×
10.05.2018
218.016.4b6e

СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ БЛИЖНЕЙ ЗОНЫ ПЛАСТА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002651647
Дата охранного документа
23.04.2018
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к нефтяной промышленности и может быть использовано при планировании проведения технологического воздействия на призабойную зону скважины с целью повышения приемистости нагнетательных скважин. Решается задача увеличения числа оцениваемых параметров и повышение достоверности оценки состояния ближней зоны пласта. Способ включает нагнетание жидкости в пласт при постоянном расходе, остановку скважины, измерение забойного давления и температуры, интерпретацию кривой давления методом кривой падения давления (КПД), определение проницаемости удаленной зоны пласта (k) и скин-фактора (S). Перепад давления (ΔР) на забое определяют за счет скин-эффекта, графически находят тангенс угла наклона кривой зависимости функции изменения температуры от времени (m), вычисляют значения проницаемости (k) и радиус (r) ближней зоны пласта по математическим формулам. 5 ил., 3 табл.
Реферат Свернуть Развернуть

Изобретение относится к нефтяной промышленности и может быть использовано при планировании проведения технологического воздействия на призабойную зону скважины с целью повышения приемистости нагнетательных скважин.

Из уровня техники известны различные способы определения параметров призабойной и удаленной зон пласта.

Способ комплексной оценки состояния призабойной зоны пласта [патент РФ 2522579, кл. E21B 47/00, E21B 49/00, опублик. 20.07.2014] включает эксплуатацию скважины на установившемся режиме перед проведением гидродинамического исследования, гидродинамическое исследование скважины методом восстановления давления, определение забойного давления и продолжающегося притока жидкости из пласта в скважину после ее остановки и обработку результатов замеров. Способ позволяет определить параметры удаленной зоны пласта при использовании нескольких методов с учетом послепритока, в случае ухудшенного состояния призабойной зоны пласта определить размеры и свойства призабойной зоны пласта, используя определенные ранее значения проницаемости удаленной зоны пласта. Состояние призабойной и удаленной зон пласта оценивается по значениям диагностического признака, проницаемости, гидропроводности, пьезопроводности и размеров призабойной зоны пласта.

Способы, предложенные в [патент РФ 2189443, кл. E21B 47/00, опублик. 20.09.2002; патент РФ 2179637, кл. E21B 49/00, E21B 47/00, опублик. 20.02.2002], основаны на импульсной нестационарной закачке реагента. Подходы заключаются в определении накопленного расхода и работы, затрачиваемой на нестационарное течение в призабойной зоне пласта единицы расхода реагента, расчет коэффициента скин-эффекта, измерении режимов закачки реагента при достижении необходимых фильтрационных свойств призабойной зоны пласта. Данный подход позволяет определить гидропроводность, пьезопроводность, радиус призабойной зоны и коэффициент скин-эффекта для каждого замера в условиях импульсной нестационарной закачки пластовой жидкости во время каждого режима закачки.

В патенте [патент США №4799157, кл. E21B 49/00, E21B 047/00; G01F 013/00, опублик. 17.01.1989] описан способ испытания скважины для оценки проницаемости и скин-фактора двух пластов одного коллектора. Способ заключается в выполнении двух последовательных гидродинамических исследований скважины (ГДИС) путем создания депрессии на забое с перестановкой каротажного зонда и последующей интерпретацией данных о дебитах и давлениях.

Общим недостатком указанных патентов является то, что все они требуют специального оборудования или специальных операций в скважине для определения свойств призабойной зоны пласта и не используют промысловых данных по температуре.

Наиболее близким к изобретению по технической сущности является способ гидродинамического исследования скважин [патент США №8116980, кл. G01V 1/40; E21B 47/00, опублик. 14.12.2012], который включает закачку жидкости при постоянном расходе или смене режимов закачки и измерение забойного давления, закрытие скважины и измерение забойного давления и температуры, интерпретацию кривой давления методом кривой падения давления (КПД), определение параметров пласта (проницаемость удаленной зоны пласта, пластовое давление, общий скин-фактор, скин-фактор межфазного взаимодействия), расчет продуктивности скважины.

Недостатком известного способа является малое число измеряемых параметров, невысокая точность определения характеристик скважины, призабойной зоны и пласта и трудности в определении потенциала скважины.

В изобретении решается задача увеличения числа оцениваемых параметров и повышение достоверности оценки состояния ближней зоны пласта.

Техническим результатом является повышение точности определения параметров, характеризующих состояние ближней зоны пласта.

Поставленная задача решается тем, что в способе определения параметров ближней зоны пласта, включающем нагнетание жидкости в пласт при постоянном расходе, остановку скважины, измерение забойного давления и температуры, интерпретацию кривой давления методом КПД, определение проницаемости удаленной зоны пласта (k) и скин-фактора (S), согласно изобретению определяют перепад давления на забое за счет скин-эффекта (ΔPs), находят графически тангенс угла наклона кривой зависимости функции изменения температуры от времени (m1n), вычисляют значения проницаемости (ks) и радиус (rs) ближней зоны пласта по формулам

где α - коэффициент теплообмена с окружающими породами, (cρƒ) - объемная теплоемкость флюида, - внутренний радиус скважины, μ - вязкость жидкости.

Изобретение поясняется чертежами, где на фиг. 1 представлена схематическая иллюстрация кривой изменения температуры ΔT и аппроксимация полученной кривой линейной функцией ; на фиг. 2 - схематическая иллюстрация разности полученной линейной функции и температурной кривой ΔT в полулогарифмических координатах; на фиг. 3 - аппроксимация промысловой кривой ΔT линейной функцией ; на фиг. 4 - производная разности полученной линейной функции и температурной кривой ΔT в полулогарифмических координатах по оси x: на фиг. 5 - разности полученной линейной функции и температурной кривой ΔT в полулогарифмических координатах по оси y.

Сущность изобретения заключается в следующем. Определение параметров призабойной зоны пласта имеет большое значение при испытании скважины на приемистость, определении потенциала скважины и планировании технологического воздействия на призабойную зону. Неточная или несвоевременно полученная информация приводит к перерасходу жидкости или к недостижению задач обработки. Анализ состояния призабойной зоны скважины позволит контролировать параметры технологического воздействия и проводить оперативное вмешательство.

Гидродинамическое исследование скважин позволяет оценить проницаемость удаленной зоны пласта, пластовое давление, значение скин-фактора, который характеризует состояние призабойной зоны пласты. Однако основной проблемой остается бесконечный набор значений проницаемости и радиуса скин-зоны, которые соответствуют определенному значению скин-фактора [1]. Стандартная методика ГДИС [2, 3] предполагает, что температура в пласте постоянна, однако замеры температуры показали, что ее значения могут изменяться существенно. Поскольку температурный фронт распространяется значительно медленнее, чем фронт давления, представляется возможным из данных по температуре, которая зависит от скорости фильтрации, градиента давления, свойств жидкости и породы, определить околоскважинные характеристики пласта, такие как радиус и проницаемость скин-зоны.

Предлагаемое изобретение осуществляется следующим образом. Чтобы провести анализ влияния различных температурных эффектов на изменение температуры во время остановки нагнетательной скважины, был разработан численный код на основе метода контрольного объема. Рассматривалась одномерная радиальная фильтрация жидкости в пласт с учетом влияния ствола скважины и послепритока/послеоттока жидкости. Решалась полная задача, включающая уравнения для расчета распределения давления и температуры в пласте, с учетом следующих температурных эффектов: кондуктивной и конвективной теплопроводности, эффекта Джоуля-Томсона, адиабатического расширения и теплообмена с окружающей средой. Оценка температурных эффектов показала, что во время остановки нагнетательной скважины основным источником тепла является теплообмен с окружающей средой, а основным видом переноса тепла - кондуктивная теплопроводность. Однако на начальных этапах (2-4 часа после остановки скважины) основную роль в переносе тепла в пласте выполняет продолжающийся отток жидкости из скважины (конвективная теплопроводность). Этот начальный этап и представляет существенный интерес, поскольку по скорости оттока жидкости возможно определить недостающие параметры скин-зоны. Ввиду этого для начального этапа остановки изменение температуры в скважине можно записать как

где q1 - приток тепла в единицу объема скважины, q2 - опок тепла из единицы объема скважины, q3 - тепловой поток в скважину за счет теплообмена с окружающей средой (нагрев со стороны обсадной колонны). Отметим, что первые два слагаемых (q1, q2) отвечают за конвективный перенос тепла, третье слагаемое (q3) связано с теплообменом с окружающей средой. Тогда (1) можно переписать как

Уравнение (2) - обыкновенное дифференциальное уравнение (ОДУ), решение которого имеет следующий вид:

Здесь Т - температура, p - давление, v - скорость фильтрации, с - удельная теплоемкость, ρ - плотность, λ - коэффициент теплопроводности, - коэффициент теплообмена с окружающей средой, - внутренний радиус скважины, - внешний радиус скважины, индекс «ƒ» относится к жидкости, «с» - к обсадной колонне, Т0 - температура нагнетаемой жидкости, Те - температура окружающих пород, С' - константа интегрирования.

При начальном условии T(0)=Тe решение (3) можно записать

Полученное аналитическое решение (4) при ряде допущений хорошо согласуется с численными расчетами, полученными для полной модели, описанной выше. Относительная погрешность составляет 0,29%. Таким образом, аналитическая формула (4) хорошо описывает динамику температуры на забое и может быть использована при разработке способа определения фильтрационных параметров ближней зоны пласта для остановленных нагнетательных скважин.

Способ состоит из следующих этапов.

Этап 1. Введение нагнетательной скважины в работу с постоянным расходом Q.

Этап 2. Остановка нагнетательной скважины и измерение забойного давления и температуры.

Этап 3. Интерпретация кривой давления методом КПД.

Этап 4. Определение параметров удаленной зоны пласта по стандартной методике ГДИС: общий скин-фактор S, проницаемость k.

Этап 5. Вычисление перепада давления на забое за счет скин-эффекта

Этап 6. Определение скорости фильтрации в ближней зоне пласта как функции от неизвестных проницаемости скин-зоны ks и ее радиуса rs

Этап 7. Определение по табл. 1 изменения температуры ΔT, функций , в зависимости от того какая закачка (горячая или холодная) производилась (фиг. 1), где tv - это время после остановки скважины (2-4 часа).

Этап 8. Преобразование аналитического решения (4) к виду

Этап 9. Построение графика функции в зависимости от t (график 1) и графика ее производной (график 2)

Этап 10. Нахождение участка, где производная (8) постоянна (график 2), и выделение этого участока на графике 1. Определение тангенса угла наклона прямой на найденном участке m1n (фиг. 2).

Этап 11. Из (6), (7) и найденного тангенса угла наклона получается тождество

Из формулы (9) выражается rs;

Радиус ближней зоны пласта rs также можно выразить из аналитической формулы, связывающий значения скин-фактора, проницаемости и радиуса ближней зоны пласта [1]

Приравнивая (10) и (11), получается нелинейное уравнение на ks

Решая систему уравнений (11) и (12), определяются неизвестные параметры ближней зоны пласта (проницаемость ks и радиус rs загрязнения).

Таким образом, разработанный способ на базе анализа промысловых данных изменения температуры совместно со стандартной методикой ГДИС позволяет определить параметры ближней зоны пласта.

Технико-экономическое преимущество разработанного способа заключается в определении радиуса и степени загрязнения ПЗП. Полученные параметры могут быть использованы при планировании проведения геолого-технических мероприятий (ГТМ) методом соляно-кислотной обработки (СКО) ПЗП.

Пример использования разработанного способа. Исследовалась скважина ХХХХ месторождения Y. Скважина долгое время работала с постоянным дебитом. Затем была остановлена для проведений ГДИС по КПД на 60 часов. Датчик измерения давления и температуры был спущен до верхних дыр перфорации (ВДП), и проводилась запись на протяжении всего этапа остановки скважины. Проведена интерпретация промысловых данных по КПД. Полученные параметры исследования представлены в табл. 2 (исследование хорошей достоверности).

Анализ температурных данных проводился на основе разработанного способа. Закачивалась холодная жидкость, поэтому для вычисления изменения температуры ΔT, функций β(t), и коэффициента к использовалась вторая колонка табл. 1. Аппроксимация промысловой кривой ΔT линейной функцией представлена на фиг. 3. Согласно этапу 9 строим график функции в зависимости от t (фиг. 5) и график ее производной (фиг. 4). Находим участок, где производная, вычисленная по формуле (8), постоянна (фиг. 4), и отмечаем этот участок на фиг. 5. Находим перепад давления (ΔPs) и тангенс угла наклона прямой на этом участке (m1n). Определенные параметры представлены в табл. 3. Согласно этапу 11 получаем нелинейное уравнение на проницаемость ближней зоны пласта ks

Из уравнения (13) находим значение ks=1,41 μД, а по формуле (11) определяем радиус ближней зоны пласта rs

Источники информации

1. Hawkins М.F. A Note on the Skin Effect / M.F. Hawkins // Trans. AIME- 1956. - V. 207. - P. 356-357.

2. Дeева T.A. Гидродинамические исследования скважин: анализ и интерпретация данных / Т.А. Деева. М.Р. Камартдинов, Т.Е. Кулагина. П.В. Мангазеев. - Томск: Издательство ТПУ, 2009. - 243 с.

3. Earlougher R.C. Advances in well test analysis / R.C. Earlougher // Society of Petroleum Engineer's Monograph 5, 1977. - 264 p.


СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ БЛИЖНЕЙ ЗОНЫ ПЛАСТА
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ БЛИЖНЕЙ ЗОНЫ ПЛАСТА
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ БЛИЖНЕЙ ЗОНЫ ПЛАСТА
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ БЛИЖНЕЙ ЗОНЫ ПЛАСТА
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ БЛИЖНЕЙ ЗОНЫ ПЛАСТА
Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
20.09.2015
№216.013.7ca4

Сепарационная установка

Изобретение относится к области оборудования для нефтедобывающей промышленности, а именно к установкам для разделения продукции нефтяных скважин на нефть и воду. Сепарационная установка содержит колонну с трубопроводами подвода газожидкостной смеси и отвода нефти, воды и газа, при этом колонна...
Тип: Изобретение
Номер охранного документа: 0002563505
Дата охранного документа: 20.09.2015
Показаны записи 1-4 из 4.
10.07.2015
№216.013.5e7e

Способ разработки обводненных залежей нефти свч электромагнитным воздействием (варианты)

Группа изобретений относится к области нефтедобывающей промышленности и может быть использована для повышения нефтеотдачи пласта при разработке обводненных залежей с вязкой нефтью и битума на поздней стадии разработки. Способ включает вскрытие пласта с возможностью перевода добывающей скважины...
Тип: Изобретение
Номер охранного документа: 0002555731
Дата охранного документа: 10.07.2015
12.01.2017
№217.015.5b36

Способ и устройство нагрева высоковязких нефтей в трубопроводах высокочастотными электромагнитными полями

Изобретение относится к области нагрева высоковязких нефтей в трубопроводах электромагнитными полями. Способ нагрева включает непрерывное воздействие электромагнитного поля на поток нефти в трубопроводе, при котором для продукции трубопровода определяют низшую критическую температуру Т, ниже...
Тип: Изобретение
Номер охранного документа: 0002589741
Дата охранного документа: 10.07.2016
10.04.2019
№219.017.0827

Способ обезвоживания водонефтяных эмульсий воздействием электромагнитного поля

Изобретение относится к обезвоживанию водонефтяных эмульсий и может быть использовано при промысловой подготовке нефти к переработке. Определяют тангенс угла диэлектрических потерь для эмульсии, определяют частоту, соответствующую максимальному значению тангенса угла диэлектрических потерь,...
Тип: Изобретение
Номер охранного документа: 0002400523
Дата охранного документа: 27.09.2010
27.12.2019
№219.017.f2be

Система и способ электромагнитного фазоразделения водонефтяной эмульсии

Изобретение относится к области обработки водонефтяных эмульсий, в частности к системам и способам разделения водонефтяных эмульсий с использованием высокочастотного (ВЧ) и сверхвысокочастотного (СВЧ) излучения. Система для электромагнитного фазоразделения водонефтяной эмульсии содержит...
Тип: Изобретение
Номер охранного документа: 0002710181
Дата охранного документа: 24.12.2019
+ добавить свой РИД