×
18.05.2018
218.016.5072

Результат интеллектуальной деятельности: СПОСОБ ЭЛЕКТРОЭРОЗИОННОЙ ОБРАБОТКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области машиностроения и может быть использовано при проектировании технологической оснастки для электроэрозионной обработки поверхностей. В способе электроэрозионную обработку осуществляют при вращении двух соединенных с токоподводами электродов, один из электродов является заготовкой, а второй - инструментом с подведенным к нему трубопроводом для подачи диэлектрической жидкости. Для вращения электродов используют соосно установленные с ними приводы. Электродам обеспечивают возможность крутильных колебаний, соединяя их с неподвижной частью технологической системы упругими элементами. На приводах создают импульсы крутящего момента, а регулировкой их мощности и частоты следования устанавливают амплитуду крутильных колебаний электродов не менее одного полного оборота. В способе используют токоподводы и трубопровод для подачи диэлектрической жидкости, изготовленные в виде упругих элементов, совершающих крутильные колебания вместе с электродами, к которым их присоединяют при помощи неподвижных соединений. Технический результат: упрощение электроэрозионной обработки с вращающимися электродами путем упрощения конструкции и повышения надежности технологической оснастки. 1 ил.

Предлагаемое изобретение относится к области машиностроения и может быть использовано при проектировании технологической оснастки для электроэрозионной обработки поверхностей.

Электроэрозионная обработка (ЭЭО) основана на удалении припуска с заготовки путем эрозии металла под воздействием последовательных электрических импульсов. Электрические импульсы генерируются в межэлектродном промежутке (МЭП), т.е. в ограниченном пространстве между двумя электродами, одним из которых является заготовка, а вторым - электрод-инструмент (ЭИ). ЭЭО обычно ведут в среде диэлектрической жидкости, в которую погружают заготовку и ЭИ. Существенным недостатком ЭЭО является то, что при обработке происходит эрозия не только заготовки, но и самого ЭИ, что приводит к погрешностям размера и формы обрабатываемой поверхности.

Известны способы электроэрозионной обработки некоторых типов поверхностей, например, плоских, цилиндрических или сферических, при реализации которых эрозия ЭИ не влияет на форму поверхности. Дополнительным условием для этого является организация дополнительных формообразующих движений, в частности вращение ЭИ [Шадуя В.Л. Современные методы обработки материалов в машиностроении: учеб. пособие / В.Л. Шадуя. - Минск: Техноперспектива, 2008, стр. 150-155, рис. 4.9г, е]. При работе вращающимся ЭИ во многих случаях ЭЭО можно вести без погружения электродов в диэлектрическую жидкость, обеспечивая заполнение МЭП принудительной подачей жидкости в полость ЭИ. Для вращения ЭИ требуются достаточно сложные дополнительные устройства - головки. Так, шлифовальная головка для ЭЭО [Размерная электрическая обработка металлов: Учеб. пособие для студентов вузов / Б.А. Артамонов, А.Л. Вишницкий, Ю.С. Волков, А.В. Глазков; Под ред. А.В. Глазков. - М.: Высш. школа, 1978. - стр. 189-190, рис 113.], помимо электропривода содержит токосъемное устройство для передачи электрической энергии на вращающиеся электроды. Диэлектрическую жидкость от подводящего трубопровода на вращающийся ЭИ в таких устройствах приходится подавать при помощи специальных сальниковых устройств с герметизирующими уплотнениями.

Известны также способы электроэрозионной обработки, в которых для достижения точности формы обрабатываемых поверхностей во вращательное движение приводится не только ЭИ, но и заготовка. Примером такого устройства является принятое в качестве прототипа техническое решение, в котором для электроэрозионного формообразования сферических поверхностей во вращение приводятся и электрод-инструмент (ЭИ), и заготовка [а.с. №442909 СССР, с приоритетом от 1974 г.]. Для вращения заготовки требуется еще одно вращательное устройство. Кроме того, помимо токосъемника и сальникового устройства на приводе ЭИ, в этом случае для передачи электрических импульсов на вращающуюся заготовку необходимо использовать еще одно токосъемное устройство. Наличие токосъемных устройств и герметизирующих сальниковых уплотнений усложняет конструкцию технологической оснастки и повышает ее стоимость, из-за трения между движущимися частями происходит изнашивание устройств и снижается их надежность.

Техническим результатом предлагаемого технического решения является упрощение конструкции и повышение надежности технологической оснастки, используемой при электроэрозионной обработке с вращением электродов путем замены изнашивающихся подвижных соединений неподвижными. Для достижения результата используется такое положительное качество ЭЭО с вращающимися электродами как индифферентность процесса обработки по отношению к направлению и частоте вращения электродов.

Технический результат достигается тем, что электроэрозионную обработку производят при вращении двух соединенных с токоподводами электродов, одним из электродов является заготовка, а вторым - инструмент с подведенным к нему трубопроводом для подачи диэлектрической жидкости. Для вращения электродов используются соосно установленные с ними приводы. Электродам обеспечивают возможность крутильных колебаний, соединяя их с неподвижными корпусами приводов упругими элементами. На приводах создают импульсы крутящего момента, регулировкой мощности и частоты следования которых устанавливают амплитуду крутильных колебаний электродов не менее одного полного оборота. Токоподводы и трубопровод для подачи диэлектрической жидкости также изготавливают в виде упругих элементов, совершающих крутильные колебания вместе с электродами, к которым их присоединяют при помощи неподвижных соединений.

Величина амплитуды крутильных колебаний самостоятельного влияния на ход ЭЭО не оказывает, но для создания условий правильного профилирования поверхностей ЭИ и заготовки, она должна быть не менее одного полного оборота. Частота крутильных колебаний электродов также не оказывает самостоятельного влияния на ЭЭО. Поэтому для создания оптимального режима обработки, регулировкой частоты импульсов крутящего момента обеспечивают их соответствие собственной частоте крутильных колебаний электродов, зависящей от инерционных характеристик вращающихся частей и жесткости упругих элементов, в этом случае для создания необходимой амплитуды крутильных колебаний необходима наименьшая мощность приводов. При работе в режиме крутильных колебаний среднее положение электродов неизменно, а угловые отклонения от него незначительны. Это исключает необходимость токосъемных устройств и герметизирующего сальникового уплотнения и позволяет прикрепить к электродам токоподводы и трубопровод надежным неподвижным соединением. Для этого токоподводы и трубопровод выполняют гибкими, способными участвовать в крутильных колебаниях, не препятствуя им.

На фиг. 1 показана схема реализации способа электроэрозионной обработки вращающейся заготовки вращающимся трубчатым электродом-инструментом, где:

1 - электрод-инструмент (ЭИ);

2 - привод;

3 - упругий элемент;

4 - токоподводы

5 - трубопровод для подвода диэлектрической жидкости;

6 – заготовка.

Электроэрозионную обработку производят следующим образом. Электрод-инструмент 1 присоединяют к приводу 2 и упругому элементу 3, выполненному, например, в виде цилиндрической пружины. Упругий элемент 3 ограничивает круговое перемещение ЭИ 1, сопротивляясь ему крутящим моментом, возрастающим пропорционально углу поворота и стремящимся вернуть ЭИ 1 в исходное положение. Аналогично соединяют с таким же приводом и упругим элементом заготовку 6 (на фиг. 1 не показаны).

На приводах 2 формируются импульсы крутящего момента, чередующиеся с некоторой частотой. Во время действия единичного импульса крутящего момента ротор привода 2 вместе с ЭИ 1 поворачивается из исходного положения в одном из направлений на определенный угол, ограничиваемый упругим элементом 3. После завершения импульса крутящего момента под воздействием упругого элемента 3 ротор не только возвращается в исходное положение, но по инерции смещается на некоторый угол в обратном направлении. Под воздействием очередного и последующих импульсов крутящего момента рассмотренный цикл повторяется, т.е. ЭИ 1 приходит в режим устойчивых крутильных колебаний. Возможна подача на привод реверсируемых импульсов крутящего момента, что на режим ЭЭО принципиально не влияет.

Регулировкой частоты следования импульсов крутящего момента добиваются близости ее к частоте собственных крутильных колебаний системы, т.е. приводят ее в состояние резонанса, а регулировкой мощности единичных импульсов обеспечивают оптимальную амплитуду колебаний не менее одного полного оборота электродов относительно среднего положения в каждую сторону.

Напряжение для ЭЭО подводят к ЭИ 1 и заготовке 6 при помощи токоподводов 4, которые выполняют достаточно гибкими, чтобы не препятствовать совершению электродами крутильных колебаний.

Для подвода диэлектрической жидкости к входному отверстию в ЭИ 1 при помощи неподвижного соединения герметично прикрепляют трубопровод 5, которому также обеспечивают достаточную гибкость для участия в крутильных колебаниях. Подвод к заготовке 6 диэлектрической жидкости обычно не требуется, но в случае необходимости она может быть подведена аналогичным образом.

Предложенное техническое решение обеспечивает достижение необходимого технического результата, так как существенно упрощает конструкцию оснастки, позволяет исключить сложные подвижные соединения в виде токосъемников и сальникового уплотнительного устройства, работающие в режиме трения скольжения. Отсутствие подвижных соединений, кроме того, повышает надежность технологической оснастки, используемой при электроэрозионной обработке с вращением электродов.

Способ электроэрозионной обработки, включающий вращение двух соединенных с токоподводами электродов, одним из которых является заготовка, а вторым - инструмент с подведенным к нему трубопроводом для подачи диэлектрической жидкости, при использовании для вращения электродов располагаемых соосно с ними приводов, отличающийся тем, что обеспечивают возможность крутильных колебаний электродов путем соединения их с неподвижными корпусами приводов упругими элементами, при этом на валах приводов создают импульсы крутящего момента, регулировкой мощности и частоты следования которых устанавливают амплитуду крутильных колебаний электродов не менее одного полного оборота, причем используют токоподводы и трубопровод для подачи диэлектрической жидкости, изготовленные в виде упругих элементов, совершающих крутильные колебания вместе с электродами, к которым их присоединяют при помощи неподвижных соединений.
СПОСОБ ЭЛЕКТРОЭРОЗИОННОЙ ОБРАБОТКИ
Источник поступления информации: Портал edrid.ru

Показаны записи 311-320 из 796.
29.05.2018
№218.016.5679

Способ отверждения органических жидких радиоактивных отходов

Изобретение относится к области охраны окружающей среды, в частности к процессам отверждения органических ЖРО. Способ отверждения органических жидких радиоактивных отходов (ЖРО) заключается в соединении ЖРО с отвердителем, содержащим парафин, нагревании полученной смеси и выдерживании до...
Тип: Изобретение
Номер охранного документа: 0002654542
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.5700

Способ герметизации блока охлаждения активного элемента в твердотельном лазере

Изобретение относится к лазерной технике. Способ герметизации блока охлаждения активного элемента в твердотельном лазере включает два этапа: установку трубки для активного элемента и установку активного элемента в трубку, на первом этапе устанавливают трубку с прижимами и уплотнениями, на...
Тип: Изобретение
Номер охранного документа: 0002655045
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.573c

Способ определения удельной энергии, необходимой для разрушения опасного астероида ядерным взрывом

Изобретение относится к области борьбы с астероидной опасностью в рамках техники моделирования физических процессов и природных явлений. Способ предусматривает изготовление микромодели (ММ) из вещества, подобного веществу астероида. ММ подвергают в вакуумной камере воздействию импульсного...
Тип: Изобретение
Номер охранного документа: 0002654880
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.577e

Способ испытаний парашютных систем и стенд для его осуществления

Группа изобретений относится к испытательной технике и может быть использована для испытаний парашютных систем. Способ испытаний парашютных систем включает разгон парашютной системы, размещенной в контейнере, закрепленном на раме ракетной тележки с ракетным двигателем на твердом топливе (РДТТ),...
Тип: Изобретение
Номер охранного документа: 0002654885
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.5883

Ускоритель электронов на основе сегнетоэлектрического плазменного катода

Изобретение относится к ускорителю электронов на основе сегнетоэлектрического плазменного (СЭП) катода. В предложенном ускорителе накопитель энергии совместно с формирователем импульса выполнен в виде формирующей линии, состоящей из n+1, где n - натуральное число отрезков однородных линий с...
Тип: Изобретение
Номер охранного документа: 0002653505
Дата охранного документа: 10.05.2018
29.05.2018
№218.016.58c9

Система охлаждения массивно-параллельных вычислительных систем

Изобретение относится к области вычислительной техники, а именно к охлаждающим системам массивно-параллельных вычислительных систем, в том числе суперкомпьютеров эксамасштаба, содержащих оборудование для обработки электронных данных. Технический результат - отсутствие «холодных» коридоров и,...
Тип: Изобретение
Номер охранного документа: 0002653499
Дата охранного документа: 10.05.2018
09.06.2018
№218.016.5aa9

Способ изготовления изделий из магнитно-мягкого сплава 27кх

Изобретение относится к области металлургии, а именно к способам улучшения магнитных свойств, и может быть использовано в электронике и приборостроении. Способ изготовления изделий из магнитно-мягкого сплава 27КХ включает интенсивную пластическую деформацию исходного магнитно-мягкого сплава с...
Тип: Изобретение
Номер охранного документа: 0002655416
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5b49

Устройство для формирования нестационарной затухающей ударной волны в слое конденсированной среды

Изобретение относится к устройствам для исследования ударно-волновых явлений в конденсированных средах и может быть использовано для получения нестационарных затухающих ударных волн (волн Тейлора) в конденсированной среде (в частности, в воде). Устройство состоит из ударной трубы, включающей...
Тип: Изобретение
Номер охранного документа: 0002655695
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5c43

Стенд для ударных испытаний

Изобретение относится к испытательному оборудованию. Стенд содержит стол для закрепления объекта испытаний (ОИ), установленный в центральной части связанного с основанием упругого элемента, средство создания ударной нагрузки в виде падающего груза. Падающий груз размещен на направляющих, на...
Тип: Изобретение
Номер охранного документа: 0002655700
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5f08

Цилиндрическое детонационное устройство

Изобретение относится к области испытания материалов, к исследованию свойств материалов при динамическом воздействии, в частности к взрывным устройствам нагружения для исследования сжимаемости материалов с применением цилиндрических зарядов взрывчатых веществ (ВВ) с внешним инициированием....
Тип: Изобретение
Номер охранного документа: 0002656650
Дата охранного документа: 06.06.2018
Показаны записи 21-24 из 24.
19.07.2019
№219.017.b692

Способ изготовления термобатареи

Изобретение относится к области термоэлектрического преобразования тепловой энергии в электрическую и может быть применено для изготовления полупроводниковых термоэлементов и термоэлектрических батарей из них, используемых в конструкциях термоэлектрических генераторов. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002694797
Дата охранного документа: 16.07.2019
14.03.2020
№220.018.0c04

Способ безопасной расстыковки линии боксов, загрязненных радионуклидами

Изобретение относится к технологии обращения с источниками ионизирующего излучения, а конкретно к обеспечению радиационной безопасности. Для безопасной расстыковки линии перчаточных боксов, загрязненных радионуклидами, отстыкуемые боксы приподнимают посредством домкратов и устанавливают на...
Тип: Изобретение
Номер охранного документа: 0002716564
Дата охранного документа: 12.03.2020
24.07.2020
№220.018.370a

Способ определения коэффициентов трения покоя и скольжения

Изобретение относится к механическим испытаниям материалов, в частности для определения коэффициента трения скольжения при взаимном перемещении образцов. Сущность: один из образцов изготавливают с прямолинейной рабочей поверхностью и закрепляют неподвижно, подвижный образец устанавливают на...
Тип: Изобретение
Номер охранного документа: 0002727330
Дата охранного документа: 21.07.2020
16.05.2023
№223.018.62c5

Способ определения коэффициента трения скольжения

Изобретение относится к области механических испытаний материалов, в частности к определению коэффициента трения скольжения при взаимном перемещении образцов. Сущность: два образца с плоскими рабочими поверхностями, расположенные друг на друге, размещают на платформе, наклоненной относительно...
Тип: Изобретение
Номер охранного документа: 0002778049
Дата охранного документа: 12.08.2022
+ добавить свой РИД