×
10.05.2018
218.016.4fda

Результат интеллектуальной деятельности: КАТАЛИЗАТОРЫ ОКИСЛЕНИЯ ЦИКЛОАЛКАНА И СПОСОБ ПОЛУЧЕНИЯ СПИРТОВ И КЕТОНОВ

Вид РИД

Изобретение

Авторы

Правообладатели

№ охранного документа
0002652794
Дата охранного документа
03.05.2018
Аннотация: Настоящее изобретение относится к способу окисления циклоалкана с образованием смеси продуктов, содержащей соответствующие спирт и кетон, посредством приведения в контакт циклоалкана с окисляющим средством в присутствии по меньшей мере катализатора следующей формулы (I): , где - Y представляет собой N или O; - X=1, если Y=O, или 2, если Y=N; - Z представляет собой валентность металла; и - M представляет собой металл, выбранный из группы, состоящей из переходного металла, постпереходного металла и лантанида; при этом валентность M зависит от Z. Предлагаемый способ позволяет получить целевые продукты с высокой селективностью при высокой степени превращения исходного соединения. 9 з.п. ф-лы, 1 табл., 1 пр.

Настоящая заявка заявляет преимущество международной заявки № PCT/CN2013/074348, поданной 18 апреля 2013 г., содержание которой включено в данный документ посредством ссылки во всех смыслах.

Настоящее изобретение относится к способу окисления циклоалкана с образованием смеси продуктов, содержащей соответствующий спирт и кетон, при этом указанный способ включает приведение в контакт циклоалкана с окисляющим средством в присутствии каталитически эффективного количества катализаторов, представляющих собой трифлаты металлов или трифлимидаты металлов.

ПРЕДШЕДСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Следующее обсуждение предшествующего уровня техники представлено для того, чтобы поместить настоящее изобретение в определенный технический контекст и обеспечить более глубокое понимание его преимуществ. Однако необходимо принять во внимание, что любое обсуждение предшествующего уровня техники по всему описанию не следует рассматривать в качестве явного или косвенного признания того, что такой предшествующий уровень техники широко известен или формирует часть общеизвестных знаний в этой области.

Ранее применялись несколько различных способов окисления циклогексана в смесь продуктов, содержащую циклогексанон и циклогексанол. Такая смесь продуктов обычно упоминается как смесь KA (кетон/спирт). KA-смесь можно легко окислить с получением адипиновой кислоты, являющейся важным реагентом в способах получения определенных конденсационных полимеров, особенно полиамидов. В этих и других способах потребляются произведенные большие количества адипиновой кислоты, и существует потребность в экономически эффективных способах получения адипиновой кислоты и ее предшественников.

Классический способ получения смеси, содержащей циклогексанон и циклогексанол, для получения KA-масла осуществляют в две стадии путем окисления циклогексана. Первая представляет собой термическое автоокисление циклогексана, которое приводит к образованию циклогексилгидропероксида (HPOCH), который выделяют. На второй стадии KA-масло получают путем разложения HPOCH, которое катализируется используемыми в качестве гомогенных катализаторов ионами хрома или ионами кобальта.

С установленными по всему миру ограничениями становится все более и более необходимым требование к замене катализаторов, таких как хромовые катализаторы, загрязняющие окружающую среду. Воздействие на окружающую среду и экономика данного способа могут быть значительно улучшены, если современные гомогенные катализаторы можно заменить нетоксичными катализаторами.

Различные типы гомогенных катализаторов использовали для катализа окисления циклогексана и разложения циклогексилгидропероксида для получения KA-масла.

Например, в US 3923895 описывают способ разложения циклогексилгидропероксида с помощью растворимых производных хрома в присутствии сложного эфира фосфорной кислоты при 80-150°C. Также в US 4465861 раскрывают способ разложения циклогексилгидропероксида с использованием на стадии разложения композиции катализатора, состоящей главным образом из (a) конкретной соли хрома, кобальта, железа, марганца, молибдена или ванадия и (b) в качестве стабилизирующего средства - алкилсульфоновой кислоты, алкиларенсульфоновой кислоты, сульфоната алкиламмония или сульфоната алкилфосфония. В EP 0230254 B1 описывают разложение циклогексилгидропероксида с помощью кобальтовой соли в присутствии производных фосфоновой кислоты. В EP 0768292 B1 описывают способ разложения циклогексилгидропероксида с помощью Co или Cr в присутствии гидроксида щелочного металла и одной или нескольких солей щелочных металлов в водной фазе. Солями щелочных металлов предпочтительно являются карбонаты щелочных металлов или соли щелочных металлов моно- или поликарбоновых кислот. В US 4918238 сообщается о применении в качестве катализатора разложения циклогексилгидропероксида тетраоксида осмия. Способ разложения циклогексилгидропероксида с помощью кобальтового катализатора в щелочном растворе раскрыт в US 20030229253 A1. В US 7632942 описывают окисление циклогексана кислородом в присутствии кобальтовой соли карбоновой кислоты и кобальтового комплекса с порфирином в качестве лиганда.

Кроме того, Hansen и другие (Journal of molecular catalysis A: Chemical, 1995, 102, 117-128) использовали тетраарилпорфирины рутения в качестве катализаторов при разложении циклогексилгидропероксида.

Все еще остается потребность в катализаторе с высокой окислительной способностью, чтобы достигнуть высокой степени превращения циклогексана и высокой селективности к KA-маслу при относительно низкой концентрации циклоалкилгидропероксида и при низкой стоимости получения катализатора.

НАСТОЯЩЕЕ ИЗОБРЕТЕНИЕ

В данный момент становится понятным, что вполне возможно получить смесь спирта и кетона из циклоалкана при условии высокой окислительной способности и высокой селективности к KA-маслу, а также с хорошим балансом между степенью превращения и выходом. Подобные результаты могут быть получены с использованием каталитически эффективного количества катализаторов, представляющих собой трифлаты металлов или трифлимидаты металлов, демонстрирующих высокую окислительную способность при относительно низком уровне окислителя.

Настоящее изобретение относится к способу окисления циклоалкана с образованием смеси продуктов, содержащей соответствующие спирт и кетон, при этом указанный способ включает приведение в контакт циклоалкана с окисляющим средством в присутствии по меньшей мере катализатора следующей формулы (I),

где

- Y представляет собой N или O;

- X=1, если Y=O, или 2, если Y=N;

- Z представляет собой валентность металла, предпочтительно варьирующую от 1 до 4; и

- M представляет собой металл, выбранный из группы, состоящей из переходного металла, постпереходного металла и лантанида; при этом валентность M зависит от Z.

Валентность, также известная как валентное число, представляет собой число валентных связей, которые указанный атом образовал или может образовать с одним и несколькими другими атомами.

Другие характеристики, детали и преимущества настоящего изобретения будут выяснены более полно после прочтения нижеизложенного описания.

По всему описанию, включая формулу изобретения, термин “содержащий один” должен пониматься как синоним термина “содержащий по меньшей мере один”, если не указано иное, и выражение “от до” должно пониматься как включающее граничные значения.

Циклоалкан

Циклоалкан может относиться к насыщенным циклическим углеводородам, содержащим от 3 до 10 атомов углерода, чаще от 5 до 8 атомов углерода. Неограничивающие примеры циклоалканов включают циклопентан, циклогексан, циклогептан и циклооктан.

Окисляющее средство

Окисляющее средство согласно настоящему изобретению может представлять собой, например, воздух, O2 или гидропероксид.

Конкретные примеры гидропероксидных соединений, применяемых в настоящем, могут быть представлены следующей формулой (II):

R-O-O-H (II),

где R представляет собой углеводородную группу, содержащую от 3 до 15 атомов углерода, главным образом алкильную или арильную группы.

Термин “углеводородная группа”, используемый в данном документе, относится к группе, состоящей из атомов углерода и атомов водорода, и которая может быть насыщенной или ненасыщенной, линейной, разветвленной или циклической, алифатической или ароматической. Углеводородные группы по настоящему изобретению могут представлять собой алкильные группы, алкенильные группы или арильные группы.

Алкил, как используется в данном документе, означает насыщенный алифатический углеводород с неразветвленной или разветвленной цепью. Как используется в данном документе, если не указано иное, термин "алкил" означает линейную или разветвленную алкильную группу, необязательно замещенную одним или несколькими заместителями, выбранными из группы, состоящей из низшего алкила, низшего алкокси, низшего алкилсульфанила, низшего алкилсульфенила, низшего алкилсульфонила, оксо, гидрокси, меркапто, амино, необязательно замещенного алкилом, карбокси, карбомоила, необязательно замещенного алкилом, аминосульфонила, необязательно замещенного алкилом, нитро, циано, галогена или низшего перфтороалкила, при этом допускаются множественные степени замещения.

Арил, как используется в данном документе, означает 6-углеродную моноциклическую или 10-углеродную бициклическую систему ароматических колец, где 0, 1, 2, 3 или 4 атома каждого кольца замещены заместителем, таким как O или N. Примеры арильных групп включают фенил, нафтил и подобные.

Гидропероксиды предпочтительно выбраны из группы, состоящей из трет-бутилгидропероксида, трет-амилгидропероксида, гидропероксида кумола, этилбензолгидропероксида, циклогексилгидропероксида, метилциклогексилгидропероксида, тетралин (т.е. тетрагидронафталин) гидропероксида, изобутилбензолгидропероксида и этилнафталингидропероксида.

Гидропероксиды более предпочтительно представляют собой алкильные гидропероксиды, такие как трет-бутилгидропероксид или циклогексилгидропероксид.

Эти гидропероксиды также можно применять в комбинации двух или более их радикалов.

Гидропероксиды, относящиеся к настоящему изобретению, можно получать in situ, особенно посредством реакции циклоалкана с кислородом или источником кислорода или добавлять в реакционную среду, особенно в начале реакции или в течение реакции.

Реакционная среда может содержать циклоалкан от 2 до 40 вес.% окислительного средства в соответствии с общим весом реакционной смеси, более предпочтительно от 5 до 20 вес.% окислительных средств. В варианте осуществления настоящего изобретения реакционная среда содержит циклоалкан от 2 до 40 вес.% гидропероксидов в соответствии с общим весом реакционной смеси, более предпочтительно от 5 до 20 вес.% гидропероксидов.

Катализатор формулы (I)

Катализаторы, представляющие собой трифлаты металлов формулы (I), получают, если Y представляет собой атом кислорода.

Трифлимидаты металлов получают, если Y представляет собой атом азота.

Металл в соответствии с настоящим изобретением может быть выбран из группы, состоящей из

- переходных металлов, таких как, например, Fe, Y, Cu и Cr,

- постпереходных металлов, таких как, например, Bi и In,

- лантанидов, таких как, например, Nd и Ce.

M предпочтительно выбран из группы, состоящей из Fe, Y, Cu, Cr, Bi, In, Nd и Ce.

Катализаторы по настоящему изобретению предпочтительно выбраны из группы, состоящей из Fe(OTF)3, Cu(OTf)2, Y(OTf)3, Fe(TSIF)3, Cu(TFSI)2, Ce(TFSI)3, In(TFSI)3 и Bi(TFSI)3.

Катализаторы по настоящему изобретению можно использовать в диапазоне от 0,0001 вес.% до 10 вес.%, предпочтительно от 0,001 вес.% до 0,1 вес.%, относительно веса металла по отношению к общему весу реакционной среды.

В течение реакции по настоящему изобретению, особенно при смешивании, можно использовать комбинацию двух или более катализаторов.

Катализатор по настоящему изобретению можно использовать в виде гомогенного или гетерогенного катализатора.

Катализатор можно помещать на носитель, такой как, например, оксиды, углероды, органические или неорганические смолы. Особенно, носитель может быть выбран из группы, состоящей из оксида кремния, оксида алюминия, оксида циркония, оксида титана, оксида церия, оксида магния, оксида лантана, оксида ниобия, оксида иттрия, цеолита, перовскита, силикатной глины и оксида железа и их смесей. Катализатор может быть помещен на носитель любым удобным способом, в частности адсорбцией, ионным обменом, привитой сополимеризацией, улавливанием, пропиткой или сублимацией.

Параметры реакции

При применении настоящего изобретения катализаторы могут контактировать с циклоалканом, таким как циклогексан, посредством составления в слой катализатора, который скомпонован для обеспечения тщательного контакта между катализатором и реагентами. В качестве альтернативы, катализаторы можно суспендировать с реакционными смесями, применяя технологии, известные в этой области техники. Способ по настоящему изобретению пригоден как для периодического, так и для непрерывного окисления циклоалкана. Эти процессы можно осуществлять в широком диапазоне условий, а также будут понятны для специалистов в данной области.

Подходящие температуры реакции для способа по настоящему изобретению, как правило, варьируют в диапазоне от приблизительно 20 до приблизительно 200°C, предпочтительно от приблизительно 40 до приблизительно 140°C.

Значения давления реакции часто варьируют в диапазоне от приблизительно 0,1 МПа (1 бар) до приблизительно 20 MПа (200 бар), при этом эти значения не являются абсолютно нормируемыми. Время обработки циклоалкана в реакторе, как правило, варьирует в обратно пропорциональной зависимости от температуры реакции и обычно находится в пределах от 30 до 1440 минут. В реакционной среде можно использовать чистый кислород, воздух, обогащенный или обедненный кислородом воздух или, в качестве альтернативы, кислород, разбавленный инертным газом.

В реакционной среде также можно использовать растворитель. Предпочтительно растворители выбраны из группы полярных протонных или полярных апротонных растворителей, предпочтительно ацетонитрила или уксусной кислоты.

Подходящие полярные апротонные растворители можно выбрать, например, из группы, состоящей из тетрагидрофурана, ацетона, ацетонитрила или DMSO.

Подходящие полярные протонные растворители можно выбрать, например, из группы, состоящей из уксусной кислоты, муравьиной кислоты, изопропанола, этанола и метанола.

В реакционной смеси можно использовать в комбинации один растворитель или несколько растворителей.

Катализаторы по настоящему изобретению можно восстанавливать, регенерировать или воспроизводить. Более конкретно, катализатор можно регенерировать так, что он будет характеризоваться исходной активностью, например, путем восстановления и высушивания катализатора.

По окончании реакции соединение, представляющее интерес, можно очистить хорошо известными в этой области техники способами, такими как дистилляция.

В случае, если раскрытие любого из патентов, патентных заявок, публикаций, включенных в данный документ посредством ссылки, вступает в конфликт с описанием настоящей заявки в той степени, что она может привести к неопределенностям в терминологии, настоящее описание будет иметь приоритет.

Следующие примеры приведены только для иллюстративных целей и не должны рассматриваться как ограничивающие изобретение.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Пример 1

Несколько катализаторов использовали для катализа окисления циклогексана с применением трет-бутилгидропероксида (TBHP) при 80°C в течение 1,0 часа с 0,02 г катализатора и 7,7 вес.% TBHP в циклогексане. Молярное соотношение TBHP/катализатор составляет 79,3. Результаты представлены в таблице 1.

Таблица 1
Испытания Катализатор Степень превращения
TBHP
(%)
Селективность KA (%) Выход КА
(%)
C1 нет 0,7 98,0 0,7
C2 Co(NO3)2 49 44 -
C3 Трифторметан-сульфокислота 99,7 4,2 4,2
1 Fe(OTF)3 100 30,2 30,2
2 Cu(OTf)2 75 30,0 22,5
3 Y(OTf)3 55,8 27,2 15,2
4 Fe(TSIF)3 100 23,1 23,1
5 Cu(TFSI)2 84,7 29,8 25,2
6 Ce(TFSI)3 72,4 14,1 10,2
7 In(TFSI)3 81,6 12,6 10,3
8 Bi(TFSI)3 91,3 11,8 10,8

Испытание C2 проведено с использованием катализатора Co (NO3)2, как упомянуто в EP 0768292 A1.

Становится очевидным, что без применения каких-либо катализаторов степень превращения TBHP и выход KA составляют менее 1%, в то время как можно обеспечить высокую степень превращения TBHP с высокими выходом KA и селективностью КА с помощью катализаторов по настоящему изобретению.


КАТАЛИЗАТОРЫ ОКИСЛЕНИЯ ЦИКЛОАЛКАНА И СПОСОБ ПОЛУЧЕНИЯ СПИРТОВ И КЕТОНОВ
КАТАЛИЗАТОРЫ ОКИСЛЕНИЯ ЦИКЛОАЛКАНА И СПОСОБ ПОЛУЧЕНИЯ СПИРТОВ И КЕТОНОВ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 104.
20.10.2014
№216.012.fe10

Способ получения алкилгидропероксида

Настоящее изобретение относится к способу получения алкилгидропероксида, получаемого окислением кислородом циклического насыщенного углеводорода, выбранного из группы, содержащей циклогексан, циклооктан, циклодекан, декалин. Предпочтительно настоящее изобретение относится к получению...
Тип: Изобретение
Номер охранного документа: 0002530896
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.ff95

Способ окисления углеводородов

Изобретение относится к способу окисления углеводородов, в частности, насыщенных углеводородов, для получения пероксидов, спиртов, кетонов, альдегидов и/или дикислот. В частности, предложен способ окисления насыщенного углеводорода молекулярным кислородом, включающий обработку выходящих...
Тип: Изобретение
Номер охранного документа: 0002531285
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.ffaa

Композиция на основе оксида циркония, оксида титана или смешанного оксида циркония и титана, нанесенная на носитель из оксида кремния, способы ее получения и ее применение в качестве катализатора

Группа изобретений может быть использована в производстве катализаторов, в частности, для селективного восстановления NO. Каталитическая композиция содержит по меньшей мере один оксид на носителе, состоящий из оксида циркония, или оксида титана, или смешанного оксида циркония и титана, или из...
Тип: Изобретение
Номер охранного документа: 0002531306
Дата охранного документа: 20.10.2014
10.12.2014
№216.013.0ecb

Способ непрерывного получения водных растворов бетаина

Настоящее изобретение относится к способу непрерывного получения водного раствора бетаина формулы (I), в которой n равно 1, 2 или 3, R и R означают прямолинейную или разветвленную алкильную группу, содержащую от 1 до 3 атомов углерода, R означает прямолинейную или разветвленную углеводородную...
Тип: Изобретение
Номер охранного документа: 0002535204
Дата охранного документа: 10.12.2014
27.12.2014
№216.013.14b2

Способ добычи углеводородов при поддержании давления в трещиноватых коллекторах

Настоящее изобретение касается добычи углеводородов из трещиноватого коллектора. Способ добычи нефти из трещиноватого коллектора, матрица которого является смачиваемой нефтью, включающий по меньшей мере одну нагнетательную скважину и продуктивную скважину, которые обе сообщаются с трещинами и...
Тип: Изобретение
Номер охранного документа: 0002536722
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1be0

Способы и композиции для увеличения вязкости тяжелых водных рассолов

Изобретение относится к композициям для увеличения вязкости тяжелых рассольных систем. Способ увеличения вязкости рассольных систем, используемых при подземном ремонте скважин, включает: a) получение рассольной системы, включающей гидратированный полисахарид и, по меньшей мере, одну...
Тип: Изобретение
Номер охранного документа: 0002538564
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.22b1

Способ получения катализатора депероксидирования

Изобретение относится к способу получения катализатора депероксидирования алкилгидропероксида, содержащего хром в состоянии окисления 6+ в качестве основного каталитического элемента. Предлагаемый способ включает следующие этапы: растворение в воде хромового ангидрида; добавление к водному...
Тип: Изобретение
Номер охранного документа: 0002540334
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.24bc

Способ окисления углеводородов кислородом

Настоящее изобретение относится к способу окисления кислородом циклических насыщенных углеводородов, таких как циклогексан, циклооктан, циклододекан и декалин для получения алкилгидропероксида. В соответствии с изобретением окисление проводится в несколько последовательных этапов, чтобы...
Тип: Изобретение
Номер охранного документа: 0002540857
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.258d

Применение осажденного диоксида кремния, содержащего алюминий, и 3-акрилоксипропилтриэтоксисилана в композиции одного или нескольких изопреновых эластомеров

Изобретение относится к совместному применению в композиции одного или нескольких эластомеров, содержащей изопреновый эластомер, осажденного диоксида кремния, содержащего алюминий в качестве неорганического усиливающего наполнителя и 3-акрилоксипропилтриэтоксисилана в качестве агента связывания...
Тип: Изобретение
Номер охранного документа: 0002541066
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2591

Способ обработки газа, содержащего оксиды азота (nox), в котором композиция, включающая оксид церия и оксид ниобия, применяется в качестве катализатора

Настоящее изобретение относится к способу обработки газа, содержащего оксиды азота (NOx), включающему реакцию восстановления оксидов азота при помощи азотсодержащего восстанавливающего агента. Способ обработки газа, содержащего оксиды азота (NOx), в котором осуществляют реакцию восстановления...
Тип: Изобретение
Номер охранного документа: 0002541070
Дата охранного документа: 10.02.2015
+ добавить свой РИД