×
10.05.2018
218.016.4daf

Результат интеллектуальной деятельности: Способ работы опреснительной установки с многоступенчатыми испарителями и паровым компрессором и установка для его реализации

Вид РИД

Изобретение

Аннотация: Изобретение относится к области машиностроения, в частности к установкам для обессоливания морской воды (опреснительным установкам). Предлагаемая опреснительная установка имеет по меньшей мере две емкости, которые заполняют паром. Термосжатие пара в этих паровых емкостях производится с помощью электронагревателей. Сжатый пар направляют в испарительную установку периодически из первой и второй паровых емкостей. Отвод оставшегося пара из емкостей производят в трубопроводе подачи пара низкого давления, используя теплоту этого пара для нагрева морской воды. Управляющей системой с помощью запорных органов регулируют подачу, вывод и отвод пара из паровых емкостей. Технический результат заключается в улучшении эксплуатационных характеристик опреснительной установки. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области машиностроения, в частности к установкам обессоливания морской воды.

Известен способ работы опреснительной установки (Выпарные процессы и установки, Ф.М. Тарасов, Ленинградский технологический институт холодильной промышленности, 1962, с. 3, 19), в котором с помощью компрессора повышают давление и температуру вторичного пара таким образом, что эти параметры становятся близкими к параметрам первичного пара. В качестве компрессора используется механический компрессор. Преимуществом данного способа является отсутствие источника первичного пара на стационарных режимах работы, для запуска установки можно на короткое время использовать пар от внешнего источника.

Недостатком этого способа является сложность реализации конструкции опреснительной установки.

Например, в многоступенчатых испарительных установках опреснения морской воды применяют сжатие технологического пара с помощью механических компрессоров. Чаще всего в этих установках механический способ сжатия используют для сжатия насыщенного пара от давления 0,16-0,2 МПа до давления 0,3-0,34 МПа. Привод механических компрессоров производят от электродвигателей или от двигателей внутреннего сгорания, потребляющих большое количество энергии.

Известна установка для опреснения морской воды MED-MVC, разработанная компанией WABAG (WABAG_desalination_ru_2). В этой установке, состоящей из нескольких баков (ступеней), оборудованных теплообменниками с комплектом труб и механическим паровым компрессором, тепло для испаряющейся исходной морской воды получают за счет механического сжатия пара в компрессоре, приводимом от электрического двигателя. Опреснительные установки MED-MVC обычно применяют для малых и средних установок опреснения (Технологии опреснения. Морская и слабосоленая вода, http://www.wabag.com/wp-content/uploads/2012/04/WABAG_desalination_ru_2012_rev01_proof.pdf).

Преимуществом данного способа и установки этого типа является отсутствие внешнего источника для подогрева пара. Его недостатком является повышенный расход электроэнергии для работы опреснительной установки вследствие значительных потерь электроэнергии при механическом сжатии пара.

Известен способ работы многоступенчатой испарительной установки с механическим сжатием пара в паровом компрессоре. Согласно этому способу пар из межтрубного пространства испарителя последней ступени с давлением на входе 0,02 МПа и температурой 60°С сжимают в механическом паровом компрессоре со степенью повышения давления 1,6-1,8 и нагнетают во внутритрубное пространство первой ступени многоступенчатого испарителя. Привод парового компрессора производят от электродвигателя, питаемого электроэнергией из внешней электрической сети. Исходную морскую воду подогревают в теплообменниках за счет теплоты дистиллята и рассола обработанной морской воды (Дистилляционные опреснительные установки «Каскад». http://www.salut.ru/ViewTopic.php?Id=644). Этот способ сжатия механического сжатия насыщенного пара в паровом компрессоре опреснительной установки с многоступенчатыми испарителями принят в качестве прототипа изобретения.

Преимуществом этого способа является простота конструкции испарительной установки. Недостатками этого способа является его недостаточная экономичность и повышенная стоимость. Недостаточная экономичность определяется невысокими КПД электродвигателя, мультипликатора и центробежного механического парового компрессора. Повышенная стоимость установки связана со сложностью конструкции механического парового компрессора и применения в нем высокооборотных компрессора, мультипликатора и электродвигателя.

Задачей предлагаемого технического решения является устранение недостатков способа-прототипа и разработка способа работы многоступенчатой испарительной установки с термосжатием пара с повышением экономичности сжатия пара вследствие уменьшения расхода электрической энергии и снижения стоимости установки для реализации этого способа.

Поставленная задача решается за счет того, что в способе работы многоступенчатой испарительной установки пар из межтрубного пространства испарителя последней ступени с давлением Р1, равным 0,02 МПа, и температурой 60°С сжимают в паровом компрессоре со степенью повышения давления 1,6-1,8, используя электрическую энергию и нагнетают сжатый пар с давлением Р2 во внутритрубное пространство первой ступени многоступенчатого испарителя, исходную морскую воду подогревают теплотой рабочего тела и подают на внешние поверхности теплообменников ступеней испарительной установки, причем в паровом компрессоре производят термическое сжатие пара с давлением Р1 с помощью электрического нагревателя, термическое сжатие пара производят последовательно по меньшей мере в двух паровых емкостях с электрическими нагревателями в следующей последовательности: на первом этапе открывают запорный орган на входе пара в первую паровую емкость и закрывают запорный орган на выходе из нее пара, заполняют первую паровую емкость насыщенным паром с давлением Р1, включают электрический нагреватель первой паровой емкости и производят повышение его давления с Р1 до давления Р3 - на 10-15% выше, чем требуемое давление сжатого пара Р2, подаваемого к первой ступени многоступенчатого испарителя, затем открывают запорный орган первой паровой емкости и подают сжатый пар в первую ступень многоступенчатого испарителя, понижая его давление от Р3 до Р2, одновременно с этим открывают запорный орган второй паровой емкости, заполняют ее паром с давлением Р1, включают электрический нагреватель, повышают во второй паровой емкости давление до Р3 - на 10-15% выше, чем требуемое давление сжатого пара Р2, открывают запорный орган второй паровой емкости и подают сжатый пар с давлением Р3 в первую ступень испарителя с уменьшением его давления от Р3 до Р2; при снижении давления в этих паровых емкостях до Р2 открывают запорные органы на первой, а затем на второй емкостях и отводят из них пар через теплообменник нагрева морской воды; используя теплоту этого пара для подогрева морской воды, пар, вышедший из теплообменника нагрева морской воды, смешивают с паром с давлением Р1 с его последовательным подводом в первую и во вторую паровую емкости.

Поставленная задача решается и за счет того, что устройство, реализующее предлагаемый способ работы многоступенчатой испарительной установки, включает многоступенчатую испарительную установку, паровой компрессор для сжатия насыщенного пара, трубопровод пара насыщенного пара низкого давления, трубопровод сжатого насыщенного пара, причем паровой компрессор выполнен как термический компрессор и установлен с возможностью осуществления термического сжатия пара, содержащий по меньшей мере две паровые емкости, каждая из них снабжена электрическим нагревателем, входным и выходным запорными органами, а также запорными органами для отвода из них пара, каждая паровая емкость снабжена датчиком давления пара, электрическими выключателями, линией, подводящей электрической энергию, подогреватель морской воды, трубопроводы, связывающие паровые емкости с трубопроводом низкого давления, вход каждой из паровых емкостей связан через запорный орган и трубопровод насыщенного пара низкого давления с выходом последней ступени многоступенчатого испарителя, выходы паровых емкостей связаны по сжатому пару через выходные запорные органы и трубопроводы сжатого пара с входом первой ступени многоступенчатого испарителя, кроме того, каждая из паровых емкостей снабжена запорным органом, через который они связаны трубопроводами с запорными органами, через теплообменник подогрева морской воды с трубопроводом пара низкого давления, электронагреватели в обеих емкостях связаны через электрические выключатели с питающей электролинией.

Сущность технического решения поясняется следующими чертежами:

на фиг. 1 изображена схема термокомпрессора испарительной установки;

на фиг. 2 приведена принципиальная схема термосжатия пара в первой и второй паровых камерах.

Установка для реализации способа работы опреснительной установки с многоступенчатыми испарителями и паровым компрессором содержит: 1 - трубопровод насыщенного пара низкого давления, 2 - теплообменник нагрева морской воды, 3 - трубопровод морской воды, 4 - трубопровод отвода пара из первой паровой емкости 8, 5 - запорный орган на трубопроводе отвода пара из первой паровой емкости, 6 - запорный орган, 7 - запорный орган, 8 - первая паровая емкость, 9 - электрический нагреватель первой паровой емкости, 10 - манометр первой паровой емкости, 11 - вторая паровая емкость, 12 - электрический нагреватель второй паровой емкости, 13 - манометр второй паровой емкости, 14 - трубопровод выхода пара из первой паровой емкости, 15 - запорный орган, 16 - электрическая сеть, 17 - трубопровод подачи насыщенного пара к первой ступени испарителя, 18 - электрический выключатель первой паровой емкости, 19 - электрический выключатель второй паровой емкости, 20 - трубопровод выхода пара из второй паровой емкости, 21 - запорный орган, 22 - запорный орган, 23 - трубопровод отвода пара из второй паровой емкости.

На фиг. 2: Р1 - давление насыщенного пара на входе в первую и вторую паровые емкости, Р2 - давление насыщенного пара на входе в трубопровод подвода пара в первую ступень испарителя, Р3 - максимальное давление насыщенного пара в первой и второй паровых емкостях.

Способ работы опреснительной установки с многоступенчатыми испарителями и паровым компрессором осуществляют следующим образом. Открывают запорный орган 6 на входе насыщенного пара в первую паровую емкость 8 и закрывают запорный орган 15 на выходе из нее сжатого пара, насыщенным паром низкого давления (Р1) заполняют эту емкость, закрывают входной запорный орган 8, подают электроэнергию к размещенному в ней электрическому нагревателю первой паровой емкости 9. Его теплоту используют для нагрева насыщенного пара в емкости с повышением его давления, которое на 10-15% выше давления насыщенного пара Р2, подаваемого в первую ступень испарителя. Затем одновременно открывают запорный орган 15 на выходе сжатого насыщенного пара из первой паровой емкости и запорный орган 7 на входе насыщенного пара (с давлением Р1) во вторую паровую емкость 11. Через открытый выходной запорный орган 15 сжатый насыщенный пар подают к технологическому потребителю, уменьшая его давление от Р3 до Р2. После снижения давления в первой паровой емкости 8 до давления Р2 закрывают ее выходной запорный орган 15, открывают дополнительный запорный орган 5 и пар из этой емкости подают по трубопроводу отвода пара из первой паровой емкости 4 через теплообменник нагрева морской воды 2 для смешения с насыщенным паром с давлением Р1. Теплоту пара, удаляемого из первой паровой емкости 8, используют для подогрева в теплообменнике нагрева морской воды 2. Затем насыщенный пар с давлением Р1 подают во вторую паровую емкость 11 через открытый входной запорный орган 7 при закрытом выходном запорном органе 21. После заполнения насыщенным паром второй паровой емкости 11 закрывают ее входной запорный орган 7 и через электрический выключатель второй паровой емкости 19 подают электроэнергию к электрическому нагревателю второй паровой емкости 12 и повышают давление пара в первой паровой емкости 8 до Р3. При этом через открытый выходной запорный орган 21 второй паровой емкости 11 сжатый насыщенный пар подают по трубопроводу подачи насыщенного пара к первой ступени испарителя 17 с уменьшением его давления от Р3 до Р2. После снижения давления во второй паровой емкости 11 до давления Р2 закрывают ее выходной запорный орган 21, открывают дополнительный запорный орган 22 на отводе пара из второй паровой емкости 11 и пар из нее подают через теплообменник нагрева морской воды 2 для смешения с насыщенным паром с давлением Р1. Теплоту этого пара, удаляемого из первой паровой емкости 8, используют для подогрева морской воды.

В предлагаемом способе практически всю электрическую энергию, подводимую к электрическим нагревателям в первой и второй паровых емкостях 9 и 12, используют для нагрева насыщенного пара, повышения его давления и температуры. В то время как применение в способе-прототипе механического сжатия пара потребует применения электродвигателя, мультипликатора и парового компрессора, что потребует значительно большего расхода электроэнергии вследствие того, что КПД электродвигателя не превышает 82%, а КПД механического компрессора не выше 75-80%. Кроме этого, достаточно сложна и дорога установка механического сжатия насыщенного пара, включающая высокооборотные электродвигатель, мультипликатор и центробежный компрессор.

Установка, реализующая предложенный способ, работает следующим образом. Открывают запорный орган 6 на трубопроводе на входе пара в первую паровую емкость 8 при закрытых запорных органах 5, 7, 15, 21, 22 и насыщенным паром низкого давления (Р1) заполняют первую паровую емкость 8, электроэнергию из электрической сети 16 через включенный электрический выключатель первой паровой емкости 18 подают к электрическому нагревателю первой паровой емкости 9. Его теплоту используют для нагрева насыщенного пара в первой паровой емкости 8 до давления Р3, которое на 10-15% выше давления насыщенного пара Р2, подаваемого по трубопроводу подачи пара в первую ступень испарителя (на фиг. 1 многоступенчатый испаритель не показан). Давление пара в первой паровой емкости 8 измеряют манометром первой паровой емкости 10. После повышения давления в первой паровой емкости 8 до давления Р3 механизмом управления (на фиг. 1 не показан) подают управляющее воздействие на одновременное открытие запорного органа 15 на выходе пара из первой паровой емкости 8 и запорного органа 7 на входе пара (с давлением Р1) во вторую паровую емкость 11. Через открытый выходной запорный орган 15 сжатый пар направляют по трубопроводу подачи пара к первой ступени испарителя. При этом давление пара в первой паровой емкости 8 снижают с давления от Р3 до давления Р2. В этот момент механизм управления производит закрытие запорного органа 15 на выходе пара из первой паровой емкости 8, открытие запорного органа 5 на отводе пара из первой паровой емкости 8. Отводимый из нее пар подают по трубопроводу отвода пара из первой паровой емкости 4 через теплообменник нагрева морской воды 2 и смешивают с насыщенным паром с давлением Р1 в трубопроводе насыщенного пара низкого давления 1. Теплоту пара, отводимого из первой емкости 8, используют для подогрева морской воды в теплообменнике нагрева морской воды 2. Сжатый пар с давлением Р3 из первой паровой емкости 8 через открытый запорный орган 15 по трубопроводу выхода пара из первой паровой емкости 14 подают в трубопровод подачи насыщенного пара к первой ступени испарителя 17. Пар с давлением Р1 подают по трубопроводу насыщенного пара низкого давления 1 во вторую паровую емкость 11 через открытый запорный орган 7 на входе пара во вторую паровую емкость 11. После заполнения насыщенным паром второй паровой емкости 11 закрывают запорный орган 7 на входе пара во вторую паровую емкость 11. Электроэнергию из электрической сети 16 через включенный электрический выключатель второй паровой емкости 19 подают к электрическому нагревателю второй паровой емкости 12 и повышают давление пара во второй паровой емкости 11 с Р1 до Р3. По сигналу манометра второй паровой емкости 13 механизм управления производит открытие запорного органа 21 на выходе пара из второй паровой емкости 11, и сжатый пар с давлением Р3 направляют по трубопроводу выхода пара из второй паровой емкости 20, а затем по трубопроводу подачи насыщенного пара к первой ступени испарителя 17. Давление пара во второй паровой емкости 11 при этом снижают с Р3 до давления Р2. В этот момент по сигналу манометра второй паровой емкости 13 через открытый выходной запорный орган 15 сжатый пар направляют по трубопроводу подачи пара к первой ступени испарителя. При этом давление пара в первой паровой емкости 8 снижают с давления от Р3 до давления Р2. В этот момент механизм управления производит закрытие запорного органа 21 на выходе пара из второй паровой емкости 11 и открытие запорного органа 22 на отводе пара из второй паровой емкости 11. Отводимый пар подают по трубопроводу отвода пара из второй паровой емкости 23 через трубопровод морской воды 3 и смешивают с насыщенным паром с давлением Р1 в трубопроводе насыщенного пара низкого давления 1. Теплоту пара, отводимого из второй паровой емкости 11, используют для подогрева морской воды в теплообменнике нагрева морской воды 2.


Способ работы опреснительной установки с многоступенчатыми испарителями и паровым компрессором и установка для его реализации
Способ работы опреснительной установки с многоступенчатыми испарителями и паровым компрессором и установка для его реализации
Источник поступления информации: Роспатент

Показаны записи 11-20 из 79.
10.05.2018
№218.016.3c71

Ракетный двигатель малой тяги на газообразном водороде и кислороде с предварительным смешением компонентов в смесительной головке

Изобретение относится к ракетным двигателям малой тяги. Ракетный двигатель малой тяги на газообразных водороде и кислороде, состоящий из электропневмоклапанов горючего и окислителя, смесительной головки, включающей воспламенительное устройство со свечой зажигания, дозвуковую газовую завесу для...
Тип: Изобретение
Номер охранного документа: 0002648040
Дата охранного документа: 21.03.2018
10.05.2018
№218.016.3e11

Способ работы парового компрессора многоступенчатой опреснительной установки и устройство для его реализации

Изобретение относится к области опреснения морской воды. Способ работы парового компрессора, в котором насыщенный пар с давлением 0,016-0,02 МПа последовательно термически сжимают, по меньшей мере, в двух паровых емкостях до давления 0,03-0,032 МПа путем его электрического нагрева и подают...
Тип: Изобретение
Номер охранного документа: 0002648323
Дата охранного документа: 23.03.2018
10.05.2018
№218.016.412b

Устройство для определения нагрузочной способности микросхем

Устройство для определения нагрузочной способности микросхем относится к области микроминиатюризации и технологии радиоэлектронной аппаратуры и может быть использовано для контроля параметров микросхем при их производстве. Устройство для определения нагрузочной способности микросхем содержит...
Тип: Изобретение
Номер охранного документа: 0002649244
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.414d

Композиция для производства пористого заполнителя

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя включает, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002649206
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.459b

Теплофикационная парогазовая установка

Теплофикационная парогазовая установка с паротурбинным приводом компрессора относится к энергетике и может быть применена для тепло- и электроснабжения потребителей в новых микрорайонах городов. Теплофикационная парогазовая установка, содержащая газотурбинную установку с компрессором, камерой...
Тип: Изобретение
Номер охранного документа: 0002650232
Дата охранного документа: 11.04.2018
10.05.2018
№218.016.48d8

Способ прессования порошковой композиции в деформируемой электропроводящей оболочке (варианты)

Изобретение относится к прессованию изделия из порошковой композиции. Загружают порошковую композицию в электропроводящую трубчатую оболочку, обжимают её и снимают оболочку с изделия. Перед загрузкой порошковой композиции в трубчатую оболочку с одной из ее сторон устанавливают заглушку, после...
Тип: Изобретение
Номер охранного документа: 0002651094
Дата охранного документа: 18.04.2018
29.05.2018
№218.016.52cd

Роботизированный наноспутниковый комплекс спасения космонавтов

Изобретение относится к космической технике. Роботизированный наноспутниковый комплекс спасения космонавтов содержит высокоточную систему отделения с электромеханической лебедкой и катушкой спасательного троса. Комплекс включает в свой состав наноспутник с системой активного маневрирования,...
Тип: Изобретение
Номер охранного документа: 0002653668
Дата охранного документа: 11.05.2018
29.05.2018
№218.016.59b8

Керамическая композиция для изготовления легковесного кирпича

Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения легковесного кирпича. Техническим результатом изобретения является снижение теплопроводности и плотности легковесного кирпича. В керамическую массу добавляют сланцевый кокс, размолотый...
Тип: Изобретение
Номер охранного документа: 0002655323
Дата охранного документа: 25.05.2018
09.06.2018
№218.016.5ec9

Способ нанесения изолирующих покрытий на внутреннюю поверхность трубы

Изобретение относится к области нанесения жидких покрытий на внутреннюю поверхность полых изделий. Способ нанесения покрытия заключается в том, что материал покрытия закачивают через отсекающий клапан в наполняющую колонку. Из наполняющей колонки через сливной штуцер материал попадает в...
Тип: Изобретение
Номер охранного документа: 0002656664
Дата охранного документа: 06.06.2018
09.06.2018
№218.016.5f53

Способ работы газотурбодетандерной энергетической установки тепловой электрической станции

Способ работы газотурбодетандерной энергетической установки тепловой электрической станции заключается в том, чтоатмосферный воздух сжимают в компрессоре, подают в камеру сгорания, сжигают топливо, продукты сгорания расширяют в газовой турбине, полезную работу газовой турбины используют для...
Тип: Изобретение
Номер охранного документа: 0002656769
Дата охранного документа: 06.06.2018
Показаны записи 11-20 из 94.
10.09.2015
№216.013.75d6

Способ работы и устройство газотурбинной установки

Группа изобретений относится к энергетике Способ работы газотурбинной установки предусматривает подачу в камеру сгорания сжатого воздуха и паро-метановодородной смеси, расширение продуктов ее сгорания в газовой турбине, охлаждение путем испарения или перегрева водяного пара, направляемого в...
Тип: Изобретение
Номер охранного документа: 0002561755
Дата охранного документа: 10.09.2015
20.10.2015
№216.013.8626

Теплоэлектроцентраль с открытой теплофикационной системой

Изобретение относится к энергетике. Теплоэлектроцентраль с открытой теплофикационной системой, содержащая теплофикационную паровую турбину, турбину с промышленным и теплофикационным отборами и установку подогрева сырой воды, дополнительно снабжена системой подогрева сырой воды в конденсаторе...
Тип: Изобретение
Номер охранного документа: 0002565945
Дата охранного документа: 20.10.2015
10.12.2015
№216.013.9714

Регенеративная газотурбодетандерная установка собственных нужд компрессорной станции

Регенеративная газотурбодетандерная установка собственных нужд компрессорной станции содержит газопровод топливного газа высокого давления, связанный с магистральным газопроводом высокого давления, турбодетандер с регулируемым сопловым аппаратом, компрессор, камеру сгорания, газовую турбину,...
Тип: Изобретение
Номер охранного документа: 0002570296
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.a1cb

Вихревая газо-ветроэнергетическая установка

Изобретение относится к области вихревых энергетических установок. Вихревая газо-ветроэнергетическая установка содержит корпус гиперболической формы, вытяжное устройство, одноступенчатую осевую турбину, электрогенератор, входной направляющий аппарат с воздушными каналами, осесимметричный канал...
Тип: Изобретение
Номер охранного документа: 0002573061
Дата охранного документа: 20.01.2016
10.03.2016
№216.014.c100

Компрессорная станция магистрального газопровода с газотурбодетандерной энергетической установкой

Компрессорная станция магистрального газопровода с газотурбодетандерной энергетической установкой снабжена газотурбинными газоперекачивающими агрегатами с нагнетателями природного газа и аппаратами воздушного охлаждения. Газотурбодетандерная энергетическая установка содержит газопровод...
Тип: Изобретение
Номер охранного документа: 0002576556
Дата охранного документа: 10.03.2016
10.04.2016
№216.015.2f21

Способ управления компрессорной станцией с электроприводными газоперекачивающими агрегатами

Изобретение относится к области транспорта газа по магистральным газопроводам, к способам управления компрессорной станцией с электроприводными газоперекачивающими агрегатами, снабженной по меньшей мере одной энергетической газотурбинной установкой с силовой газовой турбиной и...
Тип: Изобретение
Номер охранного документа: 0002580577
Дата охранного документа: 10.04.2016
10.05.2016
№216.015.3b05

Способ откачки газа из отключенного участка магистрального газопровода в его действующий участок и система для его осуществления

Группа изобретений может быть использована для откачки газа из отключенного участка магистрального газопровода (МГ) в его действующий участок. В действующий участок МГ перекачивают весь газ, содержащийся в его отключенном участке, с помощью двухступенчатого мобильного гидроприводного...
Тип: Изобретение
Номер охранного документа: 0002583203
Дата охранного документа: 10.05.2016
13.01.2017
№217.015.7a45

Газотурбодетандерная энергетическая установка компрессорной станции магистрального газопровода

Изобретение относится к энергетике и может быть использовано для энергоснабжения собственных нужд компрессорных станций магистральных газопроводов. Установка содержит газопровод топливного газа высокого давления, сепаратор, подогреватель топливного газа высокого давления, турбодетандер с...
Тип: Изобретение
Номер охранного документа: 0002599082
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7cf5

Способ работы теплоэлектроцентрали с открытой теплофикационной системой и устройство для его осуществления

Изобретение относится к теплоэнергетике. В способе работы теплоцентрали (ТЭЦ) с открытой теплофикационной системой с турбоагрегатами типа Р и ПТ и приключенной теплофикационной паровой турбиной, подключенной к промышленному паропроводу ТЭЦ и снабженной конденсатором с двумя поверхностями...
Тип: Изобретение
Номер охранного документа: 0002600655
Дата охранного документа: 27.10.2016
25.08.2017
№217.015.9c41

Способ работы и устройство блока пульсирующих камер сгорания

Способ работы блока пульсирующих камер сгорания заключается в подаче воздуха в каждую из неподвижных цилиндрических камер сгорания через входные воздушные окна в течение времени их периодического открытия, подаче топлива в камеры сгорания, зажигании его искровым зарядом в периоды закрытия...
Тип: Изобретение
Номер охранного документа: 0002610362
Дата охранного документа: 09.02.2017
+ добавить свой РИД