×
10.05.2018
218.016.4a6e

Результат интеллектуальной деятельности: Способ нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на металлические, полимерные и текстильные изделия медицинского назначения

Вид РИД

Изобретение

№ охранного документа
0002651837
Дата охранного документа
24.04.2018
Аннотация: Изобретение относится к способу нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на металлические, полимерные и текстильные изделия медицинского назначения. Поверхность изделия медицинского назначения подвергают очистке методом ионного травления в герметичной камере. Камеру предварительно вакуумируют до остаточного давления 9⋅10 - 1⋅10 Торр с последующим заполнением камеры аргоном и вакуумированием камеры до остаточного давления 1⋅10 - 2⋅10 Торр. Ионное травление выполняют ионами аргона с энергией 0,7-3,0 кэВ в течение 4-8 минут. Затем в заполненной аргоном и вакуумированной до остаточного давления 1⋅10 - 2⋅10 Торр камере на поверхность изделия наносят покрытие на основе углерода в виде тетраэдрического алмаза типа ta-C или карбинового типа импульсно-плазменным дуговым распылением при длительности импульса 0,1-1,0 мсек и частоте их следования 0,1-30 Гц с графитового катода. Наносят покрытие углерода толщиной слоя 5-50 ангстрем за один импульс при использовании импульсно-плазменного дугового источника углеродной плазмы с напряжением разряда 150-810 В. При этом в качестве материала дугового источника атомов углерода при импульсно-плазменном дуговом распылении используют графит марки МПГ-7, АРВ или ВЧ. Техническим результатом является получение изделия высокой биологической совместимости в различных физиологических средах организма пациента, обеспечение предотвращения образования бактериальной биопленки на поверхности изделия медицинского назначения, обеспечение высокой антиадгезивности и бактериостатичности поверхности имплантированного медицинского изделия в различных физиологических средах организма пациента, а также обеспечение надежной защиты поверхности имплантированного медицинского изделия от возникновения процессов инфекции. 6 пр.

Изобретение относится к области медицины, а именно к способу нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на металлические, полимерные и текстильные изделия медицинского назначения и может быть использовано при изготовлении и использовании металлических, полимерных и текстильных изделий медицинского назначения в условиях травматолого-ортопедических, хирургических, стоматологических и других стационаров.

Известен способ получения биокарбона, включающий испарение графита в вакууме и конденсацию углерода на изделие с использованием импульсного разряда, (см. патент РФ №2095464, МПК С23С 14/12, 10.11.1997 г.), который:

- недостаточно обеспечивает высокую биологическую совместимость в различных физиологических средах организма пациента,

- не обеспечивает высокую антиадгезивность и бактериостатичность поверхности имплантированного медицинского изделия в различных физиологических средах организма пациента,

- не препятствует образованию бактериальной биопленки на поверхности металлических, полимерных и текстильных изделий медицинского назначения,

- не обеспечивает надежную защиту поверхности имплантированного медицинского изделия от возникновения процессов инфекции.

Задачей изобретения является создание способа нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на металлические, полимерные и текстильные изделия медицинского назначения.

Техническим результатом является надежное обеспечение высокой биологической совместимости в различных физиологических средах организма пациента, надежное предотвращение образования бактериальной биопленки на поверхности изделия медицинского назначения, обеспечение высокой антиадгезивности и бактериостатичности поверхности имплантированного медицинского изделия в различных физиологических средах организма пациента, а также обеспечение надежной защиты поверхности имплантированного медицинского изделия от возникновения процессов инфекции.

Технический результат достигается тем, что предложен способ нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на металлические, полимерные и текстильные изделия медицинского назначения, включающий испарение графита в вакууме и конденсацию углерода на изделие с использованием импульсного разряда, при этом предварительно поверхность упомянутого изделия очищают путем ионного травления в герметичной камере, которую сначала вакуумируют до остаточного давления 9⋅10-5-1⋅10-6 Торр, заполняют аргоном, затем вакуумируют до остаточного давления 1⋅10-4-3⋅10-3 Торр и осуществляют ионное травление ионами аргона с энергией 0,7-3,0 кэВ в течение 4-8 минут, после чего в заполненной аргоном и вакуумированной до остаточного давления 1⋅10-4-3⋅10-3 Торр камере на поверхность изделия наносят покрытие на основе углерода в виде тетраэдрического алмаза типа ta-C или карбинового типа импульсно-плазменным дуговым распылением графитового катода марки MПГ-7, АРВ или ВЧ при длительности импульса 0,1-1,0 мсек и частоте их следования 0,1-30 Гц, причем за один импульс разряда импульсно-плазменного дугового источника углеродной плазмы наносят слой толщиной слоя 5-50 ангстрем при напряжении разряда 150-810 В.

Способ осуществляют следующим образом. Поверхность металлического, полимерного или текстильного изделия медицинского назначения подвергают очистке методом ионного травления в герметичной камере. При этом металлическое, полимерное или текстильное изделие медицинского назначения размещают в камере, которую предварительно вакуумируют до остаточного давления 9⋅10-5-1⋅10-6 Торр, заполняют камеру аргоном и вакуумируют до остаточного давления 1⋅10-4-3⋅10-3 Торр. Ионное травление выполняют ионами аргона с энергией 0,7-3,0 кэВ в течение 4-8 минут.

Затем в заполненной аргоном и вакуумированной до остаточного давления 1⋅10-4-3⋅10-3 Торр камере на поверхность медицинского изделия наносят биосовместимое покрытие на основе углерода в виде тетраэдрического алмаза типа ta-C или карбиноподобной структуры импульсно-плазменным дуговым распылением графита при длительности импульса 0,1-1,0 мсек и частоте их следования 0,1-30 Гц с графитового катода. При этом в качестве материала дугового источника атомов углерода при импульсно-плазменном дуговом распылении используют графит марки МПГ-7, АРВ или ВЧ.

Наносят на поверхность металлического, полимерного или текстильного изделия медицинского изделия антиадгезивное биосовместимое покрытие углерода заданной и необходимой толщины, при этом наносят покрытие слоем 5-50 ангстрем за один импульс при использовании импульсно-плазменного дугового источника углеродной плазмы с напряжением разряда 150-810 В.

Среди существенных признаков, характеризующих предложенный способ нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на металлические, полимерные и текстильные изделия медицинского назначения, отличительными являются:

- предварительная очистка поверхности металлических, полимерных и текстильных изделий медицинского назначения путем ионного травления в герметичной камере, которую сначала вакуумируют до остаточного давления 9⋅10-5-1⋅10-6 Торр, заполняют аргоном, затем вакуумируют до остаточного давления 1⋅10-4-3⋅10-3 Торр,

- осуществление ионного травления ионами аргона с энергией 0,7-3,0 кэВ в течение 4-8 минут,

- нанесение в заполненной аргоном и вакуумированной до остаточного давления 1⋅10-4-3⋅10-3 Торр камере на поверхность изделия покрытие на основе углерода в виде тетраэдрического алмаза типа ta-C или карбинового типа импульсно-плазменным дуговым распылением графитового катода марки МПГ-7, АРВ или ВЧ при длительности импульса 0,1-1,0 мсек и частоте их следования 0,1-30 Гц, причем за один импульс разряда импульсно-плазменного дугового источника углеродной плазмы наносят слой толщиной слоя 5-50 ангстрем при напряжении разряда 150-810 В.

Экспериментальные исследования предложенного способа нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на металлические, полимерные и текстильные изделия медицинского назначения показали его высокую эффективность. Способ нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на металлические, полимерные и текстильные изделия медицинского назначения при своем использовании надежно обеспечил высокую биологическую совместимость в различных физиологических средах организма пациента, надежное предотвращение образования бактериальной биопленки на поверхности изделия медицинского назначения, обеспечил высокую антиадгезивность и бактериостатичность поверхности имплантированного медицинского изделия в различных физиологических средах организма пациента, а также обеспечил надежную защиту поверхности имплантированного медицинского изделия от возникновения процессов инфекции.

Реализация предложенного способа нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на металлические, полимерные и текстильные изделия медицинского назначения иллюстрируется следующими практическими примерами.

Пример 1. На три плоских образца, выполненных из используемого для изготовления имплантатов широкого профиля титана марки ВТ-16 толщиной 1,0 мм, нанесли предложенным способом антиадгезивное, биосовместимое и бактериостатичное покрытие.

Поверхность трех плоских образцов из титана марки ВТ-16 очистили методом ионного травления в герметичной камере, которую сначала вакуумировали до остаточного давления 9⋅10-5 Торр, заполнили камеру аргоном и вакуумировали до остаточного давления 3⋅10-3 Торр. Ионное травление выполнили ионами аргона с энергией 3,0 кэВ в течение 5 минут.

Процесс нанесения антиадгезивного биосоместимого покрытия продолжили в заполненной аргоном и вакуумированной до остаточного давления 3⋅10-3 Торр камере. На очищенную поверхность трех образцов из титана марки ВТ-16 нанесли импульсно-плазменным дуговым распылением с графитового катода антиадгезивное, биосоместимое и бактериостатичное покрытие углерода в виде тетраэдрического алмаза типа ta-C. Причем использовали импульсно-плазменный дуговой источник углеродной плазмы из графита марки АРВ при длительности импульса 0,8 мсек и частоте их следования 10 Гц. При этом нанесли покрытие углерода толщиной 500 ангстрем при нанесении слоя покрытия толщиной 50 ангстрем за один импульс импульсно-плазменного дугового источника углеродной плазмы с напряжением разряда 740 В.

Затем на поверхность антиадгезивного, биосовместимого и бактериостатичного покрытия каждого из трех плоских образцов из титана марки ВТ-16 в лаборатории ФГБУ «ЦИТО им. Н.Н. Приорова нанесли по 1 мл физиологического раствора с тест-культурами микроорганизмов, выделенных от пациентов с инфекционными осложнениями после эндопротезирования крупных суставов и относящихся к виду Staphylococcus aureus MRS A, E.Coli и Pseudomonas aeruginosa, в концентрациях, содержащих 107 клеток каждой тест-культуры, соответствующей стандарту мутности 0,5 Мак Фарланд.

Нанесенные растворы каждой тест-культуры равномерно распределяли на поверхности одного образца, поверхность подсушили идентично способу определения антибиотикорезистентности микроорганизмов диско-диффузионным методом. Образцы инкубировали в термостате при температуре 36°С в течение 24 час.

В результате электронного микроскопического исследования поверхности покрытия каждого образца после инкубирования были установлены высокие антиадгезивные свойства предложенного антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода. При этом установили отсутствие на поверхности каждого из трех плоских образцов из титана марки ВТ-16 образования бактериальной биопленки штаммов Staphylococcus aureus MRSA, E.Coli и Pseudomonas aeruginosa при отсутствии роста их колоний с одновременным их угнетением до единичных колоний, что свидетельствует о высокой эффективности предложенного антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода для медицинских изделий из титана марки ВТ-16. Предложенное антиадгезивное, биосовместимое и бактериостатичное покрытие обеспечивает высокую биологическую совместимость в различных физиологических средах организма пациента.

Пример 2. На три плоских образца, выполненных из используемой для изготовления имплантатов широкого профиля нержавеющей стали медицинского назначения толщиной 0,8 мм, нанесли предложенным способом антиадгезивное, биосовместимое и бактериостатичное покрытие.

Поверхность трех плоских образцов из нержавеющей стали медицинского назначения очистили методом ионного травления в герметичной камере, которую сначала вакуумировали до остаточного давления 1⋅10-6 Торр, заполнили камеру аргоном и вакуумировали до остаточного давления 1⋅10-4 Торр. Ионное травление выполнили ионами аргона с энергией 2,8 кэВ в течение 8 минут.

Процесс нанесения антиадгезивного, биосоместимого и бактериостатичного покрытия продолжили в заполненной аргоном и вакуумированной до остаточного давления 1⋅10-4 Торр камере. На очищенную поверхность трех плоских образцов из нержавеющей стали медицинского назначения нанесли импульсно-плазменным дуговым распылением с графитового катода антиадгезивное, биосоместимое и бактериостатичное покрытие углерода в виде тетраэдрического алмаза типа ta-C. Причем использовали импульсно-плазменный дуговой источник углеродной плазмы из графита марки МПГ-7 при длительности импульса 1,0 мсек и частоте их следования 3 Гц. При этом нанесли покрытие углерода толщиной 1000 ангстрем при нанесении слоя покрытия толщиной 20 ангстрем за один импульс импульсно-плазменного дугового источника углеродной плазмы с напряжением разряда 600 В.

Затем на поверхность антиадгезивного, биосовместимого и бактериостатичного покрытия каждого из трех плоских образцов из нержавеющей стали медицинского назначения в лаборатории ФГБУ «ЦИТО им. Н.Н. Приорова нанесли по 1 мл. физиологического раствора с тест-культурами микроорганизмов, выделенных от пациентов с инфекционными осложнениями после эндопротезирования крупных суставов и относящихся к виду Staphylococcus aureus MRSA, E.Coli и Pseudomonas aeruginosa, в концентрациях, содержащих 10 клеток каждой тест-культуры, соответствующей стандарту мутности 0,5 Мак Фарланд.

Нанесенные растворы каждой тест-культуры равномерно распределяли на поверхности каждого образца, поверхность подсушили идентично способу определения антибиотикорезистентности микроорганизмов диско-диффузионным методом. Образцы инкубировали в термостате при температуре 36°С в течение 24 час.

В результате электронного микроскопического исследования поверхности покрытия каждого образца после инкубирования были установлены высокие антиадгезивные свойства предложенного антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода. При этом установили отсутствие на поверхности каждого из трех образцов из политетрафторэтилена образования бактериальной биопленки штаммов Staphylococcus aureus MRSA, E.Coli и Pseudomonas aeruginosa при отсутствии роста их колоний с одновременным их угнетением до единичных колоний, что свидетельствует о высокой эффективности предложенного антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода для медицинских изделий из нержавеющей стали медицинского назначения. Предложенное антиадгезивное, биосовместимое и бактериостатичное покрытие обеспечивает высокую биологическую совместимость в различных физиологических средах организма пациента.

Пример 3. На три образца, выполненных из используемого для изготовления медицинской перевязочной политетрафторэтиленовой повязки материала, нанесли предложенным способом антиадгезивное, биосоместимое и бактериостатичное покрытие.

Поверхность трех образцов из политетрафторэтилена очистили методом ионного травления в герметичной камере, которую сначала вакуумировали до остаточного давления 1⋅10-6 Торр, заполнили камеру аргоном и вакуумировали до остаточного давления 5⋅10-4 Торр. Ионное травление выполнили ионами аргона с энергией 0,7 кэВ в течение 8 минут.

Процесс нанесения антиадгезивного, биосоместимого и бактериостатичного покрытия продолжили в заполненной аргоном и вакуумированной до остаточного давления 5⋅10-4 Торр камере. На очищенную поверхность трех образцов из политетрафторэтилена нанесли импульсно-плазменным дуговым распылением с графитового катода антиадгезивное, биосоместимое и бактериостатичное покрытие углерода в виде тетраэдрического алмаза типа ta-C. Причем использовали импульсно-плазменный дуговой источник углеродной плазмы из графита марки MПГ-7 при длительности импульса 1,0 мсек и частоте их следования 0,1 Гц. При этом нанесли покрытие углерода толщиной 5000 ангстрем при нанесении слоя покрытия толщиной 50 ангстрем за один импульс импульсно-плазменного дугового источника углеродной плазмы с напряжением разряда 810 В.

Затем на поверхность антиадгезивного, биосовместимого и бактериостатичного покрытия каждого из трех образцов из политетрафторэтилена в лаборатории ФГБУ «ПИТО им. Н.Н. Приорова нанесли по 1 мл физиологического раствора с тест-культурами микроорганизмов, выделенных от пациентов с инфекционными осложнениями после эндопротезирования крупных суставов и относящихся к виду Staphylococcus aureus MRSA, E.Coli и Pseudomonas aeruginosa, в концентрациях, содержащих 107 клеток каждой тест-культуры, соответствующей стандарту мутности 0,5 Мак Фарланд.

Нанесенные растворы каждой тест-культуры равномерно распределяли на поверхности каждого образца, поверхность подсушили идентично способу определения антибиотикорезистентности микроорганизмов диско-диффузионным методом. Образцы инкубировали в термостате при температуре 36°С в течение 24 час.

В результате электронного микроскопического исследования поверхности покрытия каждого образца после инкубирования были установлены высокие антиадгезивные свойства предложенного антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода. При этом установили отсутствие на поверхности каждого из трех образцов из политетрафторэтилена образования бактериальной биопленки штаммов Staphylococcus aureus MRSA, E.Coli и Pseudomonas aeruginosa при отсутствии роста их колоний с одновременным их угнетением до единичных колоний, что свидетельствует о высокой эффективности предложенного антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода для медицинских изделий из политетрафторэтилена. Предложенное антиадгезивное, биосовместимое и бактериостатичное покрытие обеспечивает высокую биологическую совместимость в различных физиологических средах организма пациента.

Пример 4. На три образца, выполненных из используемого для изготовления полипропиленового сетчатого эндопротеза материала, нанесли предложенным способом антиадгезивное, биосоместимое и бактериостатичное покрытие.

Поверхность трех сетчатых образцов из полипропилена очистили методом ионного травления в герметичной камере, которую сначала вакуумировали до остаточного давления 9⋅10-5 Торр, заполнили камеру аргоном и вакуумировали до остаточного давления 3⋅10-3 Торр. Ионное травление выполнили ионами аргона с энергией 1,55 кэВ в течение 6 минут.

Процесс нанесения антиадгезивного, биосоместимого и бактериостатичного покрытия продолжили в заполненной аргоном и вакуумированной до остаточного давления 3⋅10-3 Торр камере. На очищенную поверхность трех сетчатых образцов из полипропилена нанесли импульсно-плазменным дуговым распылением с графитового катода антиадгезивное, биосоместимое и бактериостатичное покрытие углерода карбиноподобной структуры. Причем использовали импульсно-плазменный дуговой источник углеродной плазмы из графита марки АРВ при длительности импульса 0,6 мсек и частоте их следования 1 Гц. При этом нанесли покрытие углерода толщиной 500 ангстрем при нанесении слоя покрытия толщиной 8 ангстрем за один импульс импульсно-плазменного дугового источника углеродной плазмы с напряжением разряда 580 В.

Затем на поверхность антиадгезивного, биосовместимого и бактериостатичного покрытия каждого из трех сетчатых образцов из полипропилена в лаборатории ФГБУ «ПИТО им. Н.Н. Приорова нанесли по 1 мл физиологического раствора с тест-культурами микроорганизмов, выделенных от пациентов с инфекционными осложнениями после эндопротезирования крупных суставов и относящихся к виду Staphylococcus aureus MRSA, E.Coli и Pseudomonas aeruginosa, в концентрациях, содержащих 107 клеток каждой тест-культуры, соответствующей стандарту мутности 0,5 Мак Фарланд.

Нанесенные растворы каждой тест-культуры равномерно распределяли на поверхности одного образца, поверхность подсушили идентично способу определения антибиотикорезистентности микроорганизмов диско-диффузионным методом. Образцы инкубировали в термостате при температуре 36°С в течение 24 час.

В результате электронного микроскопического исследования поверхности покрытия каждого образца после инкубирования были установлены высокие антиадгезивные свойства предложенного антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода. При этом установили отсутствие на поверхности каждого из трех образцов из политетрафторэтилена образования бактериальной биопленки штаммов Staphylococcus aureus MRSA, E.Coli и Pseudomonas aeruginosa при отсутствии роста их колоний с одновременным их угнетением до единичных колоний, что свидетельствует о высокой эффективности предложенного антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода для медицинских изделий из полипропилена. Предложенное антиадгезивное, биосовместимое и бактериостатичное покрытие обеспечивает высокую биологическую совместимость в различных физиологических средах организма пациента.

Пример 5. На три образца, выполненных из используемого для изготовления медицинской марлевой хлопчатобумажной повязки материала, нанесли предложенным способом антиадгезивное, биосоместимое и бактериостатичное покрытие.

Поверхность трех образцов из марлевой хлопчатобумажной повязки очистили методом ионного травления в герметичной камере, которую сначала вакуумировали до остаточного давления 1⋅10-6 Торр, заполнили камеру аргоном и вакуумировали до остаточного давления 3⋅10-4 Торр. Ионное травление выполнили ионами аргона с энергией 2,4 кэВ в течение 4 минут.

Процесс нанесения антиадгезивного, биосоместимого и бактериостатичного покрытия продолжили в заполненной аргоном и вакуумированной до остаточного давления 3⋅10-4 Торр камере. На очищенную поверхность трех образцов из марлевой хлопчатобумажной повязки нанесли импульсно-плазменным дуговым распылением с графитового катода антиадгезивное, биосоместимое и бактериостатичное покрытие углерода в виде тетраэдрического алмаза типа ta-C. Причем использовали импульсно-плазменный дуговой источник углеродной плазмы из графита марки MПГ-7 при длительности импульса 0,1 мсек и частоте их следования 30 Гц. При этом нанесли покрытие углерода толщиной 1000 ангстрем при нанесении слоя покрытия толщиной 5 ангстрем за один импульс импульсно-плазменного дугового источника углеродной плазмы с напряжением разряда 150 В.

Затем на поверхность антиадгезивного, биосовместимого и бактериостатичного покрытия каждого из трех образцов из марлевой хлопчатобумажной повязки в лаборатории ФГБУ «ЦИТО им. Н.Н. Приорова нанесли по 1 мл физиологического раствора с тест-культурами микроорганизмов, выделенных от пациентов с инфекционными осложнениями после эндопротезирования крупных суставов и относящихся к виду Staphylococcus aureus MRSA, E.Coli и Pseudomonas aeruginosa, в концентрациях, содержащих 10 клеток каждой тест-культуры, соответствующей стандарту мутности 0,5 Мак Фарланд.

Нанесенные растворы каждой тест-культуры равномерно распределяли на поверхности каждого образца, поверхность подсушили идентично способу определения антибиотикорезистентности микроорганизмов диско-диффузионным методом. Образцы инкубировали в термостате при температуре 36°С в течение 24 час.

В результате электронного микроскопического исследования поверхности покрытия каждого образца после инкубирования были установлены высокие антиадгезивные свойства предложенного антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода. При этом установили отсутствие на поверхности каждого из трех образцов из политетрафторэтилена образования бактериальной биопленки штаммов Staphylococcus aureus MRSA, E.Coli и Pseudomonas aeruginosa при отсутствии роста их колоний с одновременным их угнетением до единичных колоний, что свидетельствует о высокой эффективности предложенного антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода для медицинских изделий из материала марлевой хлопчатобумажной повязки. Предложенное антиадгезивное, биосовместимое и бактериостатичное покрытие обеспечивает высокую биологическую совместимость в различных физиологических средах организма пациента.

Пример 6. На три образца, выполненных из используемого для изготовления полиэтиленового вкладыша металлического эндопротеза материала, нанесли предложенным способом антиадгезивное, биосоместимое и бактериостатичное покрытие.

Поверхность трех образцов из полиэтилена очистили методом ионного травления в герметичной камере, которую сначала вакуумировали до остаточного давления 1⋅10-6 Торр, заполнили камеру аргоном и вакуумировали до остаточного давления 3⋅10-3 Торр. Ионное травление выполнили ионами аргона с энергией 2,0 кэВ в течение 5 минут.

Процесс нанесения антиадгезивного, биосоместимого и бактериостатичного покрытия продолжили в заполненной аргоном и вакуумированной до остаточного давления 3⋅10-3 Торр камере. На очищенную поверхность трех образцов из полиэтилена нанесли импульсно-плазменным дуговым распылением с графитового катода антиадгезивное, биосовместимое и бактериостатичное покрытие углерода карбиноподобной структуры. Причем использовали импульсно-плазменный дуговой источник углеродной плазмы из графита марки ВЧ при длительности импульса 0,6 мсек и частоте их следования 2 Гц. При этом нанесли покрытие углерода толщиной 1000 ангстрем при нанесении слоя покрытия толщиной 8 ангстрем за один импульс импульсно-плазменного дугового источника углеродной плазмы с напряжением разряда 320 В.

Затем на поверхность антиадгезивного, биосовместимого и бактериостатичного покрытия каждого из трех образцов из полиэтилена в лаборатории ФГБУ «ЦИТО им. Н.Н. Приорова нанесли по 1 мл физиологического раствора с тест-культурами микроорганизмов, выделенных от пациентов с инфекционными осложнениями после эндопротезирования крупных суставов и относящихся к виду Staphylococcus aureus MRSA, E.Coli и Pseudomonas aeruginosa, в концентрациях, содержащих 107 клеток каждой тест-культуры, соответствующей стандарту мутности 0,5 Мак Фарланд.

Нанесенные растворы каждой тест-культуры равномерно распределяли на поверхности каждого образца, поверхность подсушили идентично способу определения антибиотикорезистентности микроорганизмов диско-диффузионным методом. Образцы инкубировали в термостате при температуре 36°С в течение 24 час.

В результате электронного микроскопического исследования поверхности покрытия каждого образца после инкубирования были установлены высокие антиадгезивные свойства предложенного антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода. При этом установили отсутствие на поверхности каждого из трех образцов из полиэтилена образования бактериальной биопленки штаммов Staphylococcus aureus MRSA, E.Coli и Pseudomonas aeruginosa при отсутствии роста их колоний с одновременным их угнетением до единичных колоний, что свидетельствует о высокой эффективности предложенного антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода для медицинских изделий из полиэтилена.

Предложенное антиадгезивное, биосовместимое и бактериостатичное покрытие обеспечивает высокую биологическую совместимость в различных физиологических средах организма пациента.

Способ нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на металлические, полимерные и текстильные изделия медицинского назначения, включающий испарение графита в вакууме и конденсацию углерода на изделие с использованием импульсного разряда, отличающийся тем, что предварительно поверхность упомянутого изделия очищают путем ионного травления в герметичной камере, которую сначала вакуумируют до остаточного давления 9⋅10-1⋅10 Торр, заполняют аргоном, затем вакуумируют до остаточного давления 1⋅10-3⋅10 Торр и осуществляют ионное травление ионами аргона с энергией 0,7-3,0 кэВ в течение 4-8 минут, после чего в заполненной аргоном и вакуумированной до остаточного давления 1⋅10-3⋅10 Торр камере на поверхность изделия наносят покрытие на основе углерода в виде тетраэдрического алмаза типа ta-C или карбинового типа импульсно-плазменным дуговым распылением графитового катода марки МПГ-7, АРВ или ВЧ при длительности импульса 0,1-1,0 мсек и частоте их следования 0,1-30 Гц, причем за один импульс разряда импульсно-плазменного дугового источника углеродной плазмы наносят слой толщиной слоя 5-50 ангстрем при напряжении разряда 150-810 В.
Источник поступления информации: Роспатент

Показаны записи 1-5 из 5.
27.09.2015
№216.013.7fb3

Плёнка двумерно упорядоченного линейно-цепочечного углерода и способ её получения

Изобретение может быть использовано электронике, энергетике и медицине. Плёнку двумерно упорядоченного линейно-цепочечного углерода получают напылением методом импульсно-плазменного испарения графитового катода. Растущую на подложке пленку, образуемую параллельными цепочками углеродных атомов,...
Тип: Изобретение
Номер охранного документа: 0002564288
Дата охранного документа: 27.09.2015
19.01.2018
№218.016.0c4d

Антиадгезивное антибактериальное покрытие для ортопедических имплантатов из титана и нержавеющей стали

Изобретение относится к области медицины, а именно к травматологии, ортопедии и общей хирургии, и предназначено для обеспечения антибактериального покрытия для ортопедических имплантатов из титана и нержавеющей стали. Антиадгезивное антибактериальное покрытие для ортопедических имплантатов...
Тип: Изобретение
Номер охранного документа: 0002632702
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0c70

Способ нанесения антиадгезивного антибактериального покрытия на ортопедические имплантаты из титана и нержавеющей стали

Изобретение относится к области медицины, а именно к способу нанесения антиадгезивного антибактериального покрытия на ортопедические имплантаты из титана и нержавеющей стали, включающему нанесение покрытия на предварительно обработанную поверхность металлического имплантата, при этом...
Тип: Изобретение
Номер охранного документа: 0002632706
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0c71

Ортопедический имплантат из титана и нержавеющей стали с антиадгезивным антибактериальным покрытием

Изобретение относится к области медицины, а именно к травматологии, ортопедии и общей хирургии. Ортопедический имплантат из титана и нержавеющей стали с антиадгезивным антимикробным покрытием, выполненный из титана и нержавеющей стали в виде внутрикостного имплантата для крупных и мелких...
Тип: Изобретение
Номер охранного документа: 0002632761
Дата охранного документа: 09.10.2017
10.05.2018
№218.016.4ae7

Способ нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на изделия медицинского назначения из материала с термомеханической памятью формы

Изобретение относится к способу нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на изделия медицинского назначения из материала с термомеханической памятью формы. Предварительно поверхность изделия подвергают очистке методом ионного травления в...
Тип: Изобретение
Номер охранного документа: 0002651836
Дата охранного документа: 24.04.2018
Показаны записи 1-6 из 6.
27.09.2015
№216.013.7fb3

Плёнка двумерно упорядоченного линейно-цепочечного углерода и способ её получения

Изобретение может быть использовано электронике, энергетике и медицине. Плёнку двумерно упорядоченного линейно-цепочечного углерода получают напылением методом импульсно-плазменного испарения графитового катода. Растущую на подложке пленку, образуемую параллельными цепочками углеродных атомов,...
Тип: Изобретение
Номер охранного документа: 0002564288
Дата охранного документа: 27.09.2015
19.01.2018
№218.016.0c4d

Антиадгезивное антибактериальное покрытие для ортопедических имплантатов из титана и нержавеющей стали

Изобретение относится к области медицины, а именно к травматологии, ортопедии и общей хирургии, и предназначено для обеспечения антибактериального покрытия для ортопедических имплантатов из титана и нержавеющей стали. Антиадгезивное антибактериальное покрытие для ортопедических имплантатов...
Тип: Изобретение
Номер охранного документа: 0002632702
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0c70

Способ нанесения антиадгезивного антибактериального покрытия на ортопедические имплантаты из титана и нержавеющей стали

Изобретение относится к области медицины, а именно к способу нанесения антиадгезивного антибактериального покрытия на ортопедические имплантаты из титана и нержавеющей стали, включающему нанесение покрытия на предварительно обработанную поверхность металлического имплантата, при этом...
Тип: Изобретение
Номер охранного документа: 0002632706
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0c71

Ортопедический имплантат из титана и нержавеющей стали с антиадгезивным антибактериальным покрытием

Изобретение относится к области медицины, а именно к травматологии, ортопедии и общей хирургии. Ортопедический имплантат из титана и нержавеющей стали с антиадгезивным антимикробным покрытием, выполненный из титана и нержавеющей стали в виде внутрикостного имплантата для крупных и мелких...
Тип: Изобретение
Номер охранного документа: 0002632761
Дата охранного документа: 09.10.2017
10.05.2018
№218.016.4ae7

Способ нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на изделия медицинского назначения из материала с термомеханической памятью формы

Изобретение относится к способу нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на изделия медицинского назначения из материала с термомеханической памятью формы. Предварительно поверхность изделия подвергают очистке методом ионного травления в...
Тип: Изобретение
Номер охранного документа: 0002651836
Дата охранного документа: 24.04.2018
24.06.2020
№220.018.2991

Технологическая установка для нанесения наноуглеродных покрытий на поверхности медицинских изделий или их частей, обладающих антибактериальными и биосовместимыми свойствами

Группа изобретений относится к медицине и медицинской технике и раскрывает способ нанесения наноуглеродного покрытия на поверхность медицинского изделия. Способ характеризуется тем, что скрывает на основе углерода или углерода и серебра на медицинские имплантируемые устройства, размещаемые...
Тип: Изобретение
Номер охранного документа: 0002724277
Дата охранного документа: 22.06.2020
+ добавить свой РИД