×
10.05.2018
218.016.4b60

Результат интеллектуальной деятельности: Способ измерения угловой скорости лазерного гироскопа со знакопеременной частотной подставкой

Вид РИД

Изобретение

№ охранного документа
0002651612
Дата охранного документа
23.04.2018
Аннотация: Изобретение относится к измерительной лазерной технике и может найти применение в при измерении угловой скорости лазерного гироскопа со знакопеременной частотной подставкой. Технический результат – повышение точности. Для этого обеспечено формирование на основе выходного сигнала вращения лазерного гироскопа последовательности импульсов, следующих друг за другом через интервалы времени, равные периоду выходного сигнала, подсчет числа импульсов выходного сигнала вращения лазерного гироскопа на каждом полупериоде переключения частотной подставки, определение знака разности частот встречных волн и определение времени начала каждого полупериода. Измеряют интервалы времени между первым и последним импульсом на каждом полупериоде переключения частотной подставки, а также подсчитывают числа импульсов за эти интервалы времени и определяют угловую скорость по формуле: Ω=(N/t+N/t)/2K, где Ω - средняя угловая скорость; t и t - интервалы времени между первым и последним импульсами на полупериоде с положительным и отрицательным знаком частотной подставки соответственно; N и N - числа импульсов, подсчитанные на интервалах времени t и t соответственно, со знаком разности частот встречных волн; K - масштабный коэффициент лазерного гироскопа. Для повышения точности измерения угловой скорости измерение проводят за несколько периодов переключения частотной подставки, а за измеренное значение угловой скорости принимают среднее арифметическое из полученных за каждый период значений угловой скорости. При этом обеспечивается устранение динамических зон захвата в выходной характеристике лазерного гироскопа и повышение точности измерения угловой скорости. 1 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной лазерной технике, а именно к лазерной гироскопии, и может быть использовано при создании систем формирования и обработки выходной информации лазерных гироскопов со знакопеременной частотной подставкой.

Лазерные гироскопы со знакопеременной частотной подставкой применяются в современных системах навигации, ориентации, наведения и стабилизации пространственного положения самолетов, ракет, космических аппаратов и других движущихся объектов.

Известны разные способы измерения угловой скорости в лазерных гироскопах со знакопеременной частотной подставкой [Великобритания, патент GB №2107511, H01S 3/083, Россия, патент RU №2307325, G01C 19/66].

Существенным недостатком известных способов измерения угловой скорости лазерных гироскопов со знакопеременной частотной подставкой является наличие в выходной характеристике зон нечувствительности, обусловленных связью встречных волн через обратное рассеяние [Ароновитц Ф. Лазерные гироскопы. В сб. статей «Применения лазеров» под ред. Тычинского В.П., М.: Мир, 1974, с. 182]. Известным способом устранения динамических зон нечувствительности является ошумление сигнала частотной подставки [Aronowitz F., Fundamentals of the ring laser gyro. Research and Technology Organisation., Optical Gyros and their Application., May, 1999, (3-1)-(3-46)]. Недостатком этого способа является увеличение погрешности измерения угловой скорости при малых временах измерения вследствие увеличения случайной составляющей выходного сигнала из-за его ошумления.

Наиболее близким по технической сущности к предлагаемому способу измерения угловой скорости лазерных гироскопов со знакопеременной частотной подставкой является способ, описанный в статье [Azarova V.V. etal. Zeeman Laser Gyroscops, Research and Technology Organisation., Optical Gyros and their Application., May, 1999, (5-1)-(5-29)], позволяющий уменьшить величину зон нечувствительности за счет использования прямоугольной частотной подставки, заключающийся в формировании на основе выходного сигнала вращения лазерного гироскопа со знакопеременной прямоугольной подставкой последовательности импульсов, следующих друг за другом через интервалы времени, равные периоду выходного сигнала, определении знака разности частот встречных волн на полупериодах переключения частотной подставки и времени начала каждого полупериода, подсчете числа импульсов выходного сигнала вращения лазерного гироскопа на каждом полупериоде переключения частотной подставки, при этом угловую скорость определяют по формуле:

где Ω - угловая скорость;

N+ и N- - числа, равные числу импульсов, подсчитанных в положительном и отрицательном полупериодах частотной подставки соответственно, со знаком разности частот;

K - масштабный коэффициент лазерного гироскопа;

Т - период переключения частотной подставки.

Данный способ позволяет уменьшить динамические зоны синхронизации без ошумления частотной подставки. Недостатком данного способа является то, что он позволяет только уменьшить величину динамических зон за счет использования более оптимальной формы частотной подставки (прямоугольной), но не устраняет их полностью.

Задачей изобретения является устранение динамических зон захвата в лазерном гироскопе со знакопеременной частотной подставкой и уменьшение ошибки измерения угловой скорости вращения.

Поставленная задача решается за счет того, что в известном способе измерения угловой скорости лазерного гироскопа со знакопеременной частотной подставкой, включающем формирование на основе выходного сигнала вращения лазерного гироскопа последовательности импульсов, следующих друг за другом через интервалы времени, равные периоду выходного сигнала, подсчет числа импульсов выходного сигнала вращения лазерного гироскопа на каждом полупериоде переключения частотной подставки, определение знака разности частот встречных волн и определение времени начала каждого полупериода переключения частотной подставки, измеряют интервалы времени между первым и последним импульсом на каждом полупериоде переключения частотной подставки, а также подсчитывают числа импульсов за эти интервалы времени и определяют угловую скорость по формуле:

где Ω - угловая скорость;

t+ - интервал времени между первым и последним импульсами на полу периоде с положительным знаком частотной подставки;

t- - интервал времени между первым и последним импульсами на полупериоде с отрицательным знаком частотной подставки;

N+ - число, равное числу импульсов, подсчитанному на интервале времени t+ со знаком разности частот встречных волн;

N- - число, равное числу импульсов, подсчитанному на интервале времени t- со знаком разности частот встречных волн;

K - масштабный коэффициент лазерного гироскопа.

Другим отличием является то, что измерение проводят за несколько периодов переключения частотной подставки, а за измеренное значение угловой скорости принимают среднее арифметическое из полученных за каждый период значений угловой скорости;

Поскольку вклад в фазу выходного сигнала от обратного рассеяния имеет период выходного сигнала, при подсчете импульсов за каждый из интервалов времени t+ и t- он вычитается и динамические зоны синхронизации в выходной характеристике отсутствуют. Фактически в данном случае при измерении угловой скорости исключаются интервалы времени, на которых происходит набег фаз, приводящий к динамическому захвату частот встречных волн и к ошибке измерения угловой скорости. Этот набег фаз происходит вблизи точки смены знака разности частот встречных волн за время не более одного периода выходного сигнала [Волновые и флуктуационные процессы в лазерах. Под ред. Климонтовича Ю.Л., М.: Наука, 1974].

Повышение точности при измерении средней угловой скорости за несколько периодов переключения частотной подставки обеспечивают за счет снижения случайных ошибок определения средней угловой скорости на одном периоде.

Действительно, погрешность подсчета числа импульсов определяется надежностью счетной логики и является случайной величиной. Погрешности измерения интервалов времени t+ и t- определяются отношением сигнал/шум выходного сигнала и шумовой составляющей фазы выходного сигнала, поэтому также являются случайными. В результате среднее арифметическое значение угловой скорости за n периодов переключения частотной подставки будет иметь относительную ошибку, в раз меньшую, чем за один период.

Рассмотрим применение предложенного способа для лазерного гироскопа ЗЛГ-16, параметры которого для обычного способа измерения угловой скорости представлены в работах [Азарова В.В. и др. Зеемановские лазерные гироскопы. Квантовая электроника, т. 45, №2, с. 171-179, 2015, Синельников А.О. Влияние температуры внешней среды и саморазогрева на выходные характеристики кольцевых зеемановских лазеров определяющих точность лазерных гироскопов на их основе. Диссертация на соискание ученой степени к.т.н., М., 2014].

В этом гироскопе используется знакопеременная частотная подставка FB(t), имеющая форму меандра

здесь F, Т - амплитуда и период переключения подставки.

Период переключения подставки состоит из двух полупериодов, в одном из которых частотная подставка положительна (положительный полупериод), а в другом - отрицательна (отрицательный полупериод).

На фигуре схематично изображена зависимость напряжения выходного сигнала U(t) в относительных единицах лазерного гироскопа ЗЛК-16 со знакопеременной частотной подставкой от времени t в мс для положительного полупериода частотной подставки. Регистрируемые импульсы формируются на основе сигнала биений через интервалы времени, равные периоду выходного сигнала. На фигуре отмечены точки, в которых формируются счетные импульсы, и показаны их номера и измеряемый интервал времени t+. Аналогично формируют счетные импульсы в отрицательный полупериод. Знак разности частот определяют, сравнивая опережение сигналов, полученных с двух фотоприемников, сдвинутых пространственно на четверть интерференционной полосы. Начало каждого полупериода определяют по смене знака частотной подставки.

По предложенному способу измерялся интервал времени t+ между началом первого и началом последнего считываемого импульса в положительном полупериоде переключения частотной подставки, кратный периоду выходного сигнала. Аналогично определялся и измерялся интервал времени t-. Затем подсчитывались числа импульсов N+ и N- с учетом знака.

Угловая скорость на периоде переключения частотной подставки определялась по формуле:

где Ω - угловая скорость;

t+ - интервал времени между первым и последним импульсами на полупериоде с положительным знаком частотной подставки;

t- - интервал времени между первым и последним импульсами на полупериоде с отрицательным знаком частотной подставки;

N+ - число, равное числу импульсов, подсчитанному на интервале времени t+, со знаком разности частот встречных волн;

N- - число, равное числу импульсов, подсчитанному на интервале времени t-, со знаком разности частот встречных волн;

K - масштабный коэффициент лазерного гироскопа, равный 3,3'' для ЗЛГ-16.

Затем находилось среднее арифметическое значение угловой скорости за 0,001 с (1 период), за 1 с ( 1000 периодов) и за 1 мин (60000 периодов).

Полуширина динамической зоны для этого датчика составляет величину около 10 Гц (33'/мин), т.е. без ошумления датчик не чувствует даже угловую скорость Земли (15'/мин). При наличии ошумления случайная ошибка ЗЛГ-16 (нестабильность смещения нуля) составляет за период (0,001 с) - 25'/с, за секунду - до 0,04'/с и. за минуту до 0,3'/мин,

При измерении угловой скорости предложенным способом случайная ошибка ΔΩ составила за период - 0,15'/с, за 1 с - 0,01'/с, за минуту - 0,1'/мин.

Сравнение результатов показывает, что при времени меньше минуты точность измерения предложенным способом существенно выше. При большем времени измерения погрешности известного и предложенного способов сравниваются.

Таким образом, использование предлагаемого способа измерения угловой скорости лазерного гироскопа со знакопеременнной частотной подставкой обеспечивает по сравнению с существующими способами следующие преимущества: устранение динамических зон захвата в выходной характеристике лазерного гироскопа и повышение точности измерения угловой скорости.


Способ измерения угловой скорости лазерного гироскопа со знакопеременной частотной подставкой
Способ измерения угловой скорости лазерного гироскопа со знакопеременной частотной подставкой
Источник поступления информации: Роспатент

Показаны записи 11-20 из 71.
10.05.2018
№218.016.4358

Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления

Изобретение относится к способу очистки подложек из ситалла. Способ включает химическую очистку и промывку в деионизованной воде. После промывки в деионизованной воде подложки из ситалла предварительно нагревают в струе высокочастотной плазмы на расстоянии от 60 до 120 мм от среза...
Тип: Изобретение
Номер охранного документа: 0002649695
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.476c

Лазерный дальномер

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный дальномер содержит лазерный полупроводниковый излучатель с датчиком тока накачки, двухканальное приемное устройство с коммутатором входов, на выходе которого включен вычислитель дальности, причем...
Тип: Изобретение
Номер охранного документа: 0002650851
Дата охранного документа: 17.04.2018
29.05.2018
№218.016.5701

Приемник импульсных лазерных сигналов

Изобретение относится к лазерной технике, а именно к аппаратуре приема лазерного излучения. Приемник импульсных лазерных сигналов содержит фоточувствительный элемент, схему обработки сигнала, выполненный в виде полупрозрачной шторки оптический затвор, привод шторки и логический модуль. Шторка...
Тип: Изобретение
Номер охранного документа: 0002655006
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.570b

Лазерный дальномер

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный дальномер содержит передающий канал, включающий лазерный излучатель с передающим объективом и схемой запуска, и приемный канал, включающий фотоприемное устройство с приемным объективом. Причем...
Тип: Изобретение
Номер охранного документа: 0002655003
Дата охранного документа: 23.05.2018
25.08.2018
№218.016.7ef4

Лазерный излучатель

Изобретение относится к лазерной технике, а именно к импульсным твердотельным лазерам. Лазерный излучатель содержит активный элемент и параллельно расположенный источник накачки в виде линейки лазерных диодов, между источником накачки и активным элементом введена призма, в поперечном сечении...
Тип: Изобретение
Номер охранного документа: 0002664768
Дата охранного документа: 22.08.2018
29.03.2019
№219.016.ee10

Способ определения ошибок ориентации измерительных осей лазерных гироскопов и маятниковых акселерометров в бесплатформенной инерциальной навигационной системе

Изобретение относится к приборостроению и может быть использовано для определения ошибок ориентации измерительных осей гироскопов и маятниковых акселерометров в БИНС после температурных, вибрационных или ударных воздействий, а также в процессе эксплуатации. Способ определения ошибок ориентации...
Тип: Изобретение
Номер охранного документа: 0002683144
Дата охранного документа: 26.03.2019
25.04.2019
№219.017.3b2e

Способ компенсации влияния медленного меандра на показания лазерного гироскопа

Изобретение относится к приборостроению и измерительной технике. Сущность изобретения заключается в том, что способ компенсации влияния медленного меандра на показания лазерного гироскопа содержит этапы, на которых предварительно проводят климатические испытания лазерного гироскопа и определяют...
Тип: Изобретение
Номер охранного документа: 0002685795
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3d27

Оптический приемник

Изобретение относится к области приема оптического излучения и касается оптического приемника. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом. Оптический затвор выполнен в виде шторки с двумя...
Тип: Изобретение
Номер охранного документа: 0002686386
Дата охранного документа: 25.04.2019
27.04.2019
№219.017.3d72

Приемник лазерного излучения

Изобретение относится к области приема оптического излучения и касается приемника лазерного излучения. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом. Оптический затвор выполнен в виде шторки с...
Тип: Изобретение
Номер охранного документа: 0002686406
Дата охранного документа: 25.04.2019
24.05.2019
№219.017.5d79

Способ измерения угловых перемещений зеемановским лазерным гироскопом

Изобретение относится к лазерной технике, а именно к лазерной гироскопии. Способ измерения угловых перемещений зеемановским лазерным гироскопом включает в себя создание частотной подставки с помощью наложения магнитного поля на активный элемент кольцевого лазера с эллиптической или круговой...
Тип: Изобретение
Номер охранного документа: 0002688952
Дата охранного документа: 23.05.2019
Показаны записи 1-6 из 6.
25.08.2017
№217.015.c1e5

Способ упрочнения оптического контакта диэлектрических поверхностей лазерного гироскопа и генератор струи плазмы для его реализации

Изобретение относится к способу и устройству для низкотемпературного упрочнения оптического контакта диэлектрических поверхностей газоразрядных приборов, в частности резонаторов моноблочных газовых лазеров, в процессе их технологической сборки. Заявленное устройство содержит диэлектрический...
Тип: Изобретение
Номер охранного документа: 0002617697
Дата охранного документа: 26.04.2017
24.05.2019
№219.017.5d79

Способ измерения угловых перемещений зеемановским лазерным гироскопом

Изобретение относится к лазерной технике, а именно к лазерной гироскопии. Способ измерения угловых перемещений зеемановским лазерным гироскопом включает в себя создание частотной подставки с помощью наложения магнитного поля на активный элемент кольцевого лазера с эллиптической или круговой...
Тип: Изобретение
Номер охранного документа: 0002688952
Дата охранного документа: 23.05.2019
27.07.2019
№219.017.b9cc

Способ уменьшения магнитного дрейфа зеемановских лазерных гироскопов

Изобретение относится к приборостроению и может быть использовано при создании зеемановских лазерных гироскопов. Способ уменьшения магнитного дрейфа зеемановских лазерных гироскопов содержит этапы, на которых создают поле, компенсирующее сумму всех действующих на зеемановский лазерный гироскоп...
Тип: Изобретение
Номер охранного документа: 0002695761
Дата охранного документа: 25.07.2019
13.02.2020
№220.018.0251

Способ изготовления окисной пленки холодного катода газового лазера в тлеющем разряде постоянного тока

Изобретение относится к области квантовой электроники и может быть использовано при изготовлении газоразрядных приборов, в частности холодных катодов моноблочных газовых лазеров. Технический результат, заключающийся в расширении области применения способа с целью обеспечения повышенной...
Тип: Изобретение
Номер охранного документа: 0002713915
Дата охранного документа: 11.02.2020
25.06.2020
№220.018.2b4f

Способ десинхронизации динамических зон на частотной характеристике лазерного гироскопа

Изобретение относится к лазерной технике, а именно к лазерной гироскопии. Способ десинхронизации динамических зон на частотной характеристике лазерного гироскопа включает создание быстрой знакопеременной частотной подставки с амплитудой, многократно превышающей ширину зоны захвата, и периодом...
Тип: Изобретение
Номер охранного документа: 0002724306
Дата охранного документа: 22.06.2020
26.05.2023
№223.018.6fe4

Устройство регулировки периметра четырехчастотного зеемановского лазерного гироскопа

Изобретение относится к гироскопам и измерительной технике и может быть использовано для регулировки периметра четырехчастотного зеемановского лазерного гироскопа. Устройство регулировки периметра четырехчастотного зеемановского лазерного гироскопа включает фотоприемники выходного излучения...
Тип: Изобретение
Номер охранного документа: 0002796228
Дата охранного документа: 18.05.2023
+ добавить свой РИД