×
10.05.2018
218.016.4d19

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ДЕБИТА СКВАЖИН, ОБОРУДОВАННЫХ НАСОСНЫМИ УСТАНОВКАМИ

Вид РИД

Изобретение

№ охранного документа
0002652220
Дата охранного документа
25.04.2018
Аннотация: Изобретение относится к нефтегазовому делу, в частности к способам определения дебита скважин, оборудованных погружными установками электроцентробежных насосов со станцией управления. Способ включает построение фактических напорно-расходных характеристик используемого насоса с учетом фактических плотности и вязкости откачиваемой газожидкостной смеси, фактической частоты вращения ротора насоса, вычисление фактического напора и определение подачи насоса, равной дебиту скважины по напорно-расходной характеристике. Фактические напорно-расходные характеристики получают путем их измерения на ряде модельных жидкостей различной вязкости для дискретного набора частот вращения ротора и интерполяции на промежуточные значения этих характеристик с помощью технологий искусственного интеллекта. Интерполяцию осуществляют в пространстве безразмерных переменных Q/(n D), v/(n D), gH/(n D), где Q - подача, n - частота вращения вала, v - вязкость, H - напор, D - диаметр рабочего колеса, g - ускорение свободного падения. Технический результат заключается в повышении точности определения дебита скважин, оборудованных насосными установками.

Изобретение относится к нефтегазовому делу, в частности к способам определения дебита скважин, оборудованных погружными установками электроцентробежных насосов со станцией управления.

Известен способ определения дебита скважин, оборудованных установками электроцентробежных насосов, в котором дебит скважины считается равным подаче насоса, при этом подача насоса определяется по дифференциальному перепаду давления на штуцере, установленном на выкидной линии, плотности откачиваемой жидкости и площади поперечного сечения штуцера [Ивановский В.Н. Основы создания и эксплуатации программно-аппаратных комплексов подбора и диагностики скважинных насосных установок для добычи нефти. РНТЖ «Нефтепромысловое дело», №5, 2000].

Недостатком указанного способа являются постоянно меняющиеся значения коэффициента расхода жидкости через штуцер и плотности жидкости (обусловленные изменением обводненности и содержания газа в нефти). Кроме того, замеры происходят на поверхности, что способствует накоплению ошибки из-за отличия скважинных условий от поверхностных.

Известен также способ определения дебита скважины, оборудованной установкой электроцентробежного насоса, включающий измерение потребляемой мощности электродвигателя привода насоса, давления на приеме насоса, потерь мощности в кабеле и построение энергетической характеристики для разной производительности насоса, по которой определяют дебит скважины [SU 1820668, опубл. 20.09.1995].

Недостатком такого способа является невысокая точность определения дебита скважины, обусловленная тем, что по мощности определяют количество жидкости на приеме насоса (забое скважины), которое отличается от количества жидкости на устье скважины - дебита скважины из-за сжимаемости жидкостной смеси, состоящей из нефти, воды и газа, и большой разницы давлений и температуры на приеме насоса и устье скважины, кроме того, при незначительном влиянии подачи насоса на его мощность одному и тому же значению мощности могут соответствовать разные значения подачи.

Наиболее близким техническим решением, принятым авторами за прототип, является способ определения дебита скважин, в котором дебит скважины считают равным подаче насоса и рассчитывают путем снятия характеристики подача - напор скважинного насоса, энергетической характеристики мощность и КПД - подача на жидкости - воде, определения плотности жидкостной смеси, определения фактического напора насоса, построения расчетной характеристики подача - напор на жидкостной смеси, построения расчетных энергетических характеристик и по расчетным характеристикам определения подачи насоса - дебита скважины, соответствующей фактическому напору и фактическому энергопотреблению [Патент RU 2581180 С1, опубл. 20.04.2016].

Недостатком указанного способа является низкая точность определения дебита, связанная с постоянным пересчетом параметров с характеристик насоса, полученных на воде, на реальную жидкость, что дает лишь приближенную модель реальных скважинных условий; использованием большого количества параметров для расчета, которые могут быть известны не на каждой скважине и также имеют свою погрешность измерения, которая суммарно отражается на точности результата работы алгоритма. Кроме того, пересчет характеристики насоса с паспортной на реальную происходит в несколько этапов, что чревато появлением и накапливанием бесконтрольной ошибки на каждом из них.

Технический результат предлагаемого изобретения заключается в повышении точности определения дебита скважин, оборудованных насосными установками с помощью методики, предполагающей минимальный набор входных данных, известных на подавляющем большинстве скважин.

Поставленный технический результат достигается тем, что в способе определения дебита скважин, оборудованных насосными установками, включающем построение напорно-расходной характеристики используемого насоса с учетом фактических плотности и вязкости откачиваемой газожидкостной смеси, фактической частоты вращения ротора насоса, вычисление фактического напора и определение дебита по расчетной напорно-расходной характеристике, согласно изобретению для повышения точности определения подачи насоса используют его фактические напорно-расходные характеристики, полученные путем их измерения на ряде модельных жидкостей различной вязкости для дискретного набора частот вращения ротора и интерполяции на промежуточные значения параметров с помощью технологий искусственного интеллекта, причем интерполяцию осуществляют в трехмерном пространстве безразмерных переменных Q/(n D3), v/(n D2), gH/(n2 D2), где Q - подача, n - частота вращения вала, v - вязкость, Н - напор, D - диаметр рабочего колеса, g - ускорение свободного падения.

Предлагаемый способ состоит из следующих этапов.

На подготовительном этапе выполняют измерения напорно-расходных характеристик насоса на ряде модельных жидкостей различной вязкости. Вязкости выбирают таким образом, чтобы перекрыть диапазон вязкостей скважинных жидкостей, например от 1 до 1000 сСт. Для выбранной рабочей жидкости вязкость регулируют температурой с постепенным изменением ее с заданным шагом. На каждом значении вязкости производится варьирование частот вращения ротора (например, в диапазоне частот вращения от 2000 до 6000 об/мин с шагом 1000 об/мин), создавая тем самым базу фактических характеристик конкретной ступени насоса в заданных диапазонах изменения значимых параметров. Для исчерпывающего описания дискретный набор характеристик следует объединить в единую функцию, т.е. построить аппроксимирующую гиперповерхность в пространстве пяти переменных (Н, Q, v, n, D). Такая задача является сложной, упрощение ее достигается переходом к безразмерным комбинациям, позволяющим уменьшить число аргументов искомой функции и тем самым облегчить и уточнить ее нахождение, вычисление, определение из опыта. Из имеющихся переменных составляют следующие безразмерные комбинации: Q/(n D3), v/(n D2), gH/(n2 D2), первая из них является аналогом безразмерной подачи, вторая - безразмерной вязкости, третья - безразмерного напора.

Далее, для получения промежуточных значений между совокупностью снятых на стенде экспериментальных точек используют технологию обучаемой нейросети. Для этого перестраивают измеренные напорно-расходные характеристики в 3-х мерном пространстве безразмерных напора, подачи, вязкости и используют их для обучения трехслойной нейросети, состоящей из входного, скрытого и выходного слоев. На входном слое нейросети задаются безразмерные нормированные напор и вязкость, на выходном - безразмерная подача. В результате обучения получают численные значения весовых коэффициентов, определяющих универсальную зависимость выходного параметра (безразмерной подачи) от входных параметров (безразмерных напора, вязкости). Дальнейшее варьирование входных параметров с любым сколь угодно мелким шагом и вычисление соответствующего выходного параметра позволяет получить непрерывную гладкую зависимость в пространстве безразмерных характеристик. Таким образом, разрозненные напорно-расходные характеристики конкретного насоса, измеренные для различных вязкостей перекачиваемой жидкости на разных частотах вращения вала становится возможным объединить в универсальную зависимость безразмерной подачи от безразмерного напора и безразмерной вязкости.

На втором этапе формируют базу данных насосов, задавая фактические напорно-расходные характеристики с помощью весовых коэффициентов по каждому из насосов. Далее база данных и программный код, вычисляющий подачу по известным напору, вязкости, частоте вращения вала, внедряются в программное обеспечение станции управления с функцией определения подачи. Для определения напора используют один из двух методов. При наличии датчиков давления на приеме и выкиде насоса осуществляют прямой замер напора. При отсутствии датчика давления на выкиде насоса замеряют буферное давление, используют существующие методики для расчета перепада давления в трубе НКТ по известным характеристикам скважинной жидкости (давление насыщения, объемный коэффициент нефти, обводненность жидкости, плотность нефти и др.) и вычисляют полный напор насоса как разницу между буферным давлением и потерями давления в трубе НКТ.

На последнем этапе при эксплуатации насосной установки, оборудованной станцией управления с функцией определения подачи, задают/считывают исходные данные (фактический напор, вязкость, частота вращения вала, габарит насоса), запускают в автоматическом режиме алгоритм определения подачи для заданного насоса и получают рассчитанное с минимальной погрешностью значение фактической подачи, выводимое на экран станции управления.

Способ определения дебита скважин, оборудованных насосными установками, включающий построение напорно-расходной характеристики используемого насоса с учетом фактических плотности и вязкости откачиваемой газожидкостной смеси, фактической частоты вращения ротора насоса, вычисление фактического напора и определение дебита по расчетной напорно-расходной характеристике, отличающийся тем, что используют фактические напорно-расходные характеристики, полученные путем их измерения на ряде модельных жидкостей различной вязкости для дискретного набора частот вращения ротора и интерполяции на промежуточные значения этих характеристик с помощью технологий искусственного интеллекта, причем интерполяцию осуществляют в пространстве безразмерных переменных Q/(n D), v/(n D), gH/(n D), где Q - подача, n - частота вращения вала, v - вязкость, Н - напор, D - диаметр рабочего колеса, g - ускорение свободного падения.
Источник поступления информации: Роспатент

Показаны записи 51-60 из 86.
29.05.2018
№218.016.55c1

Система байпасирования насосной установки

Изобретение относится к нефтепогружному оборудованию и может быть использовано для подъема скважинной жидкости и замера параметров скважины без извлечения насосной установки. Система байпасирования содержит Y-блок с пробкой. К одному выходу блока посредством патрубка, соединителя и разрывной...
Тип: Изобретение
Номер охранного документа: 0002654301
Дата охранного документа: 17.05.2018
12.07.2018
№218.016.6fce

Вихревой газосепаратор

Изобретение относится к нефтепромысловому оборудованию, в частности к погружным газосепараторам, предназначенным для отделения газа от пластовой жидкости, и может применяться при добыче нефти с большими значениями газового фактора. Технический результат – высокие сепарационные свойства...
Тип: Изобретение
Номер охранного документа: 0002660972
Дата охранного документа: 11.07.2018
23.09.2018
№218.016.8a08

Ступень многоступенчатого погружного центробежного насоса

Изобретение относится к нефтяному машиностроению, в частности к многоступенчатым погружным лопастным насосам для добычи нефти. Ступень многоступенчатого погружного центробежного насоса содержит направляющий аппарат, плавающее на валу рабочее колесо, снабженное разгрузочными отверстиями и...
Тип: Изобретение
Номер охранного документа: 0002667562
Дата охранного документа: 21.09.2018
15.10.2018
№218.016.9203

Ступень центробежного насоса для измельчения твердых абразивных частиц, содержащихся в перекачиваемой жидкости

Изобретение относится к нефтедобывающей отрасли и может быть использовано в установках электроцентробежных насосов для измельчения твердых абразивных частиц, содержащихся в перекачиваемой жидкости при скважинной добычи нефти. Ступень содержит рабочее колесо с лопастями и направляющий аппарат,...
Тип: Изобретение
Номер охранного документа: 0002669661
Дата охранного документа: 12.10.2018
21.11.2018
№218.016.9f6f

Погружной маслозаполненный высокоскоростной электродвигатель

Изобретение относится к электротехнике, к конструкции погружных маслозаполненных высокоскоростных электродвигателей для привода центробежных насосов для добычи нефти. Технический результат - увеличение эксплуатационной надежности погружных маслозаполненных электродвигателей при повышенной...
Тип: Изобретение
Номер охранного документа: 0002672858
Дата охранного документа: 20.11.2018
30.11.2018
№218.016.a250

Входное устройство для очистки пластовой жидкости

Изобретение относится к нефтедобывающей отрасли и может быть использовано в установках электроцентробежных насосов (УЭЦН) для скважинной добычи нефти в условиях, осложненных высоким содержанием абразивных частиц в пластовой продукции, в качестве входного устройства для очистки пластовой...
Тип: Изобретение
Номер охранного документа: 0002673493
Дата охранного документа: 27.11.2018
26.12.2018
№218.016.aa98

Входное устройство для очистки скважинной жидкости от механических примесей

Изобретение относится к нефтедобывающей отрасли и может быть использовано в УЭЦН для скважинной добычи нефти в условиях, осложненных высоким содержанием абразивных частиц в пластовой продукции, в качестве входного устройства для очистки скважинной жидкости от механических примесей. Технический...
Тип: Изобретение
Номер охранного документа: 0002675707
Дата охранного документа: 24.12.2018
24.01.2019
№219.016.b2f2

Погружной плунжерный насос

Изобретение относится нефтегазопромысловому оборудованию, в частности к оборудованию для добычи нефти, а именно к объемным насосам для добычи нефти. Погружной плунжерный насос содержит погружной маслозаполненный электродвигатель, гидрозащиту, приводной вал, соединенный с приводным насосом,...
Тип: Изобретение
Номер охранного документа: 0002677955
Дата охранного документа: 22.01.2019
15.02.2019
№219.016.ba91

Высокотемпературная муфта кабельного ввода для погружного электродвигателя

Изобретение относится к области электротехники, в частности к концевым соединителям для кабелей, находящихся в жидкой среде. Муфта кабельного ввода для погружного электродвигателя содержит соединенные между собой корпус и хвостовик, заполненный компаундом, провод токопроводящего кабеля со...
Тип: Изобретение
Номер охранного документа: 0002679825
Дата охранного документа: 13.02.2019
03.03.2019
№219.016.d264

Стенд для моделирования засорения ступеней погружных электроцентробежных насосов

Изобретение относится к нефтедобывающей промышленности, а именно к конструкции стендов для моделирования процесса отложения солей и механических частиц на деталях погружных электроцентробежных насосов (ЭЦН) и может быть использовано для проведения сравнительных испытаний ЭЦН, предназначенных...
Тип: Изобретение
Номер охранного документа: 0002681054
Дата охранного документа: 01.03.2019
Показаны записи 51-52 из 52.
23.05.2023
№223.018.6bf2

Погружная насосная установка на грузонесущем кабеле и способ ее эксплуатации

Группа изобретений относится к нефтепромысловому оборудованию и может быть использована для добычи нефти, осложненной высоким газовым фактором. Способ эксплуатации погружной насосной установки на грузонесущем кабеле включает спуск в колонну насосно-компрессорных труб (НКТ) установки, содержащей...
Тип: Изобретение
Номер охранного документа: 0002737409
Дата охранного документа: 30.11.2020
17.06.2023
№223.018.7fcd

Сепарирующее устройство и тарельчатый сепаратор для внутрискважинной сепарации воды и нефти

Группа изобретений относится к нефтепромысловому оборудованию и может быть использовано для добычи нефти в условиях высокой обводненности добываемого флюида. Сепарирующее устройство для внутрискважинной сепарации воды и нефти содержит цилиндрический корпус с основанием, последовательно...
Тип: Изобретение
Номер охранного документа: 0002768538
Дата охранного документа: 24.03.2022
+ добавить свой РИД