×
18.05.2018
218.016.51b0

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002653165
Дата охранного документа
07.05.2018
Аннотация: Изобретение относится к измерительной технике и предназначено для использования в океанографии. Заявлен способ измерения температуры и показателей термической инерции оболочек контактного датчика температуры. Для этого используют три датчика, состоящих из чувствительных элементов с разными показателями термической инерции, помещенных во внешние оболочки с одинаковыми значениями теплового фактора и внутренней теплопроводящей средой с разными показателями термической инерции. По значениям текущей температуры чувствительных элементов датчиков θ, θ и 0 определяют текущую температуру среды θ, текущий показатель термической инерции внешней оболочки датчиков ε, чувствительных элементов ε, ε и ε, внутренних оболочек ε, ε и ε с использованием решений x системы линейных алгебраических уравнений вида a

Изобретение относится к измерительной технике, предназначено для применения в океанографии и может быть использовано для точного измерения нестационарных температур и физических параметров среды, влияющих на теплообмен датчиков со средой.

Известны способы Г. Пфрима и их развитие для измерения динамической температуры и коэффициента теплообмена датчика со средой с использованием двух разных по динамическим параметрам датчиков, эквивалентных инерционным звеньям первого и второго порядка [Ярышев Н.А. Теоретические основы измерения нестационарной температуры. - 2-е изд., перераб. - Л.: Энергоатомиздат. Ленингр. отд-ние, 1990. - 256 с.: ил. ISBN 5-283-04474-2].

Однако практическая реализация этих способов затруднена из-за необходимости знания конструктивных параметров датчиков, определяющих их инерционные показатели. Идентификация этих параметров затруднена и не возможна в известных способах. Это ограничивает точность динамических измерений и метрологическую долговечность.

Реальные датчики содержат чувствительный элемент, помещенный в защитную оболочку, заполненную теплопроводящим наполнителем. Моделью таких датчиков является последовательное включение трех инерционных звеньев первого порядка.

Целью предлагаемого изобретения является повышение точности динамических измерений температуры и метрологической долговечности за счет определения показателей термической инерции чувствительных элементов и оболочек датчика в рабочем режиме.

Эта цель достигается тем, что используют три датчика, состоящих из чувствительных элементов с разными показателями термической инерции и помещенных во внешние оболочки с одинаковыми значениями теплового фактора и внутренней теплопроводящей средой (наполнителем) с разными показателями термической инерции, помещают датчики в среде измерения с одинаковыми условиями обтекания потоком для обеспечения равенства коэффициентов конвективного теплообмена внешних оболочек датчиков со средой, измеряют одновременно текущие температуры чувствительных элементов датчиков θt1, θt2 и θt3, определяют текущую температуру среды θtc по формуле

,

текущий показатель термической инерции внешней оболочки датчиков εt3 по формуле

,

показатели термической инерции внутренних чувствительных элементов датчиков

первого ,

второго ,

третьего ,

показатели термической инерции внутренних оболочек (наполнителей) датчиков

первого εl2=x111,

второго ε22=x321,

третьего ε32=x531,

где ,

,

,

,

,

,

,

xj из решения системы линейных алгебраических уравнений вида

, , N≥18,

где ,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

.

Конструкция датчика температуры с тремя чувствительными элементами показана на фиг. 1. Структурная схема устройства измерения температуры и показателя термической инерции оболочек датчиков показана на фиг. 2.

Рассмотрим суть предлагаемого способа. Запишем уравнение теплового баланса для пассивного датчика, имеющего две оболочки вокруг чувствительного элемента (ЧЭ) и три поверхности теплообмена, в показателях термической инерции этих поверхностей. Этим уравнением будет инерционное звено 3-го порядка.

Для инерционного звена 1-го порядка, соответствующего ЧЭ датчика без оболочки, известно [Ярышев Н.А. Теоретические основы измерения нестационарной температуры. - 2-е изд., перераб. - Л.: Энергоатомиздат. Ленингр. отд-ние, 1990. - 256 с.: ил. ISBN 5-283-04474-2] уравнение

где θtc - текущая температура внешней среды, как первой оболочки ЧЭ;

θt1 - текущая температура ЧЭ;

εt1 - показатель термической инерции ЧЭ, зависит от времени, поскольку он зависит от переменного коэффициента теплообмена αt1 ЧЭ со средой, причем , где m1 - масса ЧЭ; c1 - удельная теплоемкость;

S1 - площадь поверхности контакта ЧЭ со средой. Значение является консервативным конструктивным параметром, иногда называемым тепловым фактором [Азизов A.M., Гордов А.Н. Точность измерительных преобразователей. - Л.: Энергия, 1974. - 256 с]. Его нельзя определить экспериментально, в отличии от показателя термической инерции εt1.

При помещении ЧЭ в некую первую оболочку (в нашем случае - наполнитель с показателем тепловой инерции εt2), которая занимает место внешней среды по температуре θt2, и температура θtc внешней среды отсчитывается от температуры θt3 и вместо формулы (1) можем записать

При этом из формулы (1)

с учетом замены εt1 на ε1, поскольку показатель тепловой инерции ε1 ЧЭ стал внутренним консервативным из-за квазипостоянства коэффициента теплообмена αt1→α1 ЧЭ с первой оболочкой.

Дифференцируем выражение (3) и находим

Подставляем выражения для θt2 и в выражение (2) и получим

Помещаем ЧЭ в первой оболочке из наполнителя во вторую оболочку (трубку) с показателем тепловой инерции εt3 и температурой θt3.

Для температуры внешней среды θt4tc по аналогии с выражениями (2-4) запишем

В выражении (8) показатели термической инерции ЧЭ ε1 и наполнителя ε2 являются консервативными и их можно считать постоянными на некотором отрезке времени, показатель термической инерции внешней оболочки εt3 изменяется во времени из-за изменчивости коэффициента αt3 теплообмена с внешней средой и подлежит определению в текущем времени. Запишем выражение (8), выделив неизвестные θtc и εt3

Для достижения поставленной цели используем три датчика, у которых показатели εt3 совпадают, а показатели ε1 и ε2 различаются. Обозначим их ε11, ε12, ε21, ε22, ε31, ε32.

Обозначим вычисляемые из измерений величины

при εi1i2=bi1, εi1εi2=bi2.

- номер датчика.

Для трех датчиков получим систему уравнений относительно неизвестных θtc и εt3

Первое и второе уравнения из системы (12) дают расширенную матрицу вида

и первые значения для неизвестных

Первое и третье уравнение из системы (12) дают расширенную матрицу вида

и вторые значения для неизвестных

Эти пары значений неизвестных для одного и того же момента времени при отсутствии погрешностей измерений температур ЧЭ и определения их производных должны совпадать. Поскольку указанные погрешности всегда имеют место, то совпадения не будет и целесообразно за оценки неизвестных взять средние из двух полученных выше значений

Для нахождения показателей термической инерции внутренних оболочек датчиков после изготовления или в рабочем режиме приравняем выражения для и

Подставляя выражения для At1, At2, At3 и Ct1, Ct2, Ct3 в (21) получим

За счет отсчетов во времени сформируем систему линейных алгебраических уравнений, для чего раскрываем скобки, приводим подобные, группируем неизвестные и коэффициенты при них, вводим обозначения для новых неизвестных

Для коэффициентов при неизвестных получим

Для свободных членов запишем . Получили систему линейных алгебраических уравнений вида

Представляют интерес шесть первых неизвестных xi , остальные неизвестные xj являются избыточными, но могут вычисляться для контроля правильности решений.

После нахождения xi получим

Во второе выражение подставляем ε12=x111 и получаем

По аналогии получим

Таким образом, предложенный способ позволяет измерять без динамической погрешности текущую температуру среды θtc, общий для трех датчиков текущий показатель термической инерции внешней оболочки датчиков εt3, а также квазипостоянные медленно изменяющиеся показатели термической инерции чувствительных элементов ε11, ε21, ε31 и наполнителей ε12, ε22, ε32, что обеспечивает метрологическую долговечность.

Устройство для осуществления предложенного способа, в отличии от известных, должно содержать три датчика температуры из чувствительных элементов в трубках с наполнителем, конструкция которых должна обеспечивать различие показателей термической инерции ε11, ε21, ε31 чувствительных элементов и наполнителей ε12, ε22, ε32 и равенство текущих показателей термической инерции внешних оболочек εt13t13t33t3.

Указанные требования удовлетворяются, если конструкцию датчиков выполнить так, как это показано на чертеже фиг. 1.

Чувствительные элементы 1, 2 и 3 распределены на равных участках внутри общей трубки 4, заполненной теплопроводящей средой (наполнителем) 5. Различие в показателях термической инерции ε11, ε21, ε31 распределенных чувствительных элементов достигается изменением их массы (соответственно и объема), например, за счет укладки разного количества продольных петель пассивного провода 6. Это автоматически, за счет изменения объема в трубке с фиксированным внутренним диаметром обеспечивает различие в показателях термической инерции наполнителей ε11, ε22, ε32. Поскольку внешние оболочки всех чувствительных элементов идентичны и одинаково расположены в потоке во внешней среде, то тепловой фактор и конвективный коэффициент теплообмена с внешней средой αt3(t) для всех датчиков совпадают, следовательно, равны и показатели термической инерции внешних оболочек .

Устройство для осуществления предложенного способа (фиг. 2) кроме трех датчиков 1i с указанными выше отличиями содержит также электронику обрамления, которая может быть выполнена известным образом, например, в составе вторичных измерительных преобразователей 2i, аналого-цифровых преобразователей 3i и микропроцессора 4 . Устройство работает параллельным опросом датчиков, преобразованием их параметров в код и вычислением измеряемых величин по предложенному способу.


СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ПОКАЗАТЕЛЕЙ ТЕРМИЧЕСКОЙ ИНЕРЦИИ ОБОЛОЧЕК КОНТАКТНОГО ДАТЧИКА ТЕМПЕРАТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Портал edrid.ru

Показаны записи 1-10 из 13.
18.05.2018
№218.016.5053

Способ охлаждения воды систем оборотного водоснабжения с помощью кольцевых каверно-артериальных устройств

Изобретение относится к способам охлаждения воды систем оборотного водоснабжения (СОВ) с помощью кольцевых каверно-артериальных устройств. Способ охлаждения воды систем оборотного водоснабжения с помощью кольцевых каверно-артериальных устройств заключается в том, что охлаждающая вода...
Тип: Изобретение
Номер охранного документа: 0002653040
Дата охранного документа: 04.05.2018
29.05.2018
№218.016.5583

Устройство для измерения удельной электропроводности жидких сред

Устройство предназначено для измерения удельной электропроводности морской воды непосредственно в среде и может использоваться для измерения в других жидкостях. Сущность изобретения заключается в том, что устройство для измерения удельной электропроводности жидких сред содержит источник тока,...
Тип: Изобретение
Номер охранного документа: 0002654316
Дата охранного документа: 17.05.2018
25.06.2018
№218.016.65a7

Устройство для измерения удельной электропроводности жидких сред

Устройство предназначено для измерения удельной электропроводности морской воды непосредственно в среде и может использоваться для измерения в других жидкостях. Сущность изобретения заключается в том, что устройство для измерения удельной электропроводности жидких сред содержит датчик с...
Тип: Изобретение
Номер охранного документа: 0002658498
Дата охранного документа: 21.06.2018
08.07.2018
№218.016.6e68

Способ дискретизации и восстановления непрерывного сигнала

Изобретение относится к области измерительной технике и предназначено для использования в системах контроля окружающей среды и технологических процессов. При дискретизации отсчеты берут пакетами по m отсчетов с задержками от первого , последовательность из N пакетов отсчетов регистрируют или...
Тип: Изобретение
Номер охранного документа: 0002660320
Дата охранного документа: 05.07.2018
11.10.2018
№218.016.90dd

Устройство для изменения плавучести подводного аппарата

Изобретение относится к технике освоения океана, а именно к подводным аппаратам с изменяемой плавучестью. Предложено устройство для изменения плавучести подводного аппарата, содержащее герметичный корпус, гидравлический приводной насос, перемещаемую рабочую жидкость, трубопроводы, управляемые...
Тип: Изобретение
Номер охранного документа: 0002668937
Дата охранного документа: 04.10.2018
13.10.2018
№218.016.91b9

Устройство изменения плавучести подводного аппарата

Изобретение относится к технике освоения океана, а именно к подводным аппаратам с изменяемой плавучестью. Устройство изменения плавучести подводного аппарата расположено в герметичном корпусе и содержит гидравлический приводной насос, перемещаемую рабочую жидкость, трубопроводы, управляемые...
Тип: Изобретение
Номер охранного документа: 0002669468
Дата охранного документа: 11.10.2018
30.11.2018
№218.016.a214

Теплонасосный опреснитель солёной воды

Изобретение относится к установкам для опреснения соленой воды, а именно к созданию теплонасосного опреснителя соленой воды, и может быть использовано для локального водоснабжения пресной водой населенных пунктов, жилищных, общественных и промышленных зданий. Теплонасосный опреснитель соленой...
Тип: Изобретение
Номер охранного документа: 0002673518
Дата охранного документа: 27.11.2018
16.03.2019
№219.016.e1bf

Способ определения показателя тепловой инерции датчиков температуры

Изобретение предназначено для применения в океанологии и может использоваться в других областях. Сущность изобретения заключается в том, что используют анализ переходного процесса после подачи ступенчатого воздействия, при этом используют совместно два датчика, первый из них с неизвестным...
Тип: Изобретение
Номер охранного документа: 0002682073
Дата охранного документа: 14.03.2019
17.03.2019
№219.016.e2d5

Способ измерения профилей температуры, давления и плотности в жидкости

Изобретение предназначено для применения в океанологии и может использоваться в других областях. Сущность изобретения заключается в том, что используют распределенные термопрофилемеры, содержащие по n модулированных по погонной чувствительности по функциям {
Тип: Изобретение
Номер охранного документа: 0002682080
Дата охранного документа: 14.03.2019
25.12.2019
№219.017.f1dd

Датчик удельной электропроводности

Изобретение относится к области измерительной техники, а именно к контактным датчикам электропроводности СТД-зондов, и предназначено для измерения удельной электропроводности морской воды непосредственно в среде. Сущность изобретения заключается в том, что датчик удельной электропроводности,...
Тип: Изобретение
Номер охранного документа: 0002709928
Дата охранного документа: 24.12.2019
Показаны записи 1-10 из 17.
10.04.2015
№216.013.40f5

Способ определения профиля скорости звука и профиля скорости потока в газообразных и жидких средах

Изобретение относится к измерительной технике и предназначено для использования в гидрометеорологии для измерения профилей скорости звука и профилей скорости ветра в атмосфере и течения в водных потоках. Технический результат - возможность одновременного измерения профиля составляющих...
Тип: Изобретение
Номер охранного документа: 0002548117
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.40fb

Способ измерения параметров газовых и жидких сред

Изобретение относится к измерительной технике и может быть использовано для измерения параметров потоков жидкостей и газов. Техническим результатом изобретения является повышение точности измерения и расширение функциональных возможностей способа. Способ измерения параметров газовых и жидких...
Тип: Изобретение
Номер охранного документа: 0002548123
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4103

Способ определения pн жидкости и устройство для его осуществления

Изобретение относится к измерительной технике и предназначено для использования в гидрологии и химическом анализе жидкостей. Технический результат - исключение фактора влияния температуры жидкости на результат измерений, что повышает точность определения рН жидкости. Сущность: Согласно...
Тип: Изобретение
Номер охранного документа: 0002548131
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.4556

Способ измерения временных интервалов и устройство для его осуществления

Изобретение относится к области измерительной информационной техники и предназначено для использования в тех областях, где необходимо точное и высокоскоростное аналого-цифровое преобразование сигналов. Технический результат изобретений заявленной группы - повышение точности измерения коротких...
Тип: Изобретение
Номер охранного документа: 0002549248
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4559

Способ измерения скорости направленного потока жидкости или газа

Изобретение может быть использовано для измерения скорости течений и ветра, а также расхода жидкостей и газа в трубопроводах. Технический результат - повышение точности, упрощение технической реализации способа измерения скорости потока и расширение областей применения. Сущность: для...
Тип: Изобретение
Номер охранного документа: 0002549251
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.455d

Цифровой измеритель температуры

Изобретение относится к измерительной технике и предназначено для измерения температуры контактными резисторными датчиками в окружающей среде и в технологических процессах. Техническим результатом изобретения является повышение точности за счет уменьшения динамической погрешности измерения,...
Тип: Изобретение
Номер охранного документа: 0002549255
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.455e

Способ измерения параметров потоков жидкостей и газов

Изобретение относится к измерительной технике и может быть использовано для измерения физических параметров и скорости потоков жидкостей и газов. Техническим результатом изобретения является повышение точности измерения и повышение быстродействия способа. Суть способа состоит в том, что в...
Тип: Изобретение
Номер охранного документа: 0002549256
Дата охранного документа: 20.04.2015
26.08.2017
№217.015.e4ae

Устройство для измерения двигательной активности створок моллюсков

Устройство включает лотки, в каждом из которых установлен моллюск и преобразователь перемещения его свободной створки, который содержит датчик Холла, взаимодействующий с постоянным магнитом, связанным со свободной створкой моллюска. Выходы датчиков Холла подключены к коммутатору, подключенному...
Тип: Изобретение
Номер охранного документа: 0002625673
Дата охранного документа: 18.07.2017
26.08.2017
№217.015.eaf7

Способ измерения изменения профиля поля физической величины

Изобретение относится к способам контактного изменения профиля физической величины в различных средах, в частности профиля температуры в море или атмосфере. При осуществлении способа измерения изменения профиля поля физической величины используют распределенные датчики с переменной погонной...
Тип: Изобретение
Номер охранного документа: 0002627979
Дата охранного документа: 14.08.2017
26.08.2017
№217.015.ebda

Способ адаптивного аналого-цифрового преобразования и устройство для его осуществления

Группа изобретений относится к измерительной технике. Технический результат - обеспечение заданной точности аналого-цифрового преобразования за счет обеспечения контролируемого уменьшения или исключения погрешности дискретного представления сигнала путем управления частотой дискретизации. Для...
Тип: Изобретение
Номер охранного документа: 0002628261
Дата охранного документа: 15.08.2017
+ добавить свой РИД