×
10.05.2018
218.016.4e94

ИСТОЧНИК ПУЧКА ИОНОВ НА ОСНОВЕ ПЛАЗМЫ ЭЛЕКТРОННО-ЦИКЛОТРОННОГО РЕЗОНАНСНОГО РАЗРЯДА, УДЕРЖИВАЕМОЙ В ОТКРЫТОЙ МАГНИТНОЙ ЛОВУШКЕ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области формирования сильноточного пучка ионов путем его экстракции из плотной плазмы ЭЦР разряда, создаваемой в открытой магнитной ловушке мощным излучением миллиметрового диапазона длин волн. Разработанное устройство может обеспечивать эффективную экстракцию ионов из плотной плазмы ЭЦР разряда и формирование сильноточных пучков ионов с низким эмиттансом и одновременно может обеспечивать переход в режим улучшенного удержания плазмы в ловушке с подавлением поперечного переноса плазмы, вызванного желобковой неустойчивостью. Разработанный источник ионов позволяет формировать из плотной плазмы пучки ионов с током до долей ампера и величиной эмиттанса вплоть до 0,01 π мм⋅мрад в нормализованных единицах. 3 з.п. ф-лы, 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к области формирования сильноточных пучков многозарядных ионов путем их экстракции из плотной плазмы ЭЦР разряда, создаваемой в открытой магнитной ловушке мощным излучением миллиметрового диапазона длин волн. Подобные пучки ионов востребованы в ряде приложений (ускорительной технике, медицине, ионной имплантации, фундаментальных исследованиях по взаимодействию ионных пучков с мишенями и пр.). Основными характеристиками пучков ионов с точки зрения их качества являются величины тока (чем больше, тем лучше) и эмиттанса. Если речь идет о пучках многозарядных ионов, то важен еще и средний заряд ионов в пучке.

В последнее время наблюдается быстрое развитие технологий, связанных с применением ионных пучков. К этим технологиям, например, относятся: обработка и модификация поверхностей полупроводников (Hirvones J.K., Nastasi М., Hirvonen J.K., Mayer J.W. Ion-solid Interactions: Fundamentals and Applications. - Cambridge Univ. Pr., 1996), ионно-лучевая эпитаксия и имплантация (Rabalais J.W., Al-Bayati A.H., Boyd K.J., Marton D., Kulik J., Zhang Z., Chu W.K. Ion-energy effect in silicon ion-beam epitaxy // Phys. Rev. B, 1996. V. 53. P. 10781), воздействие на раковые опухоли (Muramatsu М., Kitagawa A., Sato S., Sato Y., Yamada S., Hattori Т., Shibuya S. Development of the compact electron cyclotron resonance ion source for heavy-ion therapy // Rev. Sci. Instr., 2000. V. 71. P. 984] и т.д. Кроме того, ионные пучки широко используются в научных исследованиях, например в исследованиях в области ядерной физики, в частности для синтеза новых элементов таблицы Менделеева и т.д.

К настоящему времени существует несколько типов ионных источников, различающихся как способом создания плазмы, так и параметрами производимых пучков (Физика и технология источников ионов: Пер. с англ. / Под. ред. Я. Брауна. - М.: Мир, 1998. - 496 с.).

Среди источников ионов большое распространение получили источники на основе разряда низкого давления, поддерживаемого в открытой магнитной ловушке СВЧ излучением в условиях электронно-циклотронного резонанса (ЭЦР). ЭЦР источники выгодно отличаются от источников других типов в тех случаях, когда требуется умеренно высокий средний заряд ионов (например, 7-9 для аргона) при достаточно большом токе пучка (~100 мкА) и низкой величине эмиттанса. Такие источники имеют большой ресурс работы и высокую стабильность, позволяют легко менять рабочее вещество (Geller R. Electron cyclotron resonance ion sources and ECR plasmas. - Bristol: Institute of Physics, 1996).

Формирование пучков ионов в ЭЦР источниках осуществляется путем их экстракции из плазмы, удерживаемой в открытой магнитной ловушке. В классических источниках многозарядных ионов плотность плазмы относительно невелика, а ее нагрев осуществляется СВЧ излучением небольшой частоты (до 18 ГГц), что и ограничивает плотность плазмы на уровне критической плотности величиной 3⋅1012 см-3 для используемой частоты 18 ГГц. Время удержания плазмы в магнитной ловушке определяется скоростью заполнения электронами конуса потерь в результате электрон-ионных столкновений и может достигать нескольких десятков миллисекунд. Для поддержания плазмы достаточно небольшой СВЧ мощности (100 Вт ÷ 1 кВт). Ввод СВЧ излучения с такими параметрами традиционно осуществляется с помощью стандартных волноводных или коаксиальных линий передач (Geller R. Electron cyclotron resonance sources: Historical review and future prospects // Rev. Sci. Instr. - Am. Inst. Phys., 1998. V. 69. P. 1302-1310).

Ключевым фактором, определяющим средний заряд ионов в плазме, является параметр удержания N⋅τ, где N - средняя концентрация плазмы, а τ - время удержания ионов в ловушке. В настоящее время, по всей видимости, возможности для увеличения параметра удержания N⋅τ за счет увеличения времени удержания ионов практически исчерпаны. Почти во всех существующих в настоящее время источниках многозарядных ионов применяются ловушки с магнитной конфигурацией «минимум В». Такая конфигурация создается комбинацией продольного поля простой магнитной ловушки и поперечным полем многополюсной (обычно шестиполюсной) магнитной системы. На величину тока ЭЦР источника оказывают влияние также конструкция и расположение системы формирования и экстракции пучка ионов из плазмы.

Классический ЭЦР источник описан, например, в патенте US 5506475 (Н05Н 1/10, публ. 09.04.1996). Устройство состоит из вакуумной плазменной камеры, системы подачи рабочего вещества, системы формирования и экстракции пучка ионов из плазмы, системы создания простой магнитной ловушки, системы создания поперечного магнитного поля с конфигурацией «минимум В», устройства ввода СВЧ излучения (с рабочей частотой 2,45 ГГц или 14 ГГц) в вакуумную камеру. Для ввода СВЧ излучения применяется волновод прямоугольного сечения. Система создания поперечного магнитного поля включает в себя от 4 до 24 постоянных магнитов. Система формирования и экстракции пучка ионов из плазмы в устройстве-аналоге состоит из двух электродов: плазменного и ускоряющего (пуллера) и расположена вблизи пробки магнитной ловушки.

Недостатком устройства-аналога является то, что из-за низкой плотности плазмы в источнике система формирования и экстракции пучка ионов из плазмы располагается около магнитной пробки ловушки и сильное магнитное поле оказывает негативное влияние на величину эмиттанса формируемого пучка. Кроме того, из-за низкой плотности плазмы аспектное отношение (отношение радиуса отверстия в плазменном электроде к расстоянию между электродами) достаточно велико, что делает систему формирования пучка чувствительной к колебаниям плотности плазмы и аберрациям ионно-оптической системы. Это также негативно сказывается на качестве пучка, в первую очередь, на величине тока формируемого пучка.

Наиболее перспективным является увеличение тока пучка за счет повышения плотности плазмы в разряде, что достигается, прежде всего, путем увеличения частоты и мощности СВЧ излучения.

Известен сильноточный источник ионов, описанный в патенте US 8624502 (МПК G21G 4/08, H01J 27/18, публ. 07.01.2014). В нем устройство-аналог содержит вакуумную плазменную камеру, систему создания магнитной ловушки для получения необходимого магнитного поля внутри камеры, СВЧ генератор, устройство ввода СВЧ излучения в вакуумную камеру, систему экстракции пучка ионов из плазмы, состоящую из двух электродов, расположенных вблизи пробки магнитной ловушки. Более высокая плотность потока плазмы позволяет обеспечить достаточно высокую величину тока формируемого пучка ионов.

Недостатком данного аналога является то, что система формирования и экстракции пучка ионов работает в условиях больших магнитных полей, что плохо влияет на качество пучка, в первую очередь, на эмиттанс. Плазменный электрод системы формирования пучка жестко прикреплен к источнику плазмы, что не позволяет регулировать плотность потока плазмы на этот электрод, не меняя параметров плазмы в источнике. В результате величины тока и эмиттанса формируемого пучка оказываются не на должном уровне, и устройство-аналог позволяет создавать пучки ионов (в примере патента - двукратно ионизованного гелия) с током до 50 мА.

Из числа известных технических решений наиболее близким к предлагаемому является устройство, предложенное в патенте RU 2480858 (МПК H01J 27/16, H05H 1/46, публ. 27.04.2013), содержащее разрядную вакуумную камеру, магнитную систему для создания магнитного поля, достаточного для создания ЭЦР зон, систему формирования и экстракции пучка многозарядных ионов из плазмы. Система формирования и экстракции пучка ионов состоит из плазменного электрода, ускоряющего электрода (пуллера), закрепленного на изоляторе, и высоковольтного источника. Пучок ионов формируется под действием создаваемого высоковольтным источником высокого напряжения, приложенного между плазменным электродом и пуллером.

Главным отличием прототипа от аналогов является то, что благодаря более высокой частоте нагрева реализован так называемый газодинамический режим удержания, отличающийся более высокой плотностью потока плазмы (вплоть до нескольких А/см2). Благодаря этому факту экстрактор можно располагать не в магнитной пробке, а в зоне разлета плазмы за пробкой, где величина магнитного поля мала, что положительно сказывается на величине эмиттанса пучка. Также, в отличие от аналогов, высокая плотность потока плазмы позволяет использовать системы формирования пучка с малым аспектным отношением, что делает ее слабо чувствительной к колебаниям тока и позволяет снизить величину эмиттанса.

Основным недостатком прототипа является то, что плазма в ловушке пробочной конфигурации неустойчива по отношению к магнитогидродинамическим возмущениям желобкового типа. Данная неустойчивость ограничивает плотность плазмы и время ее удержания. С точки зрения формирования пучка данное обстоятельство снижает плотность потока плазмы на экстрактор, что сказывается на величине тока пучка.

Можно было бы решить проблему, используя конфигурацию с минимумом В, как это было реализовано в устройствах-аналогах. Однако в случае высоких частот нагрева (более 30 ГГц), а значит, и высоких магнитных полей (более 1 Тл), такая конфигурация весьма сложна с инженерной точки зрения. К тому же магнитные системы с конфигурацией с минимумом В, как правило, неосесимметричны, а в таких системах появляется повышенный поперечный перенос плазмы по типу неоклассического, хорошо известного в замкнутых магнитных ловушках.

Одним из перспективных методов подавления поперечного переноса плазмы, вызванного желобковыми неустойчивостями, является так называемый метод вихревого удержания. Суть метода заключается в создании зоны дифференциального вращения плазмы в периферийной (по радиусу) области плазменного столба. Это достигается путем создания радиального профиля электрического потенциала в плазме в виде «ступеньки» при помощи системы специальных электродов: радиальных лимитеров и секционированных плазмоприемников, расположенных в области расширения плазмы за магнитными пробками. Данный метод доказал свою эффективность в случае открытых магнитных ловушек термоядерного типа [Солдаткина Е.И., Багрянский П.А и Соломахин А.Л. // Физика плазмы. - 2008. - Том. 34. - №4. - С. 291]. В случае же источника ионов реализация данной концепции наталкивается на следующие трудности: в источнике ионов как в прототипе, так и в аналогах, плазмоприемником является первый электрод системы формирования пучка, так называемый плазменный электрод. Данный электрод эквипотенциален с остальной вакуумной камерой (фактически, он является ее частью), а потому в такой системе невозможно создание радиального профиля электрического потенциала в плазме типа «ступенька».

Задачей, на решение которой направлено настоящее изобретение, является разработка устройства, позволяющего формировать из плотной плазмы разряда низкого давления, поддерживаемого в открытой магнитной ловушке СВЧ излучением миллиметрового диапазона длин волн в условиях электронно-циклотронного резонанса, качественный пучок ионов с устойчиво высоким значением тока.

Технический результат в разработанном источнике пучка ионов на основе плазмы электронно-циклотронного резонансного разряда, удерживаемой в открытой магнитной ловушке, достигается тем, что разрабатываемое устройство, так же как и устройство-прототип, содержит магнитную систему для создания магнитного поля пробочной конфигурации с напряженностью, достаточной для возникновения внутри разрядной вакуумной камеры ЭЦР зон, систему формирования и экстракции пучка ионов из плазмы, включающую плазменный и ускоряющий электроды, содержащие не менее чем одну ускоряющую апертуру.

Новым в разработанном устройстве является то, что плазменный электрод состоит из расположенных соосно периферийной проводящей части и центральной проводящей части, разделенных диэлектрической проставкой, между которыми подается разность потенциалов.

В ионных источниках ионы извлекаются из плотной плазмы ЭЦР разряда путем приложения разности электрических потенциалов между плазменным электродом и ускоряющим. Конфигурация (распределение) силовых линий электрического поля, ускоряющего ионы и формирующего структуру пучка, определяется подбором соответствующей геометрии электродов и величиной расстояния между ними.

Положительный эффект разработанной системы формирования и экстракции ионного пучка можно объяснить следующим образом. Диэлектрическая проставка обеспечивает электрическую изоляцию центральной части плазменного электрода от вакуумной камеры. В результате возможна подача электрического смещения центральной части плазменного электрода относительно его периферии. Это обеспечивает формирование в плазме ступенькообразного радиального профиля потенциала. С другой стороны, величина этого смещения такова (не более сотен вольт), что практически не влияет на конфигурацию силовых линий электрического поля, ускоряющего ионы от плазменного электрода к пуллеру, что позволяет использовать все преимущества системы формирования пучка ионов, присущие прототипу.

В результате разработанное устройство с предлагаемой системой формирования и экстракции пучка ионов может обеспечивать эффективную экстракцию ионов из плотной плазмы ЭЦР разряда и формирование сильноточных пучков ионов с низким эмиттансом и одновременно может обеспечивать переход в режим улучшенного удержания плазмы в ловушке с подавлением поперечного переноса плазмы, вызванного желобковой неустойчивостью.

В первом частном случае реализации устройства новым является то, что ускоряющий электрод имеет коническую форму.

Во втором частном случае реализации устройства новым является то, что ускоряющий электрод имеет плоскую форму.

В третьем частном случае реализации устройства новым является то, что плазменный и ускоряющий электроды содержат несколько ускоряющих апертур.

Изобретение поясняется чертежами.

На фиг. 1 представлена схема с источника пучка ионов на основе плазмы ЭЦР разряда, удерживаемой в открытой магнитной ловушке, с системой формирования и экстракции пучка ионов из плазмы.

На фиг. 2 представлено увеличенное изображение плазменного электрода.

Источник пучков ионов на основе плазмы электронно-циклотронного резонансного разряда, удерживаемой в открытой магнитной ловушке, содержит (см. фиг. 1) разрядную вакуумную камеру 1 с заключенной в ней плазмой 2, магнитную систему 3, состоящую из нескольких катушек, создающую магнитное поле пробочной конфигурации внутри разрядной вакуумной камеры 1, и систему формирования и экстракции пучков ионов, включающую плазменный электрод 4 и ускоряющий электрод 5. Плазменный электрод 4 соединен с трубой разрядной вакуумной камеры 1. Ускоряющий электрод 5 через изолятор 6 соединен с разрядной вакуумной камерой 1. К разрядной вакуумной камере 1 и ускоряющему электроду 5 подключен высоковольтный источник напряжения (см. фиг. 1). Плазменный электрод 4 состоит из периферийной проводящей части 7, соединенной с разрядной вакуумной камерой 1, и центральной проводящей части 8, соединенной с периферийной проводящей частью 7 через диэлектрическую проставку 9 (см. фиг. 2). Между центральной частью 8 и периферийной частью 7 подается разность потенциалов.

Разработанный источник ионов работает следующим образом.

Разрядную вакуумную камеру 1 предварительно откачивают до давления не хуже 5⋅10-7 Торр (1 Торр = 133,3223684211 Па). Магнитную ловушку с полем простой пробочной конфигурации создают с помощью магнитной системы 3 от отдельного блока питания. Величина магнитного поля должна быть достаточной для возникновения ЭЦР зон. СВЧ излучение с частотой, много большей обычно применяемой частоты, например 37,5 ГГц, с поперечным распределением интенсивности в форме гауссова пучка направляют в разрядную вакуумную камеру 1. Под действием СВЧ излучения в условиях ЭЦР электроны приобретают высокую энергию, и в объеме разрядной вакуумной камеры 1 происходит ионизация предварительно поданного в нее рабочего вещества. Образовавшаяся плазма 2 (с концентрацией на уровне 1013 см-3 в случае с частотой 37,5 ГГц) ограничена пробками магнитной ловушки. Пучок ионов формируют под действием высокого напряжения от высоковольтного источника, приложенного между плазменным электродом 4 и ускоряющим электродом 5. При этом вся разрядная вакуумная камера 1, как и плазменный электрод 4, находится под высоким потенциалом относительно земли. Между двумя проводящими частями плазменного электрода 4 (7 и 8), находящимися под высоким потенциалом относительно земли (десятки киловольт), подается небольшая разность потенциалов в несколько сотен вольт и менее. Данный скачок потенциала создает радиальное электрическое поле, наличие которого наряду со скрещенным ему магнитным полем приводит к дифференциальному вращению плазмы на периферии. Данное вращение приводит к подавлению поперечного переноса плазмы, вызванного желобковой неустойчивостью.

Таким образом, разработанный источник по сравнению с прототипом и аналогами обладает одновременно и устойчиво высоким значением тока, и низким значением эмиттанса: он позволяет формировать из плотной плазмы пучок ионов с током до долей ампера и величиной эмиттанса вплоть до 0,01 π мм⋅мрад в нормализованных единицах.

В первом частном случае реализации разработанного источника пучка ионов на основе плазмы ЭЦР разряда ускоряющий электрод 5 имеет коническую форму. Такая геометрия электродов близка к «квазипирсовой», что улучшает фокусировку пучка, правда, в узком диапазоне оптимальных токов пучка, при которых угол расходимости минимален.

Во втором частном случае реализации разработанного источника пучка ионов на основе плазмы ЭЦР разряда ускоряющий электрод 5 имеет плоскую форму. Такая система чуть хуже фокусирует пучок, зато существенно проще в изготовлении. Причем если оба электрода содержат одну ускоряющую апертуру, это позволяет формировать пучки с низким эмиттансом.

В третьем частном случае реализации разработанного источника пучка ионов на основе плазмы ЭЦР разряда плазменный электрод 4 и ускоряющий электрод 5 содержат несколько апертур, что несколько увеличивает эмиттанс, зато кратным образом увеличивает ток пучка.


ИСТОЧНИК ПУЧКА ИОНОВ НА ОСНОВЕ ПЛАЗМЫ ЭЛЕКТРОННО-ЦИКЛОТРОННОГО РЕЗОНАНСНОГО РАЗРЯДА, УДЕРЖИВАЕМОЙ В ОТКРЫТОЙ МАГНИТНОЙ ЛОВУШКЕ
ИСТОЧНИК ПУЧКА ИОНОВ НА ОСНОВЕ ПЛАЗМЫ ЭЛЕКТРОННО-ЦИКЛОТРОННОГО РЕЗОНАНСНОГО РАЗРЯДА, УДЕРЖИВАЕМОЙ В ОТКРЫТОЙ МАГНИТНОЙ ЛОВУШКЕ
ИСТОЧНИК ПУЧКА ИОНОВ НА ОСНОВЕ ПЛАЗМЫ ЭЛЕКТРОННО-ЦИКЛОТРОННОГО РЕЗОНАНСНОГО РАЗРЯДА, УДЕРЖИВАЕМОЙ В ОТКРЫТОЙ МАГНИТНОЙ ЛОВУШКЕ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 64.
10.07.2016
№216.015.2b18

Изолятор фарадея для лазерных пучков с квадратным поперечным профилем распределения интенсивности

Изобретение относится к оптической технике для мощных лазерных пучков. Магнитная система в изоляторе Фарадея для лазерных пучков с квадратным поперечным профилем распределения интенсивности изготовлена с квадратной апертурой путем заполнения ее центральных областей, через которые не проходит...
Тип: Изобретение
Номер охранного документа: 0002589754
Дата охранного документа: 10.07.2016
20.04.2016
№216.015.34ec

Полевой транзистор на осаждённой из газовой фазы алмазной плёнке с дельта-допированным проводящим каналом

Изобретение относится к технике полупроводниковых приборов. В полевом транзисторе на осажденной из газовой фазы алмазной пленке с дельта-допированным проводящим каналом, включающем недопированную алмазную подложку, осажденную на ней из газовой фазы алмазную пленку, состоящую из нанесенных...
Тип: Изобретение
Номер охранного документа: 0002581393
Дата охранного документа: 20.04.2016
20.08.2016
№216.015.4e78

Плазменный свч реактор для газофазного осаждения алмазных пленок в потоке газа (варианты)

Изобретение относится к плазменным СВЧ реакторам для газофазного осаждения алмазных пленок в потоке газа (варианты). Выполнение реактора на основе двух связанных резонаторов - цилиндрического резонатора и прикрепленного к его торцевой стенке круглого коаксиального резонатора, вдоль оси...
Тип: Изобретение
Номер охранного документа: 0002595156
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.75ad

Изолятор фарадея с неоднородным магнитным полем для лазеров большой мощности

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров с субкиловаттной средней мощностью излучения. Изолятор Фарадея с неоднородным магнитным полем для лазеров большой мощности содержит последовательно расположенные...
Тип: Изобретение
Номер охранного документа: 0002598623
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.854c

Изолятор фарадея для неполяризованного лазерного излучения

Изобретение относится к оптической технике, а именно к изоляторам Фарадея для неполяризованного лазерного излучения. Изолятор Фарадея содержит последовательно расположенные на оптической оси поляризационный расщепитель пучка, магнитооптический элемент, установленный в магнитной системе,...
Тип: Изобретение
Номер охранного документа: 0002603229
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8cf1

Способ контактной литотрипсии

Изобретение относится к медицине, хирургии. Осуществляют воздействие на конкремент при контактной литотрипсии. На дистальный конец световода наносят поглощающий, термостойкий, износоустойчивый слой. Используется лазерное излучение, поглощающееся в специально нанесенном на торец волокна слое. В...
Тип: Изобретение
Номер охранного документа: 0002604800
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.a2ef

Изолятор фарадея со стабилизацией степени изоляции

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров, подверженных влиянию окружающей среды. Изолятор Фарадея со стабилизацией степени изоляции содержит последовательно расположенные на оптической оси поляризатор,...
Тип: Изобретение
Номер охранного документа: 0002607077
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a340

Способ управления сейсмоакустическими косами и устройство позиционирования для его осуществления

Изобретение относится к области геофизики и может быть использовано при проведении морских сейсморазведочных работ. Предлагается устройство автоматизированного позиционирования (УАП), которое представляет собой тело нейтральной плавучести, корпус которого представляет собой две герметично...
Тип: Изобретение
Номер охранного документа: 0002607076
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b97c

Способ измерения поглощаемой мощности в единице объема плазмы свч разряда в водородсодержащем газе

Изобретение относится к плазменным технологиям, в частности к способам измерения поглощенной мощности в СВЧ-разрядах. При реализации предложенного способа измерения мощности, поглощаемой единицей объема СВЧ-разряда, получают СВЧ-разряд в водородсодержащем газе, фотографируют плазму СВЧ-разряда...
Тип: Изобретение
Номер охранного документа: 0002615054
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.bcf8

Способ определения скорости ветра над водной поверхностью

Способ определения скорости ветра над водной поверхностью, в котором получают при помощи двух оптических систем на основе линеек ПЗС-фотодиодов с разными направлениями визирования два пространственно-временных изображения водной поверхности. Стыкуют полученные изображения. Определяют...
Тип: Изобретение
Номер охранного документа: 0002616354
Дата охранного документа: 14.04.2017
Показаны записи 1-10 из 16.
27.04.2013
№216.012.3bc1

Сильноточный источник многозарядных ионов на основе плазмы электронно-циклотронного резонансного разряда, удерживаемой в открытой магнитной ловушке

Изобретение относится к области создания пучков многозарядных ионов (МЗИ) путем их экстракции из плотной плазмы, создаваемой в открытой магнитной ловушке мощным излучением миллиметрового диапазона длин волн, которые необходимы для формирования сильноточных пучков многозарядных ионов,...
Тип: Изобретение
Номер охранного документа: 0002480858
Дата охранного документа: 27.04.2013
27.05.2013
№216.012.4491

Способ получения изотопно-обогащенного германия

Изобретение относится к технологии получения изотопно-обогащенного германия и может быть использовано для производства полупроводниковых приборов, детекторов ядерно-физических превращений, в медико-биологических исследованиях материалов. Способ включает плазмохимическое разложение...
Тип: Изобретение
Номер охранного документа: 0002483130
Дата охранного документа: 27.05.2013
20.07.2014
№216.012.e13b

Способ получения направленного экстремального ультрафиолетового (эуф) излучения для проекционной литографии высокого разрешения и источник направленного эуф излучения для его реализации

Изобретение относится к источникам получения направленного (сформированного) мягкого рентгеновского излучения, или, что то же самое, экстремального ультрафиолетового излучения (ЭУФ) с длиной волны 13,5 нм или 6,7 нм, применяемым в настоящее время или в ближайшей перспективе в проекционной...
Тип: Изобретение
Номер охранного документа: 0002523445
Дата охранного документа: 20.07.2014
13.01.2017
№217.015.877c

Создание гибких структурных описаний для документов с повторяющимися нерегулярными структурами

Изобретение раскрывает системы, машиночитаемые носители и методы создания гибких структурных описаний. Технический результат - автоматическое создание структурного описания, используемого для извлечения данных из изображения объекта. Для создания гибких структурных описаний используется...
Тип: Изобретение
Номер охранного документа: 0002603492
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9c83

Способ получения наноразмерных структур молибдена

Изобретение относится к получению нанодисперсного порошка молибдена. Способ включает восстановление гексафторида молибдена водородом в реакторе под воздействием сверхвысокочастотного разряда. Реактор заполняют газовой смесью, состоящей из гексафторида молибдена и водорода, мольная доля которого...
Тип: Изобретение
Номер охранного документа: 0002610583
Дата охранного документа: 13.02.2017
20.01.2018
№218.016.1061

Устройство получения направленного экстремального ультрафиолетового излучения с длиной волны 11,2 нм ±1% для проекционной литографии высокого разрешения

Изобретение относится к области оптического приборостроения и касается устройства получения направленного экстремального ультрафиолетового излучения с длиной волны 11.2 нм ±1% для проекционной литографии высокого разрешения. Устройство включает в себя гиротрон, генерирующий пучок излучения...
Тип: Изобретение
Номер охранного документа: 0002633726
Дата охранного документа: 17.10.2017
20.01.2018
№218.016.138f

Источник нейтронов ограниченных размеров для нейтронной томографии

Заявленное изобретение относится к источнику нейтронов ограниченных размеров для нейтронной томографии, а именно к «точечному» источнику нейтронов с характерными размерами меньше 100 мкм с потоком нейтронов на уровне 1010 нейтр⋅с-1. В заявленном устройстве нейтроны образуются в результате...
Тип: Изобретение
Номер охранного документа: 0002634483
Дата охранного документа: 31.10.2017
10.05.2018
№218.016.4420

Сильноточный источник пучка ионов на основе плазмы электронно-циклотронного резонансного разряда, удерживаемой в открытой магнитной ловушке

Изобретение относится к области формирования сильноточных пучков ионов путем их экстракции из плотной плазмы ЭЦР разряда, создаваемой в открытой магнитной ловушке мощным излучением миллиметрового диапазона длин волн. Сильноточный источник пучков ионов на основе плазмы электронно-циклотронного...
Тип: Изобретение
Номер охранного документа: 0002649911
Дата охранного документа: 05.04.2018
10.07.2018
№218.016.6eec

Сильноточный источник пучков ионов на основе плазмы электронно-циклотронного резонансного разряда, удерживаемой в открытой магнитной ловушке

Изобретение относится к средствам формирования сильноточных пучков ионов путем их экстракции из плотной плазмы ЭЦР разряда, создаваемой в открытой магнитной ловушке мощным излучением миллиметрового диапазона длин волн. В источнике пучка ионов система формирования и экстракции пучка ионов из...
Тип: Изобретение
Номер охранного документа: 0002660677
Дата охранного документа: 09.07.2018
20.02.2019
№219.016.c2ed

Портал защитной железобетонной оболочки атомной электростанции

Изобретение относится к области атомной энергетики, а именно к эксплуатационной безопасности атомной электростанции, и может быть использовано для перегрузки транспортного контейнера с ядерным топливом с железнодорожной платформы внутрь железобетонной защитной оболочки. Портал атомной...
Тип: Изобретение
Номер охранного документа: 0002404464
Дата охранного документа: 20.11.2010
+ добавить свой РИД