×
10.05.2018
218.016.4df2

Результат интеллектуальной деятельности: СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области поршневых гибридных энергетических машин и может быть использовано при одновременном или попеременном сжатии жидкостей и газов при большой разности давлений без их взаимного загрязнения. Способ работы машины заключается в том, что при одновременном сжатии жидкости и газа зазор между поршнем и цилиндром увеличивают или уменьшают в зависимости от того, какое рабочее тело имеет большее давление. Машина состоит из цилиндра 1, выполненного в виде усеченного конуса и размещенного в нем с зазором поршня 4, имеющего аналогичный по углу образующей конус. Поршень 4 делит цилиндр 1 на газовую 2 и жидкостную 3 смежные полости, которые снабжены всасывающими 6 и 8 и нагнетательными 7 и 9 клапанами. При возвратно-поступательном движении поршня 4 объем полостей 2 и 3 изменяется, в результате чего происходит всасывание газа и жидкости через клапаны 6 и 8 и их нагнетание через клапаны 7 и 9. При сжатии одной среды до более высокого по сравнению с другой средой давления зазор между поршнем 4 и цилиндром 1 уменьшается, не давая сжимаемой до более высокого давления среде проникать через зазор между поршнем 4 и цилиндром 1 в смежную полость в большом количестве. В другом варианте машины используются активные уплотнения на поршне 4, которые уменьшают зазор между поршнем 4 и цилиндром 1 при сжатии среды с большим давлением. Улучшается эффективность работы. 4 н. и 2 з.п. ф-лы, 6 ил.

Изобретение относится к области поршневых гибридных энергетических машин и может быть использовано при одновременном или попеременном сжатии жидкостей и газов при большой разности их давлений без их взаимного загрязнения.

Известен способ работы поршневой гибридной машины объемного действия, заключающийся в попеременном всасывании, сжатии и нагнетании газа и жидкости (см., например, патент РФ №125635 «Поршневой насос-компрессор», МПК F04B 19/06, опубл. 10.03.2013, бюл. №7).

Известен также способ работы поршневой гибридной машины объемного действия, заключающийся в попеременном всасывании, сжатии и нагнетании газа и жидкости, находящихся соответственно в надпоршневой и подпоршневой полостях цилиндра (см. патент РФ №2538371 «Способ работы насос-компрессора и устройство для его осуществления», МПК F04B 19/06, опубл. 10.01.2015, бюл. №1).

Недостатком известных способов является невозможность сжатия жидкости до давления, существенно (в 2 раза и более) превышающего давление нагнетания газа без загрязнения последнего жидкостью, а также сжатия газа до давления, существенно превышающего давление жидкости, т.к. в этом случае в жидкость попадает большое количество газа, что делает нестабильной работу питаемого ей гидравлического оборудования.

Первое обстоятельство связано с тем, что жидкость обладает на несколько порядков большей вязкостью, чем газ. При высоком давлении нагнетания жидкости она занимает не только весь объем уплотнения, но и проникает в газовую камеру над поршнем, а в процессе сжатия-нагнетания газа она не может быть вытеснена через бесконтактное уплотнение назад в подпоршневое пространство. Из-за этого жидкость постепенно скапливается над поршнем, и когда ее объем превышает объем мертвого пространства газовой полости, в конце хода нагнетания газа сначала жидкость начинает в значительном количестве выталкиваться в нагнетаемый газ, что затрудняет работу нагнетательной линии по очистке газа от примесей. И далее, по мере дальнейшего увеличения слоя жидкости над поршнем, происходит гидроудар, т.к. большой объем жидкости не может быть вытеснен через газовый нагнетательный клапан (или клапаны) в связи с его относительно малым проходным сечением.

Второе обстоятельство связано с тем, что скорость течения газа в щелевом уплотнении гораздо выше скорости течения жидкости, в связи с чем давление газа на линии раздела газа и жидкости в уплотнении практически мгновенно достигает давления в газовой камере цилиндра, и при высоком (по сравнению с жидкостью) давлении сжатия-нагнетания газа он в процессе сжатия-нагнетания вытесняет полностью жидкость из зазора и беспрепятственно попадает в жидкостную камеру подпоршневого пространства.

Уменьшение радиального зазора между поршнем и цилиндром и увеличение длины поршня с целью снижения расхода жидкости или газа через бесконтактное поршневое уплотнение приводит к увеличению массы поршня и в связи с этим - снижению частоты его возвратно-поступательного движения из-за увеличения массы неуравновешенных частей, что, в свою очередь, приводит к росту габаритов и уменьшению общей эффективности машины.

Кроме того, уменьшение радиального зазора помимо известных технологических проблем приводит к снижению массы жидкости, омывающей стенки поршня, что приводит к уменьшению отвода от него теплоты и ухудшению термодинамики цикла за счет увеличения показателя политропы процесса сжатия.

Технической задачей изобретения является расширение диапазона рабочих параметров поршневой гибридной машины объемного действия и улучшение эффективности ее работы.

Указанная задача достигается тем, что при осуществлении способа работы поршневой гибридной машины объемного действия, заключающегося в попеременном всасывании, сжатии и нагнетании газа и жидкости, находящихся соответственно в надпоршневой и подпоршневой полостях цилиндра, согласно изобретению в процессе сжатия и нагнетания зазор между поршнем и цилиндром изменяют в большую или меньшую сторону. При этом если имеется существенное превышение нагнетания газа над давлением нагнетания жидкости, зазор между поршнем и цилиндром уменьшают на ходе сжатия- нагнетания газа, а при существенном превышении давления нагнетания жидкости над давлением нагнетания газа зазор между поршнем и цилиндром уменьшают на ходе сжатия-нагнетания жидкости.

Поршневая гибридная машина объемного действия, реализующая вышеописанный способ, содержащая цилиндр, разделенный на газовую и жидкостную полости находящимся в нем с зазором поршнем, соединенным с механизмом привода, всасывающие и нагнетательные газовые и жидкостные клапаны, соединенные с линиями всасывания и нагнетания газа и жидкости, согласно изобретению цилиндр и поршень выполнены в виде усеченных конусов с одинаковыми углами между образующей конусов и осью цилиндра.

Цилиндр также может быть выполнен с прямолинейной образующей, а поршень согласно изобретению может быть снабжен кольцевой выточкой с установленным в ней наружным кольцом, выполненным из упругого материала, опирающимся внутренней поверхностью на сегменты, расположенные по окружности в упомянутой выточке, причем эти сегменты с их внутренней стороны контактируют с телами качения, распертыми конусом, соединенным с упругой мембраной, установленной на днище поршня. Или поршень может быть снабжен кольцевой выточкой с установленным в ней наружным кольцом, выполненным из упругого материала, опирающимся внутренней поверхностью на сегменты, расположенные по окружности в упомянутой выточке, причем с внутренней стороны упомянутых сегментов эта выточка соединена с подпоршневой жидкостной полостью.

Сущность изобретения поясняется чертежами.

На фиг. 1 изображены схемы двух вариантов машины с конусными поршнем и цилиндром, при этом слева от оси симметрии показан вариант машины для случая, когда давление нагнетания газа существенно ниже давления нагнетания жидкости (РНГ<<РНЖ), а справа от оси симметрии - обратный случай (РНГ>>РНЖ).

На фиг. 2 и фиг. 3 показана эта же конструкция при ходе поршня вверх (фиг. 2) и вниз (фиг. 3).

На фиг. 4 и фиг. 5 показан вариант машины, в которой зазор между поршнем и цилиндром уменьшается при сжатии газа, а на фиг. 6 - вариант машины, у которой зазор между поршнем и цилиндром уменьшается при сжатии жидкости.

Поршневая гибридная машина объемного действия (фиг. 1) содержит цилиндр 1, разделенный на газовую 2 и жидкостную 3 полости находящимся в нем с зазором поршнем 4, соединенным с механизмом привода штоком 5 (сам механизм привода условно не показан), всасывающие 6 и нагнетательные 7 газовые и всасывающие 8 и нагнетательные 9 жидкостные клапаны, соединенные с линиями всасывания 10 и нагнетания 11 газа и с линиями всасывания 12 и нагнетания 13 жидкости.

Цилиндр 1 и поршень 4 выполнены в виде усеченных конусов с одинаковыми углами α (левый от оси цилиндра 1 вариант машины) и β (правый от оси цилиндра 1 вариант машины) между образующей конусов и осью цилиндра 1.

На фиг. 1 и последующих введены следующие обозначения: РНГ - давление нагнетания газа, РНЖ - давление нагнетания жидкости, РВГ - давление всасывания газа, РВЖ - давление всасывания жидкости.

На фиг. 4 и фиг. 5 схематично показана машина с активным воздействием на зазор между поршнем 4 и цилиндром 1, которое производится за счет изменения давления в полости 2.

В этом варианте поршень 4 снабжен кольцевой выточкой 14 с установленным в ней наружным кольцом 15, выполненным из упругого материала и опирающимся внутренней поверхностью на сегменты 16, расположенные по окружности в упомянутой выточке 14, причем эти сегменты с их внутренней стороны через штыри 17 контактируют с телами качения 18, распертыми конусом 19, соединенным с упругой мембраной 20, закрепленной на днище поршня 4. Тела качения 18 распределены по окружности сепаратором, представляющим собой выступы 21 (фиг. 5) на площадке 22 опоры тел качения 18, которая расположена в полости 23(фиг. 4) поршня 4.

На фиг. 6 схематично показана машина с активным воздействием на зазор между поршнем 4 и цилиндром 1, которое производится за счет изменения давления в полости 3. Здесь так же, как и в конструкции, изображенной на фиг. 4 и фиг. 5, поршень 4 снабжен кольцевой выточкой 14 с установленным в ней наружным кольцом 15, выполненным из упругого материала, опирающимся внутренней поверхностью на сегменты 16, расположенные по окружности в выточке 14, но с внутренней стороны сегментов 16 эта выточка 14 соединена каналами 24 с подпоршневой жидкостной полостью 3.

Способ работы машины осуществляется следующим образом (фиг. 1 и фиг. 2).

1. Давление нагнетания жидкости существенно больше давления нагнетания газа (левая часть чертежей).

А. При ходе поршня 4 вверх (фиг. 2) в полости 2 осуществляется сжатие и нагнетание газа, клапан 6 закрыт, клапан 7 открывается при достижении давления газа выше давления в линии нагнетания 11.

В полости 3 в это время происходит процесс всасывания жидкости, клапан 9 закрыт, клапан 8 открывается при достижении давления жидкости в полости 3 ниже, чем давление всасывания в линии всасывания 12.

При ходе поршня 4 вверх (фиг. 2) из-за того, что образующие цилиндра 1 и поршня 4 наклонены под одинаковым углом α, зазор между поршнем 4 и цилиндром 1 увеличивается. В связи с этим газ из полости 2 под давлением сжатия-нагнетания вытесняет часть жидкости из зазора в полость 3, где жидкость находится под давлением всасывания, несмотря на то, что жидкость обладает высокой (по сравнению с газом) вязкостью, а давление сжатого газа относительно невелико.

Б. При ходе поршня 4 вниз (фиг. 3) в полости 2 происходит всасывание газа, клапан 7 закрыт, а клапан 6 открывается после того, как давление в полости 2 становится ниже давления в линии всасывания 10.

В полости 3 в это время происходит процесс сжатия-нагнетания жидкости, клапан 8 закрыт, а клапан 9 открывается при достижении давления в полости 3 выше, чем давление в линии нагнетания 13.

При ходе поршня 4 вниз зазор между ним и цилиндром 1 уменьшается, и в связи с этим жидкость из полости 3 протекает в зазор между поршнем 4 и цилиндром 1 в небольшом количестве, которого достаточно лишь для заполнения зазора.

2. Давление нагнетания газа намного выше, чем давление нагнетания жидкости (правая часть чертежей).

А. При ходе поршня 4 вверх (фиг. 2) в полости 2 происходит процесс сжатия-нагнетания газа. При этом клапан 6 закрыт, клапан 7 открывается, когда давление в полости 2 превышает давление в линии нагнетания 11.

В полости 3 происходит процесс всасывания жидкости, клапан 9 закрыт, клапан 8 открывается, когда давление в полости 3 станет ниже давления в линии всасывания жидкости 12.

Сжатый газ из полости 2 проникает в зазор между поршнем 4 и цилиндром 1. В связи с тем, что образующие поршня 4 и цилиндра 1 наклонены под одинаковым углом β, зазор между поршнем 4 и цилиндром 1 постоянно уменьшается, и сопротивление его растет, и газ, несмотря на его относительно высокое давление, не может полностью вытеснить жидкость из зазора в течение процесса его сжатия-нагнетания.

Б. При ходе поршня 4 вниз (фиг. 3) в полости 2 происходит процесс всасывания, клапан 7 закрыт, клапан 6 открывается, когда давление в полости 2 становится ниже, чем давление в линии всасывания 10.

В полости 3 происходит процесс нагнетания, клапан 8 закрыт, клапан 9 открывается, когда давление в полости 3 становится выше давления в линии нагнетания жидкости 13.

Жидкость из полости 3 под действием перепада давления проникает в зазор между поршнем 4 и цилиндром 1, и несмотря на сравнительно низкое давление жидкость в течение хода поршня 4 вверх успевает заполнить зазор между поршнем 4 и цилиндром 1, т.к. этот зазор постоянно увеличивается по ходу движения поршня 4 вниз.

Таким образом, описанный способ работы машины и ее конструкция, предусматривающая выполнение поршня и цилиндра в виде усеченных конусов с одинаковыми углами наклона между образующей конусов и осью цилиндра, позволяют организовать работу машины при постоянно присутствующей жидкости в зазоре между поршнем и цилиндром, которая выполняет функции охлаждения и гидрозатвора. При этом давления нагнетания газа и жидкости могут существенно отличаться друг от друга.

Работа машины, изображенной на фиг. 4 и фиг. 5, и также реализующей способ, позволяющий организовать гидрозатвор в зазоре между поршнем 4 и цилиндром 1 и охлаждение поршня 4 циркулирующей в зазоре жидкостью при давлении нагнетания газа, существенно большем, чем давление нагнетания жидкости, протекает следующим образом.

При возвратно-поступательном движении поршня 4 газ всасывается в полость 2 через линию всасывания 10 и клапан 6, сжимается в ней и нагнетается потребителю через клапан 7 и линию нагнетания 11.

Одновременно жидкость всасывается в полость 3 из линии всасывания 12 через клапан 8, сжимается в этой полости и через клапан 9 и линию нагнетания 13 поступает к потребителю.

В процессе сжатия-нагнетания жидкости в полости 3 (поршень 4 идет вниз) она поступает под действием перепада давления между полостью 3 и полостью 2, в которой идет процесс всасывания, также и в зазор между поршнем 4 и цилиндром 1, и в связи с тем, что ее давление невелико, а зазор достаточно мал (10-30 мкм), заполняет часть этого зазора по длине.

В процессе сжатия-нагнетания газа в полости 2 (в полости 3 в это время идет процесс всасывания при низком давлении) давление газа воздействует на мембрану 20, которая прогибается (вниз по чертежу) тем больше, чем больше давление в полости 2. Прогибаясь, мембрана 20 воздействует на установленный на ней конус 19, который через тела качения 18 и штыри 17 давит на сегменты 16. Под действием этого давления сегменты 16 растягивают упругое кольцо 15, которое увеличивается в диаметре, что приводит к уменьшению зазора между поршнем 4 и цилиндром 1 в зоне кольца 15. При этом общее гидравлическое сопротивление зазора между поршнем 4 и цилиндром 1 увеличивается, что приводит к существенному снижению расхода газа в зазор между поршнем 4 и цилиндром 1, газ не может выдавить всю жидкость, находящуюся в этом зазоре, и оставшуюся в нем после предыдущего хода поршня 4 вниз.

После окончания хода поршня 4 вверх и в начале его хода вниз давление в полости 2 падает до давления всасывания и мембрана 20 приходит в исходное состояние, т.е. снова становится практически плоской. При этом конус 19 поднимается вместе с мембраной 20 и перестает воздействовать (разжимать) на кольцо 15, которое под действием упругих сил возвращает себе прежний диаметральный размер, и зазор между поршнем 4 и цилиндром 1 снова становится равным разности между их радиусами.

Затем цикл работы повторяется.

Работа машины, изображенной на фиг. 6, и также реализующей способ, позволяющий организовать гидрозатвор в зазоре между поршнем 4 и цилиндром 1 и охлаждение поршня 4 циркулирующей в зазоре жидкостью при давлении нагнетания жидкости существенно большем, чем давление нагнетания газа, протекает следующим образом.

При возвратно-поступательном движении поршня 4 газ всасывается в полость 2, сжимается в ней и нагнетается потребителю газа, и в то же время жидкость всасывается в полость 3, сжимается в ней и нагнетается потребителю жидкости.

При ходе поршня 4 вниз в полости 3 происходит сжатие жидкости до относительно высокого давления, и она помимо того, что через клапан 9 поступает потребителю жидкости, проникает в зазор между поршнем 4 и цилиндром 1 под действием перепада давления между полостями 3 и 2, т.к. в это время в полости 2 давление низкое - идет процесс всасывания газа в эту полость.

В это же время давление жидкости в полости 3 через каналы 24 поступает в выточку 14, давит на сегменты 16, которые разжимают упругое кольцо 15, из-за чего наружная поверхность кольца 15 приближается к внутренней поверхности цилиндра 1, и зазор между поршнем 4 и цилиндром 1 уменьшается в зоне кольца 15. Это приводит к увеличению общего гидравлического сопротивления зазора между поршнем 4 и цилиндром 1, что не позволяет жидкости в значительном количестве, которое существенно загрязняет сжимаемый в полости 2 газ, попасть в эту полость.

При ходе поршня 4 вверх, давление жидкости в полости 3 и, соответственно, в соединенной с ней каналами 24 выточке 14, падает до давления всасывания, упругое кольцо 15 силами упругости отжимает сегменты 16 к оси поршня 4, и зазор между поршнем 4 и цилиндром 1 увеличивается до величины разности между радиусами поршня 4 и цилиндра 2. В связи с возникшим перепадом давления между полостью 2 (в ней происходит сжатие-нагнетание газа) и полостью 3, газ выдавливает часть жидкости из зазора между поршнем 4 и цилиндром 1 назад в полость 3.

Затем цикл работы повторяется.

Предложенные способ работы поршневой гибридной машины объемного действия и устройства для его осуществления дают возможность использовать в конструкциях этой машины сравнительно большие радиальные зазоры (например, для поршня диаметром 40 мм - 30-50 мкм) и небольшую длину (например, для того же поршня - около 60-80 мм), что снижает технологические сложности изготовления машины и позволяет организовать интенсивное омывание тела поршня сжимаемой жидкостью. При этом температура поршня существенно снижается, увеличивается количество теплоты, отводимой его днищем от сжимаемого газа, что повышает эффективность работы машины по сжатию газа.

Описанные выше конструкции также позволяют работать с газом и жидкостью, имеющими большую разность давлений нагнетания. При этом попадание сжимаемой жидкости в газ и наоборот минимальны или исключены полностью, что расширяет диапазон рабочих параметров машины.

Таким образом, следует считать, что техническая задача, поставленная перед изобретением, полностью выполнена.


СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Показаны записи 61-70 из 109.
10.05.2018
№218.016.4ecd

Датчик микропримесей аммиака

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей аммиака. Изобретение может быть использовано для экологического мониторинга. Заявляемый датчик при существенном упрощении технологии его...
Тип: Изобретение
Номер охранного документа: 0002652646
Дата охранного документа: 28.04.2018
29.05.2018
№218.016.5334

Полимерная композиция

Изобретение относится к полимерной композиции, предназначенной для изготовления резинотехнических изделий, эксплуатируемых при экстремальных температурах и высоком давлении. Композиция содержит смесь каучуков, представляющих собой этилен-пропиленовый каучук и бутилкаучук, выбранный из...
Тип: Изобретение
Номер охранного документа: 0002653850
Дата охранного документа: 15.05.2018
29.05.2018
№218.016.55b6

Способ газификации невырабатываемых остатков жидкого кислорода и керосина в баках ступени ракеты-носителя и устройство для его реализации

Группа изобретений относится к ракетно-космической технике. Способ газификации невырабатываемых остатков жидкого кислорода и керосина в баках ступени ракеты-носителя после выключения маршевого жидкостного ракетного двигателя основан на подаче теплоты в баки с остатками компонентов топлива в...
Тип: Изобретение
Номер охранного документа: 0002654235
Дата охранного документа: 17.05.2018
12.07.2018
№218.016.6fbf

Способ газификации остатков жидкого компонента топлива в баке отработавшей ступени ракеты-носителя и устройство для его реализации

Группа изобретений относится к ракетно-космической технике. Способ газификации остатков жидкого компонента топлива (КТ) в баке отработавшей ступени ракеты-носителя (РН) основан на подаче горячих газов (теплоносителя) в топливный бак и сбросе продуктов газификации (ПГ) по достижении заданного...
Тип: Изобретение
Номер охранного документа: 0002661047
Дата охранного документа: 11.07.2018
12.07.2018
№218.016.7004

Магнитоэлектрическая машина

Изобретение относится к области электротехники, а именно к электрическим машинам, в частности электрогенераторам постоянного тока, и может быть использовано в любой области науки и техники, где требуются автономные источники питания. Технический результат - повышение рабочего магнитного потока...
Тип: Изобретение
Номер охранного документа: 0002660945
Дата охранного документа: 11.07.2018
12.07.2018
№218.016.705d

Поршневая гибридная энергетическая машина со ступенчатым уплотнением

Изобретение относится к области энергетики, гидравлических и пневматических устройств, в частности для сжатия и перемещения газов и жидкостей. Машина содержит цилиндр 1 и размещенный в нем с радиальным зазором δ в верхней части дифференциальный поршень 2 со штоком 3 с образованием верхней...
Тип: Изобретение
Номер охранного документа: 0002660982
Дата охранного документа: 11.07.2018
13.07.2018
№218.016.70ba

Порошковая проволока

Изобретение может быть использовано для восстановления и упрочнения уплотнительных поверхностей запорной и дросселирующей арматуры, торцевых уплотнений контактных пар. Порошковая проволока состоит из стальной оболочки и порошкообразной шихты и содержит компоненты в следующем соотношении, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002661159
Дата охранного документа: 12.07.2018
07.09.2018
№218.016.839b

Датчик угарного газа

Изобретение относится к области газового анализа, в частности к детектирующим устройствам для регистрации и измерения содержания оксида углерода. Предложенный датчик угарного газа содержит полупроводниковое основание (1), выполненное в виде поликристаллической пленки твердого раствора...
Тип: Изобретение
Номер охранного документа: 0002666189
Дата охранного документа: 06.09.2018
12.09.2018
№218.016.8656

Полупроводниковый газовый датчик

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей оксида углерода, и может быть использовано для экологического мониторинга. Полупроводниковый газовый датчик содержит полупроводниковое...
Тип: Изобретение
Номер охранного документа: 0002666575
Дата охранного документа: 11.09.2018
12.09.2018
№218.016.869f

Полупроводниковый газоанализатор оксида углерода

Изобретение относится к области газового анализа, в частности к детектирующим устройствам для регистрации и измерения содержания оксида углерода. Газовый датчик согласно изобретению содержит полупроводниковое основание, нанесенное на непроводящую подложку 2, выполненное из поликристаллической...
Тип: Изобретение
Номер охранного документа: 0002666576
Дата охранного документа: 11.09.2018
Показаны записи 61-70 из 90.
20.01.2018
№218.016.1996

Пневматическая подвеска

Изобретение относится к пневматической подвеске легкового и грузового транспорта. Пневматическая подвеска содержит гибкую оболочку со сжатым газом, установленную на посадочных поверхностях поршня и крышки. В поршне и крышке под углом к горизонтальной плоскости выполнены отверстия под штифты, в...
Тип: Изобретение
Номер охранного документа: 0002636203
Дата охранного документа: 21.11.2017
20.01.2018
№218.016.1d4e

Поршневая двухступенчатая машина с внутренней системой жидкостного охлаждения

Изобретение относится к энергетическим машинам и может быть использовано при создании высокоэкономичных автономно работающих двухступенчатых компрессоров и гибридных машин - насос-компрессоров с жидкостным охлаждением компрессорных полостей первой и второй ступени. Поршневая двухступенчатая...
Тип: Изобретение
Номер охранного документа: 0002640658
Дата охранного документа: 11.01.2018
20.01.2018
№218.016.1d80

Поршневой двухцилиндровый компрессор с жидкостным рубашечным охлаждением

Изобретение относится к области энергетических машин и касается поршневых машин и систем их охлаждения, и может быть использовано при создании поршневых компрессоров с повышенной экономичностью за счет организации автономной энергосберегающей системы охлаждения цилиндропоршневой группы....
Тип: Изобретение
Номер охранного документа: 0002640970
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1ddb

Роторно-поршневая гибридная машина объемного действия

Изобретение относится к области энергетических машин объемного действия и может быть использовано при создании высокоэффективных источников энергии для одновременного питания пневматического и гидравлического оборудования. Машина состоит и корпуса 1 с цилиндрами 2, 3, с роторами 10, 11 с...
Тип: Изобретение
Номер охранного документа: 0002640886
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1de0

Способ работы поршневого компрессора с автономным жидкостным охлаждением и устройство для его осуществления

Изобретение относится к области энергетики и может быть использовано при создании экономичных поршневых компрессоров малой и средней производительности с автономным жидкостным охлаждением. Способ работы компрессора заключается в том, что величину дополнительного объема, напрямую соединенного с...
Тип: Изобретение
Номер охранного документа: 0002640899
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e56

Поршневая машина с герметичным уплотнением

Изобретение относится к области энергетических машин, касается поршневых компрессоров с бесконтактным поршневым уплотнением, предназначенных для сжатия редких газов. Поршневая машина содержит цилиндр 1, размещенный с зазором поршень 2, всасывающий 5 и нагнетательный 6 клапаны. Герметизирующее...
Тип: Изобретение
Номер охранного документа: 0002640890
Дата охранного документа: 12.01.2018
17.02.2018
№218.016.2a44

Способ управления работой гидравлической тормозной системы транспортного средства и устройство для его осуществления

Группа изобретений относится к области транспортных средств с тормозными системами, содержащими пневматические усилители тормозов. Способ управления работой гидравлической тормозной системы транспортного средства заключается в том, что при неработающем двигателе автомобиля его вакуумную камеру...
Тип: Изобретение
Номер охранного документа: 0002643013
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.2eb4

Гибридная машина с тронковым поршнем

Изобретение относится к области энергетических машин и касается гибридных поршневых машин объемного действия, используемых в качестве насос-компрессоров, к которым предъявляются жесткие требования по массогабаритным характеристикам, экономичности и большому диапазону давлений нагнетания. Машина...
Тип: Изобретение
Номер охранного документа: 0002644424
Дата охранного документа: 12.02.2018
10.05.2018
№218.016.3942

Поршневая гибридная энергетическая машина объемного действия с уравновешенным приводом

Изобретение относится к поршневым энергетическим машинам объемного действия и может быть использовано при создании безвибрационных компрессоров, насосов, двигателей внутреннего сгорания, а также гибридных машин - насос-компрессоров и мотор - насос-компрессоров. Машина состоит из корпуса 1, в...
Тип: Изобретение
Номер охранного документа: 0002647011
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.3af3

Устройство крепления арматуры гибкого рукава

Изобретение относится к трубопроводной арматуре, в частности к конструкции многослойных напорных и напорно-всасывающих рукавов, работающих как под избыточным давлением, так и при вакууме. Техническим результатом является повышение надежности и эксплуатационного ресурса гибкого рукава, к...
Тип: Изобретение
Номер охранного документа: 0002647347
Дата охранного документа: 15.03.2018
+ добавить свой РИД