алгоритма коррекции сигналов, заключающийся в том, что, используя алгоритм R{} на основе поступившего тестового сигнала u0(t), рассчитывают импульсную характеристику корректирующего фильтра hкор(t,α), отличающийся тем, что с помощью импульсной характеристики корректирующего фильтра hкop(t,α), используя алгоритм R{}, корректируют поступившие тестовые сигналы u1(t)…un(t), задержанные на интервал, равный длине информационного сигнала LИ, в результате чего получают откорректированные тестовые сигналы K1(t,α)…Kn(t,α), определяют значения ошибки е1…еn, в качестве которой служит среднеквадратичное уклонение откорректированного тестового сигнала K1(t,α)…Kn(t,α) от образцового тестового сигнала K(t), т.е. , j=1…n, после чего определяют зависимость значения ошибки е1…еn от параметра α путем изменения значения этого параметра, в результате чего получают массив значений параметров α1…αn, обеспечивающих соответствующее минимальное значение ошибки е1…еn для каждого откорректированного тестового сигнала K1(t,α)…Kn(t,α), после чего из массива α1…αn осуществляют окончательный выбор оптимального значения параметра αopt, в качестве которого, в зависимости от конкретного алгоритма R{} и диапазона значений параметров α1…αn, берут среднее арифметическое значение или медианное значение из массива α1…αn.

На фиг. 1, 2 представлена структурная схема способа адаптивного выбора оптимального параметра алгоритма коррекции сигналов.

Она содержит:

1 - линию задержки;

2(1)-2(n) - блок обработки;

3 - блок выбора параметра.

В свою очередь каждый блок обработки 2(1)-2(n) содержит:

2.1 - блок расчета импульсной характеристики;

2.2 - корректирующий фильтр;

2.3 - блок оценки ошибки;

2.4 - решающее устройство.

Работа способа осуществляется следующим образом. На вход линии задержки 1 поступает сигнал, содержащий периодически повторяющиеся тестовые и информационные сигналы. Структура такого сигнала представлена на фиг. 3. При этом длина каждого тестового сигнала составляет LT, длина каждого информационного сигнала LИ. Количество отводов (выходов) линии задержки 1, равное n+1, может быть различным и выбирается исходя из конкретного применения. С каждого из n+1 выходов линии задержки 1 поступают тестовые сигналы u0(t)…un(t) длиной LT, задержанные на интервал, равный длине информационного сигнала LИ. При этом с 0-го выхода линии задержки 1 тестовый сигнал подают на первый вход каждого блока обработки 2(1)-2(n), на второй вход которых поступают тестовые с выходов 1…n линии задержки 1, а именно с 1-го выхода линии задержки 1 на второй вход блока обработки 2(1), со 2-го выхода линии задержки 1 на второй вход блока обработки 2(2) и т.д.

В каждом блоке обработки 2(1)-2(n) осуществляют следующее.

Поступивший с первого входа блока обработки 2(1)-2(n) тестовый сигнал u0 подают на вход блока расчета импульсной характеристики 2.1, с выхода которого импульсную характеристику корректирующего фильтра hкop(t,α) подают на первый вход корректирующего фильтра 2.2. При этом на второй вход корректирующего фильтра 2.2 подают соответствующий тестовый сигнал u1(t)…un(t), поступивший со второго входа блока обработки 2(1)-2(т). На выходе корректирующего фильтра 2.1 получают соответствующий откорректированный тестовый сигнал K1(t,α)…Kn(t,α), который подают на вход блока оценки ошибки 2.3. При этом в блоке расчета импульсной характеристики 2.1 и корректирующем фильтре 2.2 используют один и тот же алгоритм, обозначенный ранее как R{}. В блоке оценки ошибки 2.3 получают значение ошибки, в качестве которой служит среднеквадратичное уклонение откорректированного тестового сигнала K1(t,α)…Kn(t,α) от образцового тестового сигнала K(t), т.е., j=1…n. Полученное на выходе блока оценки ошибки 2.3 значение ошибки е1…еn подают на вход решающего устройства 2.4, в котором определяют зависимость значения ошибки е1…еn от параметра α путем изменения значения этого параметра на первом выходе решающего устройства 2.4 и передаче его на управляющие входы блока расчета импульсной характеристики 2.1 и корректирующего фильтра 2.2. В результате на втором выходе решающего устройства 2.4, являющегося выходом блока обработки 2(1)-2(n), получают значение параметра α1…αn, обеспечивающего минимальное значение ошибки е1…еn.

Полученные на выходе блоков обработки 2(1)-2(n) значения параметра, представляющие собой массив α1…αn, подают на соответствующие входы блока выбора параметра 3. В блоке выбора параметра 3 осуществляют окончательный выбор параметра α, получая на выходе оптимальное значение параметра αopt. В зависимости от конкретного алгоритма R{} и возможного диапазона значений параметров α1…αn, поступивших на входы блока выбора параметра 3, в качестве оптимального значения параметра αорt берут среднее арифметическое значение:

или медианное значение, соответствующее:

где массив α1'…αn’ соответствует отсортированным по возрастанию значениям α1…αn.

Техническим результатом является выбор оптимального параметра алгоритма коррекции сигналов с увеличенной точностью оценки αopt.

Список источников

1. ARINC Characteristic 635-4. HF Data Link Protocol. - Dec., 2003.

2. Джиган В.И. Адаптивная фильтрация сигналов: теория и алгоритмы. - М.: Техносфера, 2013. - 528 с.

3. Sayed А.Н. Adaptive filters. - New Jersey: Hoboken: John Wiley & Sons, Inc., 2008. - 786 c.

4. Тихонов A.H., Арсенин В.Я. Методы решения некорректных задач / Учебное пособие для вузов. - Изд. 3-е испр. - М.: Наука, 1986. - 288 с.

5. Верлань А.Ф., Сизиков B.C. Методы решеня интегральных уравнений с программами для ЭВМ. Справочное пособие. - Киев: Наукова думка, 1978. - 292 с.

Способ адаптивного выбора оптимального параметра алгоритма коррекции сигналов заключается в том, что используя алгоритм R{} на основе поступившего тестового сигнала u(t) рассчитывают импульсную характеристику корректирующего фильтра h(t,α), отличающийся тем, что с помощью импульсной характеристики корректирующего фильтра h(t,α), используя алгоритм R{}, корректируют поступившие тестовые сигналы u(t)…u(t), задержанные на интервал, равный длине информационного сигнала L, в результате чего получают откорректированные тестовые сигналы K(t,α)…K(t,α), определяют значения ошибки е…e, в качестве которой служит среднеквадратичное уклонение откорректированного тестового сигнала K(t,α)…K(t,α) от образцового тестового сигнала K(t), т.е. , j=1…n, после чего определяют зависимость значения ошибки е…e от параметра α путем изменения значения этого параметра, в результате чего получают массив значений параметров α…α, обеспечивающий соответствующее минимальное значение ошибки е…e для каждого откорректированного тестового сигнала K(t,α)…K(t,α), после чего из массива α…α осуществляют окончательный выбор оптимального значения параметра α, в качестве которого, в зависимости от конкретного алгоритма R{} и диапазона значений параметров α…α, берут среднее арифметическое значение или медианное значение из массива α…α.
СПОСОБ АДАПТИВНОГО ВЫБОРА ОПТИМАЛЬНОГО ПАРАМЕТРА АЛГОРИТМА КОРРЕКЦИИ СИГНАЛОВ
СПОСОБ АДАПТИВНОГО ВЫБОРА ОПТИМАЛЬНОГО ПАРАМЕТРА АЛГОРИТМА КОРРЕКЦИИ СИГНАЛОВ
СПОСОБ АДАПТИВНОГО ВЫБОРА ОПТИМАЛЬНОГО ПАРАМЕТРА АЛГОРИТМА КОРРЕКЦИИ СИГНАЛОВ
СПОСОБ АДАПТИВНОГО ВЫБОРА ОПТИМАЛЬНОГО ПАРАМЕТРА АЛГОРИТМА КОРРЕКЦИИ СИГНАЛОВ
СПОСОБ АДАПТИВНОГО ВЫБОРА ОПТИМАЛЬНОГО ПАРАМЕТРА АЛГОРИТМА КОРРЕКЦИИ СИГНАЛОВ
Источник поступления информации: Портал edrid.ru

Показаны записи 1-2 из 2.
26.08.2017
№217.015.eb3d

Способ установления тактовой синхронизации по информационным сигналам на основе результатов декодирования

Изобретение относится к радиосвязи и может быть использовано в системах передачи данных, использующих фазоманипулированные сигналы, без введения избыточности, для поддержания тактовой синхронизации для сигналов с фазовой манипуляцией (ФМн) или квадратурно-амплитудной модуляцией (КАМ), в кодовых...
Тип: Изобретение
Номер охранного документа: 0002628263
Дата охранного документа: 15.08.2017
20.01.2018
№218.016.1931

Способ установления битовой синхронизации псевдослучайных последовательностей с использованием принципов декодирования

Изобретение относится к технике связи и может быть использовано в системах передачи данных. Техническим результатом является уменьшение времени на установление битовой синхронизации между принимаемой псевдослучайной последовательностью и последовательностью, вырабатываемой в приемнике, при...
Тип: Изобретение
Номер охранного документа: 0002636094
Дата охранного документа: 20.11.2017
Показаны записи 11-20 из 117.
20.11.2014
№216.013.068c

Способ передачи информации с внутрисимвольной псевдослучайной перестройкой рабочей частоты

Изобретение относится к технике связи и может быть использовано в системах передачи данных с повышенными требованиями к разведзащищенности и защите от организованных и непреднамеренных помех. Техническим результатом способа является повышение скорости передачи информации по сравнению с...
Тип: Изобретение
Номер охранного документа: 0002533077
Дата охранного документа: 20.11.2014
27.12.2014
№216.013.161c

Способ определения затухания переменного электромагнитного поля в космическом пространстве

Изобретение относится к измерительной технике и может быть использовано для определения электрических параметров космического пространства. Способ заключается в том, что размещают в космическом пространстве зонд, представляющий собой плоский открытый конденсатор, затененный от солнечной...
Тип: Изобретение
Номер охранного документа: 0002537084
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1b6d

Способ увеличения дальности высокоскоростных открытых оптических каналов связи с подводными объектами

Настоящее изобретение относится к области оптической связи. Согласно способу используют лазерный луч, который состоит из импульсов длительностью не менее 1 нс, которые формируют из множества волн путем фазовой синхронизации и интерференции. Импульсы лазерного излучения длительностью 1 нс и...
Тип: Изобретение
Номер охранного документа: 0002538449
Дата охранного документа: 10.01.2015
27.02.2015
№216.013.2c93

Ключевой усилитель мощности

Изобретение относится к области электрорадиотехники, а именно к ключевым усилителям высокой частоты, и может быть использовано в радиопередатчиках. Технический результат изобретения заключается в улучшении линейности усиления ключевых усилителей мощности за счет существенного снижения уровня...
Тип: Изобретение
Номер охранного документа: 0002542879
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2ca8

Способ установления синхронизации псевдослучайных последовательностей

Изобретение относится к технике связи и может быть использовано в системах передачи данных. Технический результат - быстрое установление синхронизации псевдослучайных последовательностей при малой вероятности ложной синхронизации при наличии ошибок в принятой последовательности. Для этого из...
Тип: Изобретение
Номер охранного документа: 0002542900
Дата охранного документа: 27.02.2015
10.04.2015
№216.013.4097

Интегрированный комплекс связи надводного корабля

Изобретение относится к технике связи и может использоваться для обеспечения корабельного руководства оперативно-тактической связью и связью взаимодействия. Технический результат состоит в повышении качества каналов передачи и приема информации, надежности и живучести комплекса. Для этого...
Тип: Изобретение
Номер охранного документа: 0002548023
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.40a0

Способ оценивания отношения сигнал/шум при использовании сигналов с фазовой модуляцией

Изобретение относится к технике радиосвязи и может быть использовано в системах передачи данных для оценки качества канала связи. Способ оценивания отношения сигнал/шум (ОСШ) при использовании при передаче данных сигналов с фазовой модуляцией основывается на восстановлении плотности...
Тип: Изобретение
Номер охранного документа: 0002548032
Дата охранного документа: 10.04.2015
10.05.2015
№216.013.4a6e

Широкополосный усилитель мощности коротковолнового диапазона

Изобретение относится к радиоэлектронике и может быть использовано в широкополосных радиопередатчиках. Технический результат заключается в преобразовании энергии высших гармоник в энергию постоянного тока и возвращении этой энергии источнику питания. В усилителе используют мостовую схему...
Тип: Изобретение
Номер охранного документа: 0002550561
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4c93

Система открытой оптической связи

Изобретение относится к технике открытой оптической связи и может быть использовано для связи между абонентами находящихся в отсеках кораблей, судов, а также между кораблями и берегом. Технический результат состоит в повышении помехоустойчивости, надежности и увеличения дальности связи. Для...
Тип: Изобретение
Номер охранного документа: 0002551117
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d83

Способ передачи информации в сдв диапазоне

Изобретение относится к технике связи и может использоваться для передачи информации в СДВ диапазоне. Технический результат состоит в обеспечении связи с подводными объектами. Для этого передают информацию в СДВ диапазоне путем амплитудной модуляции несущей частоты коротковолнового передатчика...
Тип: Изобретение
Номер охранного документа: 0002551357
Дата охранного документа: 20.05.2015
+ добавить свой РИД