×
10.05.2018
218.016.483c

Результат интеллектуальной деятельности: СПОСОБ ГИДРООЧИСТКИ ВАКУУМНОГО ДИСТИЛЛЯТА, ИСПОЛЬЗУЮЩИЙ ПОСЛЕДОВАТЕЛЬНОСТЬ КАТАЛИЗАТОРОВ

Вид РИД

Изобретение

№ охранного документа
0002651269
Дата охранного документа
19.04.2018
Аннотация: Изобретение относится к способу гидроочистки углеводородного сырья, содержащего соединения азота в количестве выше 250 в.ч./млн и имеющего средневзвешенную температуру кипения выше 380°С, включающему следующие стадии, на которых a) приводят в контакт в присутствии водорода указанное углеводородное сырье с по меньшей мере одним первым катализатором, включающим аморфную подложку на основе оксида алюминия, фосфор и активную фазу, образованную из по меньшей мере одного металла группы VIB в форме оксида и по меньшей мере одного металла группы VIII в форме оксида, причем указанный первый катализатор получен способом, включающим по меньшей мере один этап обжига, b) приводят в контакт в присутствии водорода поток, полученный на стадии а), с по меньшей мере одним вторым катализатором, включающим аморфную подложку на основе оксида алюминия, фосфор, активную фазу, образованную из по меньшей мере одного металла группы VIB и по меньшей мере одного металла группы VIII, и по меньшей мере одно органическое соединение, содержащее кислород и/или азот, причем указанный второй катализатор получен способом, включающим следующие этапы: i) приводят в контакт с подложкой по меньшей мере одно соединение металла группы VIB, по меньшей мере одно соединение металла группы VIII, фосфор и по меньшей мере одно органическое соединение, содержащее кислород и/или азот, с получением предшественника катализатора, ii) высушивают указанный предшественник катализатора, полученный на этапе i), при температуре ниже 200°С, без последующего обжига, с получением гидроочищенного потока. Изобретение также относится к способам гидрокрекинга или каталитического крекинга в псевдоожиженном слое с использованием стадии гидроочистки по изобретению. Эффективный способ позволят получать десульфированный и деазотированный вакуумный дистиллят. Способ особенно подходит для гидроочистки сырья с повышенным содержанием азота. 3 н. и 12 з.п. ф-лы, 1 табл., 5 пр.

Настоящее изобретение относится к области процессов гидрокрекинга и каталитического крекинга, в частности, к предварительной обработке в таких процессах, заключающейся в гидроочистке сырья типа вакуумного дистиллята с использованием последовательности катализаторов. Целью способа является получение десульфированного и деазотированного вакуумного дистиллята. Способ гидроочистки согласно изобретению особенно хорошо подходит для гидроочистки сырья с повышенным содержанием азота.

Процесс гидрокрекинга позволяет превратить нефтяные фракции, в частности, вакуумные дистилляты (DSV) в более легкие и более ценные продукты (бензин, средние дистилляты). Вакуумные дистилляты имеют переменное содержание различных загрязняющих примесей (в частности, соединения серы, азота), поэтому необходимо перед этапом собственно гидрокрекинга проводить этап гидроочистки сырья, который позволит разорвать связи C-C и получить более легкие желаемые фракции. Эти же проблемы существуют в случае сырья, предназначенного для процесса каталитического крекинга.

Целью этапа гидроочистки, часто называемого предварительным гидрокрекингом, является очистка сырья без значительного изменения его среднего молекулярного веса. Речь идет, в частности, об удалении соединений серы или азота, содержащихся в сырье. Основными целевыми реакциями являются гидродесульфирование, гидродеазотирование и гидрирование ароматических соединений. Состав и применение катализаторов гидроочистки особенно хорошо описаны в статье B.S. Clausen, H.T. Topsøe, F.E. Massoth, опубликованной в Catalysis Science and Technology, v. 11 (1996), Springer-Verlag. Катализаторы гидроочистки обладают обычно гидродесульфирующими и гидрирующими функциями, обеспечиваемыми сульфидами металлов групп VIB и VIII.

Добавление органического соединения в катализаторы гидроочистки для улучшения их активности в настоящее время хорошо известно специалисту. Во многих патентах защищается применение различных наборов органических соединений, таких, как моно, ди- или многоатомные спирты, возможно этерифицированные (WO96/41848, WO01/76741, US4012340, US3954673, EP601722). Катализаторы, модифицированные сложными моноэфирами C2-C14, описаны в патентных заявках EP466568 и EP1046424.

В других патентах указывается, что может быть выгодной особая последовательность катализаторов в одном и том же реакторе.

Так, в патентной заявке US2011/0079542 описывается, что замена части базового катализатора HDS вверху слоя катализатором с более низкой активностью не изменяет характеристик всей засыпки по сравнению со 100%-ным базовым катализатором, так как на первом участке катализаторного слоя реакция идет на серосодержащих соединениях, не являющихся тугоплавкими, и не требует высокоэффективного катализатора.

Патент EP 0651041 демонстрирует выгоду последовательности катализаторных слоев с частицами разной формы.

Настоящее изобретение относится к способу гидроочистки сырья типа вакуумного дистиллята с использованием особой последовательности по меньшей мере двух разных типов катализаторов, что позволяет повысить полную активность и полную стабильность способа гидроочистки по сравнению со способом гидроочистки, в котором в таком же количестве и в тех же рабочих условиях используется только один из этих двух типов катализаторов.

Под гидроочисткой понимаются реакции, охватывающие, в частности, гидродесульфирование (HDS), гидродеазотирование (HDN) и гидрирование ароматических соединений (HDA).

Согласно способу по изобретению, сырье сначала приводят в контакт с первым типом катализатора, содержащим фосфор и активную фазу в ее оксидной форме, то есть указанный первый катализатор получен способом, включающим по меньшей мере один этап обжига после пропитки металлическими солями. Этот первый тип катализатора будем называть "катализатором в оксидной форме" или "обожженным катализатором".

Затем сырье приводят в контакт со вторым типом катализатора, который был получен путем введения фосфора, активной фазы и органического соединения, содержащего кислород и/или азот, с последующим этапом сушки, без позднейшего обжига. Следует отметить, что поскольку этот второй тип катализатора не подвергается обжигу, активная фаза не находится в своей оксидной форме. Этот второй тип катализатора будем называть "катализатором с добавками".

Более конкретно, настоящее изобретение относится к способу гидроочистки углеводородного сырья, содержащего соединения азота в количестве более 250 в.ч./млн, предпочтительно более 500 в.ч./млн, и имеющего средневзвешенную температуру кипения выше 380°C, причем способ включает следующие стадии:

a) привести в контакт в присутствии водорода указанное углеводородное сырье с по меньшей мере одним первым катализатором, содержащим аморфную подложку на основе оксида алюминия, фосфор и активную фазу, образованную из по меньшей мере одного металла группы VIB в оксидной форме и по меньшей мере одного металла группы VIII в оксидной форме, причем указанный первый катализатор получен способом, включающим по меньшей мере один этап обжига,

b) привести в контакт в присутствии водорода поток, полученный на стадии a), с по меньшей мере одним вторым катализатором, содержащим аморфную подложку на основе оксида алюминия, фосфор, активную фазу, образованную из по меньшей мере одного металла группы VIB и по меньшей мере одного металла группы VIII, и по меньшей мере одно органическое соединение, содержащее кислород и/или азот, причем указанный второй катализатор получен способом, включающим следующие этапы:

i) привести в контакт с подложкой по меньшей мере одно соединение металла группы VIB, по меньшей мере одно соединение металла группы VIII, фосфор и по меньшей мере одно органическое соединение, содержащее кислород и/или азот, чтобы получить предшественник катализатора,

ii) высушить указанный предшественник катализатора, полученный на этапе i), при температуре ниже 200°C, без последующего обжига,

чтобы получить гидроочищенный поток.

Удалось установить, что хотя катализаторы с добавкой органического соединения обычно имели лучшую эффективность гидроочистки по сравнению с катализаторами без добавок, эти катализаторы легче ингибируются присутствующими в сырье азотсодержащими молекулами, в частности, основными азотсодержащими молекулами, чем катализаторы без добавок. Следствием этого ингибирования является снижение со временем активности и стабильности катализатора с добавками и, таким образом, уменьшение их эффективности гидроочистки.

Авторы заявки разработали способ гидроочистки сырья типа вакуумного дистиллята, содержащий последовательность катализаторов, позволяющую осуществить сначала гидроочистку на катализаторе в его оксидной форме (обожженный катализатор), который имеет хорошую активность в гидродесульфировании и гидродеазотировании. Этот первый тип катализатора, в частности, меньше ингибируется тугоплавкими основными азотсодержащими молекулами и, следовательно, более активен в гидродеазотировании, чем катализатор с добавками. Это позволяет осуществить глубокое гидродеазотирование на первой стадии способа согласно изобретению и, таким образом, облегчить нагрузку на катализатор с добавками, использующийся на второй стадии, который приводится в контакт с потоком, выходящим с первой стадии. Затем осуществляют гидроочистку, приводя в контакт сырье, лишенное большей части этих азотсодержащих молекул и части серосодержащих молекул, с катализатором с добавками, особенно активным в отношении HDN и HDS, позволяя, таким образом, завершить гидроочистку. Благодаря тому, что сырье контактировало с катализатором в оксидной форме перед его контактом с катализатором с добавками, катализатор с добавками меньше ингибируется азотсодержащими молекулами и, таким образом, является более активным и стабильным во времени. Особая последовательность позволяет, таким образом, защитить катализатор с добавками, очень активный в отношении HDS/HDN, катализатором в оксидной форме, очень активным в отношении HDN, следствием чего является повышение активности в целом и стабильности в целом последовательности катализаторов по сравнению с каталитической системой, содержащей только катализаторы с добавкой. Итак, общая активность повышается, так как можно повысить часовую объемную скорость (объем сырья, который может быть обработан за единицу времени) или, альтернативно, можно использовать меньше катализатора для обработки такого же объема сырья. Кроме того, благодаря увеличению активности можно снизить температуру, необходимую для достижения желаемого содержания азота. Равным образом, повышается глобальная стабильность, так как продолжительность цикла увеличивается.

Способ гидроочистки согласно изобретению особенно хорошо подходит для гидроочистки сырья, имеющего повышенные содержания органического азота, например, сырья, поступающего с каталитического крекинга, коксовальной установки или с легкого крекинга.

Способ согласно настоящему изобретению позволяет получить гидроочищенную углеводородную фракцию, то есть избавленную одновременно от возможных соединений серы и азота. Содержания соединений азота после гидроочистки обычно меньше или равны 300 ч/млн по азоту, предпочтительно ниже 200 ч/млн, очень предпочтительно ниже 100 ч/млн. Под ч/млн по азоту (или по сере) далее в тексте везде понимаются весовые ч/млн, выраженные в элементарном азоте (или элементарной сере), какими бы ни были органические молекулы, в которые входит азот (или сера). Согласно способу по изобретению, степень гидродесульфирования предпочтительно выше 95%, предпочтительно выше 98%. Согласно способу по изобретению, степень гидродеазотирования предпочтительно выше 90%, предпочтительно выше 95%.

Согласно одному варианту, для катализатора на стадии a) или b) металл группы VIB выбран из молибдена, вольфрама и смеси этих двух элементов, а металл группы VIII выбран из кобальта, никеля и смеси этих двух элементов.

Согласно одному варианту, для катализатора на стадии a) или b) содержание металла группы VIB составляет от 5 до 40 вес.% в оксиде металла группы VIB от полного веса катализатора, содержание металла группы VIII составляет от 1 до 10 вес.% в оксиде металла группы VIII от полного веса катализатора, и содержание фосфора составляет от 0,1 до 10 вес.% в P2O5 от полного веса катализатора.

Согласно одному варианту, катализатор для стадии a) или b) содержит, кроме того, по меньшей мере одну присадку, выбранную из бора и фтора и смеси бора и фтора.

Согласно одному варианту, органическое соединение представляет собой одно или несколько соединений, выбранных из карбоновой кислоты, спирта, альдегида, сложного эфира, амина, аминокислоты, аминоспирта, нитрила или амида, предпочтительно это одно или несколько соединений, выбранных из этиленгликоля, глицерина, полиэтиленгликоля (с молекулярным весом от 200 до 1500), ацетофенона, 2,4-пентандиона, пентанола, уксусной кислоты, малеиновой кислоты, щавелевой кислоты, винной кислоты, муравьиной кислоты, лимонной кислоты и диалкилсукцината C1-C4, особенно предпочтительно оно содержит комбинацию по меньшей мере диалкилсукцината C1-C4 и уксусной кислоты. Согласно другому особенно предпочтительному варианту, органическое соединение содержит по меньшей мере лимонную кислоту.

Согласно одному варианту, катализатор для стадии a) или b) дополнительно подвергали этапу сульфирования. Согласно одному варианту, содержание основного азота в сырье больше или равно 60 ч/млн.

Согласно одному варианту, каждая из стадий a) и b) осуществляется при температуре от 200 до 450°C, давлении от 0,5 до 30 МПа, часовой объемной скорости от 0,1 до 20 ч-1 и при отношении водород/сырье, выраженном в объеме водорода, измеренном в стандартных по температуре и давлению условиях, отнесенном к объему жидкого сырья, составляющем предпочтительно от 50 л/л до 2000 л/л.

Согласно одному варианту, стадия a) осуществляется в первой зоне, содержащей первый катализатор, который занимает объем V1, а стадия b) осуществляется во второй зоне, содержащей второй катализатор, который занимает объем V2, причем соотношение между объемами V1/V2 первой и второй зоны, соответственно, составляет от 10 об.%/90 об.% до 50 об.%/50 об.%.

Согласно одному варианту, этап i) стадии b) содержит следующие последовательные этапы:

i') пропитка аморфной подложки на основе оксида алюминия по меньшей мере одним раствором, содержащим по меньшей мере один металл группы VIB, по меньшей мере один металл группы VIII и указанный фосфор, чтобы получить пропитанную подложку,

i") сушка пропитанной подложки, полученной на этапе i'), при температуре ниже 180°C без позднейшего обжига, чтобы получить сухую пропитанную подложку,

i'") пропитка сухой пропитанной подложки, полученной на этапе i"), пропиточным раствором, содержащим по меньшей мере одно органическое соединение, содержащее кислород и/или азот, чтобы получить пропитанный предшественник катализатора,

i"") созревание пропитанного предшественника катализатора, полученного на этапе i'"), чтобы получить указанный предшественник катализатора.

Согласно одному варианту, поток, полученный на стадии a), подвергают этапу разделения, позволяющему разделить тяжелую фракцию и легкую фракцию, содержащую H2S и NH3, образованные на стадии a), причем указанную тяжелую фракцию вводят затем на стадию b).

Изобретение относится также к процессу гидрокрекинга, в котором применяется способ гидроочистки по изобретению, согласно которому указанный гидроочищенный поток приводят в контакт в присутствии водорода и в рабочих условиях гидрокрекинга с по меньшей мере одним катализатором гидрокрекинга, чтобы получить гидрокрекированный поток.

Изобретение относится также к процессу каталитического крекинга в псевдоожиженном слое, в котором применяется способ гидроочистки по изобретению, согласно которому указанный гидроочищенный поток приводят в контакт в рабочих условиях каталитического крекинга с по меньшей мере одним катализатором каталитического крекинга, чтобы получить крекированный поток.

Подробное описание

Сырье и рабочие условия

Углеводородное сырье, обрабатываемое способом гидроочистки согласно изобретению, имеет средневзвешенную температуру (TMP) кипения выше 380°C. TMP определяется, исходя из температуры, при которой перегоняется 5%, 50% и 70% объема сырья, согласно следующей формуле: TMP=(T5%+2T50%+4T70%)/7. TMP рассчитывается из значений, полученных из имитированной дистилляции. TMP сырья выше 380°C и предпочтительно ниже 600°C, более предпочтительно ниже 580°C. Обрабатываемое углеводородное сырье обычно имеет интервал кипения от 250°C до 600°C, предпочтительно от 300°C до 580°C.

Далее в тексте это сырье для удобства будет называться вакуумным дистиллятом, но это обозначение не имеет ограничительного характера. Любое углеводородное сырье, содержащее серу и соединения азота, являющиеся ингибиторами гидроочистки, и имеющее TMP близкое к TMP фракции вакуумного дистиллята, может обрабатываться способом согласно настоящему изобретению. Углеводородное сырье может иметь любую химическую природу, то есть иметь любое соотношение между различными химическими семействами, в частности, парафинами, олефинами, нафтенами и ароматическими соединениями.

Указанное углеводородное сырье содержит органические молекулы, включающие азот и/или серу. Азотсодержащие органические молекулы являются или основными, как амины, анилины, пиридины, акридины, хинолеины и их производные, или нейтральными, как, например, пирролы, индолы, карбазолы и их производные. В частности, именно основные азотсодержащие молекулы ингибируют катализаторы гидроочистки, в частности, катализаторы с добавками.

Содержание азота больше или равно 250 ч/млн, предпочтительно оно составляет от 500 до 10000 в.ч./млн, более предпочтительно от 700 до 4000 в.ч./млн и еще более предпочтительно от 1000 до 4000 ч/млн. Содержание основного азота составляет по меньшей мере четверть полного содержания азота (азот). Содержание основного азота обычно больше или равно 60 ч/млн, более предпочтительно составляет от 175 до 1000 в.ч./млн, еще более предпочтительно от 250 до 1000 ч/млн.

Содержание серы в сырье обычно составляет от 0,01 до 5 вес.%, предпочтительно от 0,2 до 4 вес.%, еще более предпочтительно от 0,5 до 3 вес.%.

Указанное углеводородное сырье дополнительно может содержать металлы, в частности, никель и ванадий, что выгодно. Суммарное содержание никеля и ванадия в указанном углеводородном сырье, обрабатываемом способом гидрокрекинга согласно изобретению, предпочтительно ниже 1 в.ч./млн.

Содержание асфальтенов в указанном углеводородном сырье обычно ниже 3000 ч/млн, предпочтительно ниже 1000 ч/млн, еще более предпочтительно ниже 200 ч/млн.

Обрабатываемое сырье обычно содержит смолы, предпочтительно содержание смол выше 1 вес.%, предпочтительно выше 5 вес.%. Измерение содержания смол осуществляется согласно стандарту ASTM D2007-11.

Указанное углеводородное сырье предпочтительно выбрано из LCO или HCO (от английского Light Cycle Oil или Heavy Cycle Oil - легкие или тяжелые газойли с установки каталитического крекинга), вакуумных дистиллятов, например, газойлей с прямой перегонки нефти или с установок конверсии, таких, как каталитический крекинг, коксовальная установка или легкий крекинг, из сырья, поступающего с установок экстракции ароматических соединений, базовых смазочных масел или масел, получаемых при депарафинизации растворителем базовых смазочных масел, из дистиллятов с процессов десульфирования или гидроконверсии в неподвижном слое или в кипящем слое остатков атмосферной перегонки, и/или вакуумных остатков, и/или деасфальтированных масел, или же сырье может быть деасфальтированным маслом или содержать растительные масла, или происходить с конверсии сырья, полученного из биомассы. Указанное углеводородное сырье, обрабатываемое способом гидрокрекинга согласно изобретению, может также быть смесью вышеуказанных типов сырья.

Способ согласно изобретению может быть осуществлен в одном, двух или нескольких реакторах. Обычно его проводят в неподвижном слое.

Когда способ согласно изобретению осуществляется в двух реакторах, стадия a) может быть реализована в первом реакторе, через которое проводится сырье, а стадия b) может затем осуществляться во втором реакторе, находящемся по потоку ниже первого реактора. Факультативно, поток со стадии a), выходящий из первого реактора, можно подвергнуть этапу разделения, позволяющему отделить легкую фракцию, содержащую, в частности, H2S и NH3, образованные во время гидроочистки на стадии a), от тяжелой фракции, содержащей частично гидроочищенные углеводороды. Тяжелую фракцию, полученную после этапа разделения, вводят затем во второй реактор, позволяющий осуществить стадию b) способа по изобретению. Этап разделения можно реализовать путем дистилляции, мгновенной сепарации или любым другим способом, известным специалисту.

Когда способ реализуют в единственном реакторе, стадию a) осуществляют в первой зоне, содержащей первый катализатор, который занимает объем V1, а стадию b) осуществляют во второй зоне, содержащей второй катализатор, который занимает объем V2. Объемная доля первой зоны, содержащей катализатор в оксидной форме для стадии a), предпочтительно составляет по меньшей мере 10 об.% от полного объема зон. Объемную долю первой зоны, содержащей катализатор в оксидной форме для стадии a), подбирают так, чтобы максимально повысить конверсию ингибирующих соединений азота, то есть основных соединений. Соотношение между объемами V1/V2 первой и второй зоны, соответственно, предпочтительно составляет от 10 об.%/90 об.% до 50 об.%/50 об.%.

Металлы группы VIB или группы VIII, используемые для образования активной фазы катализаторов для стадий a) или b), могут быть одинаковыми или разными на любой из стадий a) или b).

Рабочие условия, применяемые на стадии a) или b) способа гидроочистки согласно изобретению, обычно следующие: температура благоприятно составляет от 200 до 450°C, предпочтительно от 300 до 400°C, давление благоприятно составляет от 0,5 до 30 МПа, предпочтительно от 5 до 20 МПа, часовая объемная скорость (определенная как отношение объемного расхода сырья к объему катализатора в час) благоприятно составляет от 0,1 до 20 ч-1, предпочтительно от 0,2 до 5 ч-1, и отношение водород/сырье, выраженное в объеме водорода, измеренном в стандартных по температуре и давлению условиях, деленном на объем жидкого сырья, предпочтительно составляет от 50 л/л до 2000 л/л. Рабочие условия на стадиях a) и b) могут быть одинаковыми или разными. Предпочтительно они одинаковы.

Стадия a): Гидроочистка с катализатором в оксидной форме

Согласно стадии a) способа по изобретению, указанное углеводородное сырье приводят в контакт в присутствии водорода с по меньшей мере одним первым катализатором, содержащим аморфную подложку на основе оксида алюминия, фосфор и активную фазу, образованную из по меньшей мере одного металла группы VIB в оксидной форме и по меньшей мере одного металла группы VIII в оксидной форме, причем указанный первый катализатор получен способом, включающим по меньшей мере один этап обжига.

Катализатор, использующийся на стадии a) согласно изобретению, состоит из аморфной подложки на основе оксида алюминия, фосфора и активной фазы, образованной из по меньшей мере одного металла группы VIB в оксидной форме и по меньшей мере одного металла группы VIII в оксидной форме.

Обычно полное содержание металла группы VIB и металла группы VIII выше 6 вес.%, предпочтительно составляет от 10 до 50 вес.% в оксидах металлов групп VIB и VIII от полного веса катализатора.

Содержание металла группы VIB составляет от 5 до 40 вес.%, предпочтительно от 8 до 35 вес.%, более предпочтительно от 10 до 30 вес.%, выраженных в оксиде металла(ов) группы VIB от полного веса катализатора.

Содержание металла группы VIII составляет от 1 до 10 вес.%, предпочтительно от 1,5 до 9 вес.%, более предпочтительно от 2 до 8 вес.% в оксиде металла группы VIII от полного веса катализатора.

Металл группы VIB, присутствующий в активной фазе катализатора, использующегося в способе гидроочистки согласно изобретению, предпочтительно выбран из молибдена, вольфрама и смеси этих двух элементов, очень предпочтительно, металл группы VIB является молибденом.

Металл группы VIII, присутствующий в активной фазе катализатора, использующегося в способе гидроочистки согласно изобретению, предпочтительно выбран из кобальта, никеля и смеси этих двух элементов. Очень предпочтительно, металл группы VIII является никелем.

Предпочтительно, активная фаза катализатора, использующегося на стадии a), выбрана из группы, состоящей из комбинации элементов никель-молибден, никель-кобальт-молибден, никель-вольфрам или никель-молибден-вольфрам. Очень предпочтительно, активная фаза катализатора, использующегося на стадии a), является комбинацией элементов никель-молибден.

Мольное отношение металла группы VIII к металлу группы VIB в катализаторе в оксидной форме предпочтительно составляет от 0,1 до 0,8, предпочтительно от 0,15 до 0,6, и еще более предпочтительно от 0,2 до 0,5.

Указанный катализатор для стадии a) содержит также фосфор в качестве присадки. Присадка представляет собой добавляемый элемент, который сам по себе не имеет каталитических свойств, но повышает каталитическую активность активной фазы.

Содержание фосфора в указанном катализаторе для стадии a) предпочтительно составляет от 0,1 до 10 вес.% P2O5, предпочтительно от 0,2 до 8 вес.% P2O5, очень предпочтительно от 0,3 до 8 вес.% P2O5.

Мольное отношение фосфора к металлу группы VIB в катализаторе для указанной стадии a) больше или равно 0,05, предпочтительно больше или равно 0,07, очень предпочтительно составляет от 0,08 до 0,5.

Катализатор, использующийся на стадии a) согласно изобретению, предпочтительно может содержать, кроме того, по меньшей мере одну присадку, выбранную из бора и фтора и смеси бора и фтора.

Когда катализатор гидроочистки содержит бор в качестве присадки, содержание бора в указанном катализаторе в оксидной форме на указанной стадии a) предпочтительно составляет от 0,1 до 10 вес.%, выраженных в оксиде бора, предпочтительно от 0,2 до 7 вес.% оксида бора, очень предпочтительно от 0,2 до 5 вес.% оксида бора.

Когда катализатор гидроочистки содержит фтор в качестве присадки, содержание фтора в указанном катализаторе в оксидной форме, использующемся на указанной стадии a), предпочтительно составляет от 0,1 до 10 вес.% фтора, предпочтительно от 0,2 до 7 вес.% фтора, очень предпочтительно от 0,2 до 5 вес.% фтора.

Аморфная подложка указанного предшественника катализатора имеет в основе оксид алюминия, то есть она содержит более 50% оксида алюминия, обычно она содержит только оксид алюминия или алюмосиликат, какие определены ниже, и, возможно, металлы и/или присадку(и), которые вводят вне пропиток (например, вводят в подложку во время ее получения (размешивание, пластификация и т.д.) или формования). Подложка готова после формования (например, экструзией) и обжига, обычно при температуре от 300 до 600°C.

В одном предпочтительном случае аморфная подложка является оксидом алюминия, предпочтительно экструдированным оксидом алюминия. Предпочтительно, оксид алюминия является оксидом алюминия гамма. Особенно предпочтительно, подложка состоит из оксида алюминия, предпочтительно оксида алюминия гамма.

В другом предпочтительном случае аморфная подложка является алюмосиликатом, содержащим по меньшей мере 50% оксида алюминия. Содержание оксида кремния в подложке не превышает 50 вес.%, чаще всего меньше или равно 45 вес.%, предпочтительно меньше или равно 40 вес.%. Особенно предпочтительно, если подложка состоит из алюмосиликата.

Объем пор аморфной подложки обычно составляет от 0,1 см3/г до 1,5 см3/г, предпочтительно от 0,4 см3/г до 1,1 см3/г. Полный объем пор измеряют методом ртутной порозиметрии согласно стандарту ASTM D4284-92 при угле смачивания 140°, как описано в работе Rouquerol F., Rouquerol J., Singh K. "Adsorption by Powders & Porous Solids: Principle, methodology and applications", Academic Press, 1999, например, с помощью прибора фирмы Micromeritics™, модель Autopore III™.

Удельная поверхность аморфной подложки обычно составляет от 5 м2/г до 350 м2/г, предпочтительно от 10 м2/г до 300 м2/г. Удельная поверхность определяется в настоящем изобретении по методу БЭТ, описанному в цитированной выше работе.

Указанная аморфная подложка предпочтительно находится в виде порошка, или ей придана форма шариков, экструдатов, таблеток или агломератов неправильной и несферической формы, конкретная форма подложки может быть следствием этапа дробления. Очень предпочтительно, указанная подложка имеет вид экструдатов.

Получение свежего катализатора в оксидной форме, использующегося на стадии a), можно осуществить любым способом, хорошо известным специалисту.

Металлы группы VIB и группы VIII в указанном катализаторе предпочтительно можно ввести в катализатор на разных стадиях его приготовления и различными способами. Указанные металлы группы VIB и группы VIII можно с выгодой ввести частично в ходе формования указанной аморфной подложки или, предпочтительно, после этого формования.

В случае, когда металлы группы VIB и группы VIII вводят частично во время формования указанной аморфной подложки, их можно ввести частично только в момент размешивания с алюмогелем, выбранным в качестве матрицы, а остальные металлы вводят тогда позднее. Когда часть металлов группы VIB и группы VIII вводят в момент размешивания, доля металла группы VIB, вводимого в ходе этого этапа, предпочтительно меньше или равна 20% от полного количества металла группы VIB, введенного в конечный катализатор, а доля металла группы VIII, вводимая в ходе этого этапа, меньше или равна 50% от полного количества металла группы VIII, вводимого в конечный катализатор. В случае, когда металлы группы VIB и группы VIII вводят, по меньшей мере частично, а предпочтительно полностью после формования указанной аморфной подложки, введение металлов группы VIB и группы VIII в аморфную подложку можно предпочтительно осуществить путем одной или нескольких пропиток аморфной подложки избытком раствора или, предпочтительно, одной или несколькими сухими пропитками, предпочтительно, единственной сухой пропиткой указанной аморфной подложки водными или органическими растворами, содержащими предшественники металлов. Сухая пропитка состоит в приведении в контакт подложки с раствором, содержащим по меньшей мере один предшественник указанных металлов группы VIB и/или группы VIII, объем которого равен объему пор в подложке, подлежащей пропитке. Растворителем в пропиточном растворе может быть вода или органическое соединение, такое как спирт. В качестве пропиточного раствора предпочтительно используется водный раствор.

Является очень предпочтительным, когда металлы группы VIB и группы VIII вводят полностью после формования указанной аморфной подложки, путем сухой пропитки указанной подложки пропиточным водным раствором, содержащим соли-предшественники металлов. Введение металлов группы VIB и группы VIII можно также с выгодой осуществить путем одной или нескольких пропиток аморфной подложки раствором, содержащим соли-предшественники металлов. В случае, когда металлы вводят за несколько пропиток соответствующими солями-предшественниками, обычно проводят промежуточный этап сушки катализатора при температуре от 50 до 180°C, предпочтительно от 60 до 150°C, очень предпочтительно от 75 до 130°C.

Предпочтительно, при любом способе введения металл группы VIB вводят одновременно с металлом группы VIII.

Подходящие для применения предшественники молибдена хорошо известны специалисту. Например, из источников молибдена можно использовать оксиды и гидроксиды, молибденовые кислоты и их соли, в частности, аммониевые соли, такие, как молибдат аммония, гептамолибдат аммония, фосфорномолибденовую кислоту (H3PMo12O40) и ее соли и, возможно, кремнемолибденовую кислоту (H4SiMo12O40) и ее соли. Источниками молибдена могут быть также любые гетерополисоединения со структурой Кеггина, например, лакунарного Кеггина, замещенного Кеггина, Доусона, Андерсона, Страндберга. Предпочтительно используются триоксид молибдена и гетерополианионы со структурой Кеггина, лакунарного Кеггина, замещенного Кеггина или Страндберга.

Подходящие для применения предшественники вольфрама также хорошо известны специалисту. Например, из источников вольфрама можно использовать оксиды и гидроксиды, вольфрамовые кислоты и их соли, в частности, аммониевые соли, такие, как вольфрамат аммония, метавольфрамат аммония, фосфорновольфрамовую кислоту и ее соли и, возможно, кремневольфрамовую кислоту (H4SiW12O40) и ее соли. Источниками вольфрама могут быть также любые гетерополисоединения со структурой Кеггина, например, лакунарного Кеггина, замещенного Кеггина, Доусона. Предпочтительно используются оксиды и соли аммония, как метавольфрамат аммония или гетерополианионы со структурой Кеггина, лакунарного Кеггина или замещенного Кеггина.

Подходящие для применения предшественники кобальта предпочтительно выбраны, например, из оксидов, гидроксидов, гидрокарбонатов, карбонатов и нитратов. Предпочтительно используются гидроксид кобальта и гидрокарбонат кобальта.

Подходящие для применения предшественники никеля предпочтительно выбраны, например, из оксидов, гидроксидов, гидрокарбонатов, карбонатов и нитратов. Предпочтительно используются оксигидроксид никеля и карбонат никеля.

Аналогично, фосфор можно с выгодой вводить в катализатор на разных стадиях его приготовления и различными способами. Указанный фосфор можно с выгодой ввести во время формования указанной аморфной подложки или, предпочтительно, после этого формования. Его можно ввести, например, непосредственно перед или сразу после пластификации выбранной матрицы, такой, например и предпочтительно, как оксигидроксид алюминия (бемит), являющийся предшественником оксида алюминия. Его можно также с выгодой вводить самостоятельно или в смеси с по меньшей мере одним металлом группы VIB и VIII.

Указанный фосфор предпочтительно вводят в смеси с предшественниками металлов группы VIB и группы VIII, полностью или частично, на формованную аморфную подложку, предпочтительно оксид алюминия или алюмосиликат в форме экструдата, путем сухой пропитки указанной аморфной подложки раствором, содержащим предшественники металлов и предшественник фосфора.

Предпочтительным источником фосфора является ортофосфорная кислота H3PO4, но годятся также ее соли и сложные эфиры, как фосфаты аммония. Фосфор можно также ввести одновременно с элементом(ами) группы VIB в виде гетерополианионов со структурой Кеггина, лакунарного Кеггина, замещенного Кеггина или типа Страндберга.

Катализатор, использующийся на стадии a) согласно изобретению, предпочтительно может дополнительно содержать по меньшей мере одну присадку, выбранную из бора и фтора и смеси бора и фтора. Введение этой присадки можно произвести таким же образом, как введение фосфора, на разных уровнях приготовления и разными способами. Ее можно ввести, по меньшей мере частично, во время получения подложки (в том числе при формовании). Предпочтительно, ее можно вводить одну или в смеси с фосфором или с по меньшей мере одним из предшественников металлов групп VIB и VIII. Предпочтительно ее вводят в смеси с предшественниками металлов группы VIB и группы VIII и фосфором, полностью или частично на формованную аморфную подложку, предпочтительно оксид алюминия или алюмосиликат в форме экструдата, путем сухой пропитки указанной аморфной подложки раствором, содержащим предшественники металлов, предшественник фосфора и предшественник(и) присадки, выбранной из бора и/или фтора.

Источником бора может быть борная кислота, предпочтительно ортоборная кислота H3BO3, диборат или пентаборат аммония, оксид бора, сложные борные эфиры. Бор можно ввести, например, через раствор борной кислоты в смеси вода/спирт или же в смеси вода/этаноламин.

Подходящие для применения источники фтора хорошо известны специалисту. Например, фторидные анионы можно ввести в виде фтористоводородной кислоты или ее солей. Эти соли образованы с щелочными металлами, аммонием или органическим соединением. В последнем случае соль предпочтительно получают в реакционной смеси путем реакции между органическим соединением и фтористоводородной кислотой. Фтор можно ввести, например, путем пропитки водным раствором фтористоводородной кислоты, или фторида аммония, или же бифторида аммония.

В одном предпочтительном варианте способ получения катализатора на стадии a) способа по изобретению включает следующие этапы:

a') пропитка аморфной подложки на основе оксида алюминия раствором, содержащим по меньшей мере один предшественник металла группы VIB, по меньшей мере один предшественник металла группы VIII, фосфор, возможно, другую присадку, выбранную из бора и/или фтора,

a") (дополнительно) сушка пропитанной подложки, полученной на выходе с этапа a'),

a'") обжиг пропитанной подложки, возможно высушенной, чтобы превратить предшественники металлов группы VIB и группы VIII в оксиды.

Этап a') пропитки осуществляют согласно вышеописанным вариантам. Очень предпочтительно, металлы группы VIB и группы VIII, фосфор и, возможно, другую присадку, выбранную из бора и/или фтора, вводят полностью после формования указанной аморфной подложки, путем сухой пропитки указанной подложки пропиточным водным раствором, содержащим соли-предшественники металлов, фосфор и, возможно, присадку, выбранную из бора и/или фтора.

Сушку на этапе a") обычно осуществляют при температуре от 50 до 180°C, предпочтительно от 60 до 150°C, очень предпочтительно от 75 до 130°C. Сушку обычно проводят в течение периода от 1 до 24 часов, предпочтительно от 1 до 20 часов. Сушку проводят на воздухе или в инертной атмосфере (например, азот).

Обжиг на этапе a'") обычно осуществляют при температуре от 250°C до 900°C, предпочтительно от 350°C до 750°C. Продолжительность обжига обычно составляет от 0,5 часа до 16 часов, предпочтительно от 1 часа до 5 часов. Его обычно проводят на воздухе. Обжиг позволяет преобразовать предшественники металлов группы VIB и VIII в оксиды.

Перед применением выгодно преобразовать катализатор в оксидной форме (обожженный), использующийся на стадии a) способа согласно изобретению, в сульфированный катализатор, чтобы образовать его активные центры. Эта стадия активации или сульфирования осуществляется методами, хорошо известными специалисту, предпочтительно в сульфо-восстановительной атмосфере в присутствии водорода и сероводорода.

Это преобразование в сульфированный катализатор предпочтительно осуществляют на любом типе катализатора в оксидной форме, то есть его можно осуществить на свежем катализаторе или регенерированном катализаторе.

Этап сульфирования предпочтительно проводят ex situ или in situ. Сульфирующими агентами являются газ H2S или любое другое соединение, содержащее серу, подходящее для активации углеводородного сырья с целью сульфирования катализатора. Указанные серосодержащие соединения предпочтительно выбраны из алкилдисульфидов, таких, например, как диметилдисульфид (DMDS), алкилсульфидов, как, например, диметилсульфид, н-бутилмеркаптан, полисульфидных соединений типа третичного полисульфида или любых других соединений, известных специалисту, позволяющих получить хорошее сульфирование катализатора. Предпочтительно, катализатор сульфируют in situ в присутствии сульфирующего агента и углеводородного сырья. Очень предпочтительно катализатор сульфируют in situ в присутствии углеводородного сырья, в которое добавлен диметилдисульфид.

Стадия b): Гидроочистка катализатором с добавками

Согласно стадии b) способа по изобретению, поток, полученный на стадии a), приводят в контакт в присутствии водорода с по меньшей мере одним вторым катализатором, содержащим аморфную подложку на основе оксида алюминия, фосфор, активную фазу, образованную из по меньшей мере одного металла группы VIB и по меньшей мере одного металла группы VIII, и по меньшей мере одно органическое соединение, содержащее кислород и/или азот, причем указанный второй катализатор получен способом, включающим следующие этапы:

i) привести в контакт с подложкой по меньшей мере одно соединение металла группы VIB, по меньшей мере одно соединение металла группы VIII, фосфор и по меньшей мере одно органическое соединение, содержащее кислород и/или азот, чтобы получить предшественник катализатора,

ii) высушить указанный предшественник катализатора, полученный на этапе i), при температуре ниже 200°C, без последующего обжига.

Катализатор, использующийся на стадии b) согласно изобретению, состоит из аморфной подложки на основе оксида алюминия, фосфора, активной фазы, образованной из по меньшей мере одного металла группы VIB и по меньшей мере одного металла группы VIII, и органического соединения, содержащего кислород или азот. Катализатор, использующийся на стадии b), является вышеуказанным катализатором с добавкой. При приготовлении его не подвергают обжигу, то есть его активная фаза содержит металлы группы VIB и VIII, которые не превратились в оксиды.

Суммарное содержание металла группы VIII и металла группы VIB, а также мольное отношение металла группы VIII к металлу группы VIB в катализаторе для стадии b) лежат в тех же диапазонах, какие описаны для катализатора, использующегося на стадии a).

Металл группы VIB, присутствующий в активной фазе катализатора, использующегося на стадии b) согласно изобретению, предпочтительно выбран из молибдена, вольфрама и смеси этих двух элементов, очень предпочтительно, металл группы VIB является молибденом.

Металл группы VIII, присутствующий в активной фазе катализатора, использующегося на стадии b) согласно изобретению, предпочтительно выбран из кобальта, никеля и смеси этих двух элементов. Особенно предпочтительно металл группы VIII является никелем.

Предпочтительно, активная фаза катализатора, использующегося на стадии b), выбрана из группы, образованной комбинацией элементов никель-молибден, кобальт-молибден и никель-кобальт-молибден. Особенно предпочтительно активная фаза состоит из комбинации никель-молибден.

Катализатор с добавками, использующийся на стадии b), содержит также фосфор в качестве присадки. Содержание фосфора в катализаторе для стадии b), а также мольное отношение фосфора к металлу группы VIB в катализаторе для стадии b) лежат в тех же диапазонах, какие описаны для катализатора для стадии a).

Катализатор, использующийся на стадии b) согласно изобретению, может предпочтительно содержать, кроме того, по меньшей мере одну добавку, выбранную из бора и/или фтора. Когда катализатор, использующийся на стадии b), содержит бор и/или фтор, содержание бора и/или фтора находится в том же диапазоне, какой описан для катализатора на стадии a).

Аморфная подложка указанного катализатора, использующегося на стадии b), имеет в основе оксид алюминия. Она была описана в разделе, относящейся к стадии a). Подложка катализатора с добавками, согласно стадии b), может быть идентичной или отличаться от подложки катализатора, использующегося на стадии a).

Катализатор, использующийся на стадии b), содержит, кроме того, органическое соединение, содержащее кислород и/или азот. Это соединение является органическим соединением, содержащим более 2 атомов углерода и по меньшей мере один атом кислорода и/или азота.

Органическое соединение, содержащее кислород, может быть одним или несколькими соединениями, выбранными из карбоновой кислоты, спирта, альдегида или сложного эфира. Например, органическое соединение, содержащее кислород, может представлять собой одно или несколько соединений, выбранных из группы, состоящей из этиленгликоля, глицерина, полиэтиленгликоля (с молекулярным весом от 200 до 1500), ацетофенона, 2,4-пентандиона, пентанола, уксусной кислоты, малеиновой кислоты, щавелевой кислоты, винной кислоты, муравьиной кислоты, лимонной кислоты и диалкилсукцината C1-C4. Используемый диалкилсукцинат предпочтительно входит в группу, состоящую из диметилсукцината, диэтилсукцината, дипропилсукцината и дибутилсукцината. Предпочтительно, в качестве диалкилсукцината C1-C4 используется диметилсукцинат или диэтилсукцинат. Очень предпочтительно, в качестве диалкилсукцината C1-C4 используется диметилсукцинат. Используется по меньшей мере один диалкилсукцинат C1-C4, предпочтительно единственный, и предпочтительно диметилсукцинат.

Органическое соединение, содержащее азот, может быть выбрано из амина. В качестве примера, органическое соединение, содержащее азот, может быть этилендиамином или тетраметилмочевиной.

Органическое соединение, содержащее кислород и азот, может быть выбрано из аминокислоты, аминоспирта, нитрила или амида. Например, органическое соединение, содержащее кислород и азот, может быть аминотриуксусной кислотой, 1,2-циклогександиаминтетрауксусной кислотой, моноэтаноламином, ацетонитрилом, N-метилпирролидоном, диметилформамидом или же EDTA.

Предпочтительно, органическое соединение содержит кислород. Особенно предпочтительно, органическое соединение содержит по меньшей мере комбинацию диалкилсукцината C1-C4, в частности, диметилсукцината, и уксусной кислоты. Согласно другому особенно предпочтительному варианту, органическое соединение содержит по меньшей мере лимонную кислоту.

Катализатор, использующийся на стадии b), готовят способом, содержащим следующие этапы:

i) привести в контакт с подложкой по меньшей мере одно соединение металла группы VIB, по меньшей мере одно соединение металла группы VIII, фосфор и по меньшей мере одно органическое соединение, содержащее кислород и/или азот, чтобы получить предшественник катализатора,

ii) высушить указанный предшественник катализатора, полученный на этапе i), при температуре ниже 200°C, без последующего обжига,

Этап i) контакта имеет несколько вариантов осуществления. Согласно первому варианту осуществления этапа i) способа получения катализатора, использующегося на стадии b), проводят осаждение указанных соединений металлов группы VIB и группы VIII, фосфора и указанного органического соединения на указанную подложку путем по меньшей мере одного этапа совместной пропитки, предпочтительно сухой пропиткой. Согласно этому варианту осуществления, называемому также "совместной пропиткой", указанные соединения металлов группы VIB и группы VIII, фосфор и органическое соединение вводят в указанную подложку одновременно. Вышеуказанный первый вариант осуществления этапа i) включает проведение одной или нескольких стадий совместной пропитки, причем за каждым этапом совместной пропитки предпочтительно следует этап сушки, какой описан для этапа i") ниже.

Согласно второму варианту осуществления этапа i) способа получения катализатора, использующегося на стадии b), приводят в контакт по меньшей мере один предшественник катализатора, содержащий по меньшей мере один металл группы VIII, по меньшей мере один металл группы VIB, указанный фосфор и по меньшей мере указанную аморфную подложку на основе оксида алюминия с по меньшей мере одним органическим соединением, содержащим кислород и/или азот. Согласно изобретению, указанный второй вариант осуществления представляет собой обработку, называемую "пост-пропиткой". Согласно этому варианту осуществления, предшественник катализатора готовят, проводят осаждение по меньшей мере одного соединения металла группы VIB и по меньшей мере одного соединения металла группы VIII и фосфора на указанную подложку любым способом, известным специалисту, предпочтительно сухой пропиткой, пропиткой в избытке или же методами осаждения, хорошо известными специалисту. Нанесение соединений металлов групп VIB и VIII и фосфора можно осуществить путем одной или нескольких пропиток, за которыми предпочтительно проводится этап сушки, какой описан для этапа i") ниже.

Согласно одному особенно предпочтительному варианту, контакт на этапе i) реализуют согласно второму варианту осуществления этапа i), то есть пост-пропиткой. Согласно одному особенно предпочтительному варианту, катализатор, использующийся на стадии b), получен способом получения, описанным в документе US 2013/008829. Более точно, этап i) способа получения катализатора для стадии b) может включать следующие последовательные этапы, более подробно описываемые ниже:

i') пропитка аморфной подложки на основе оксида алюминия по меньшей мере одним раствором, содержащим по меньшей мере один металл группы VIB, по меньшей мере один металл группы VIII и указанный фосфор, чтобы получить пропитанную подложку,

i") сушка пропитанной подложки, полученной на этапе i'), при температуре ниже 180°C без позднейшего обжига, чтобы получить сухую пропитанную подложку,

i'") пропитка сухой пропитанной подложки, полученной на этапе i"), пропиточным раствором, содержащим по меньшей мере одно органическое соединение, содержащее кислород и/или азот, чтобы получить пропитанный предшественник катализатора,

i"") созревание пропитанного предшественника катализатора, полученного на этапе i'"), чтобы получить указанный предшественник катализатора.

На этапе i') введение металлов группы VIB и группы VIII на аморфную подложку можно с выгодой осуществить путем одной или нескольких пропиток аморфной подложки избытком раствора или, предпочтительно, одной или несколькими сухими пропитками, предпочтительно сухой пропиткой указанной аморфной подложки водным или органическим раствором, содержащим предшественники металлов. Этап пропитки можно осуществить идентично описанному для стадии a) получения катализатора в оксидной форме. Предшественники металла группы VIB и группы VIII описаны в связи со стадией a). Указанный фосфор и возможную другую присадку, выбранную из бора и/или фтора, можно ввести идентично тому, как описано для стадии a). Предшественники фосфора, бора и фтора описаны в связи со стадией a).

За введением металлов группы VIB и группы VIII и фосфора в или на аморфную подложку предпочтительно следует этап i") сушки, в ходе которого уделяют растворитель (который обычно представляет собой воду) при температуре от 50 до 180°C, предпочтительно от 60 до 150°C или же от 65 до 145°C, очень предпочтительно от 70 до 140°C или же от 75 до 130°C. За этапом сушки пропитанной подложки никогда не проводится этап обжига на воздухе при температуре выше 200°C.

Предпочтительно, на этапе i') указанную пропитанную подложку получают путем сухой пропитки раствором, содержащим предшественники металлов группы VIB и группы VIII и фосфор, аморфной подложки на основе оксида алюминия, обожженной и формованной, с последующей сушкой при температуре ниже 180°C, предпочтительно от 50 до 180°C, предпочтительно от 60 до 150°C и очень предпочтительно от 75 до 130°C. В результате после этапа i") получают сухую пропитанную подложку.

Согласно этапу i'"), указанную сухую пропитанную подложку пропитывают пропиточным раствором, содержащим по меньшей мере одно органическое соединение, содержащее кислород и/или азот, предпочтительно диалкилсукцинат C1-C4 (в частности, диметилсукцинат) и уксусную кислоту. Согласно другому варианту, пропиточный раствор на этапе i"') предпочтительно содержит лимонную кислоту. Пропиточный раствор, содержащий по меньшей мере указанное органическое соединение, предпочтительно является водным раствором.

Мольное отношение введенного в катализатор органического соединения или соединений, содержащих кислород и/или азот, к элементу(ам) группы VIB, которыми пропитан предшественник катализатора, составляет от 0,05 до 2 моль/моль, предпочтительно от 0,1 до 1,8 моль/моль, предпочтительно от 0,15 до 1,5 моль/моль перед сушкой на этапе ii). Когда органический компонент является смесью диалкилсукцината C1-C4 (в частности, диметилсукцината) и уксусной кислоты, указанные соединения предпочтительно вводят в пропиточный раствор для этапа i'") способа по изобретению в количестве, соответствующем:

- мольному отношению диалкилсукцината (например, диметилсукцината) к элементу(ам) группы VIB, пропитывающим предшественник катализатора, в интервале от 0,05 до 2 моль/моль, предпочтительно от 0,1 до 1,8 моль/моль, предпочтительно от 0,15 до 1,5 моль/моль,

- мольному отношению уксусной кислоты к элементу(ам) группы VIB, которым(и) пропитан предшественник катализатора, в интервале от 0,1 до 5 моль/моль, предпочтительно от 0,5 до 4 моль/моль, предпочтительно от 1,3 до 3 моль/моль и очень предпочтительно от 1,5 до 2,5 моль/моль.

Указанные органические соединения предпочтительно можно осадить за один или несколько этапов либо путем пропитки из суспензии, либо пропиткой с избытком, либо сухой пропиткой, либо любым другим способом, известным специалисту.

Согласно этапу i'"), органическое соединение, содержащее кислород или азот, вводят на сухую пропитанную подложку путем по меньшей мере одного этапа пропитки, предпочтительно путем единственного этапа пропитки пропиточным раствором указанного сухого предшественника катализатора, особенно предпочтительно единственным этапом сухой пропитки.

Согласно этапу i"") способа получения по изобретению, пропитанный предшественник катализатора, полученный на этапе i'"), подвергают этапу созревания. Его осуществляют предпочтительно при атмосферном давлении и температуре от 17°C до 50°C, обычно достаточно, чтобы продолжительность созревания составляла от десяти минут до сорока восьми часов, предпочтительно от тридцати минут до пяти часов. Не исключено и более длительное созревание. В результате после этапа i"") получают предшественник катализатора.

Согласно этапу ii) способа получения по изобретению, предшественник катализатора на выходе с этапа i) подвергают этапу сушки при температуре ниже 200°C без последующего обжига.

Этап ii) сушки способа по изобретению предпочтительно проводят любым методом, известным специалисту. Предпочтительно его проводят при атмосферном давлении или пониженном давлении. Предпочтительно этот этап осуществляют при атмосферном давлении.

Этот этап ii) предпочтительно проводят при температуре от 50 и ниже 200°C, предпочтительно от 60 до 180°C и очень предпочтительно от 80 до 160°C.

Этап ii) предпочтительно проводят в проницаемом слое, используя воздух или любой другой горячий газ. Когда сушка проводится в неподвижном слое, использующимся газом предпочтительно является либо воздух, либо инертный газ, как аргон или азот. Очень предпочтительно, сушку реализуют в проницаемом слое в присутствии азота.

Предпочтительно, продолжительность этого этапа составляет от 30 минут до 4 часов, предпочтительно от 1 часа до 3 часов.

На выходе с этапа ii) способа по изобретению получают сухой катализатор, называемый также "катализатором с добавками", который не подвергают никакому позднейшему этапу обжига, например, на воздухе, при температуре выше 200°C.

Перед применением выгодно преобразовать катализатор с добавками, использующийся на стадии b), в сульфированный катализатор, чтобы образовать его активные центры. Эту стадию активации или сульфирования проводят способами, хорошо известными специалисту, предпочтительно в сульфо-восстановительной атмосфере в присутствии водорода и сероводорода.

На выходе с этапа ii) способа по изобретению полученный катализатор с добавками предпочтительно подвергают этапу iii) сульфирования без промежуточного этапа обжига.

Указанный катализатор с добавками предпочтительно сульфируют способом ex situ или in situ. Можно использовать те же сульфирующие агенты, какие описаны для катализатора в оксидной форме в связи со стадией a).

Когда сульфирование проводится in situ, сульфирование катализатора для стадии b) предпочтительно осуществляют одновременно с сульфированием катализатора для стадии a).

Применение способа по изобретению в процессе гидрокрекинга

Способ гидроочистки согласно изобретению с выгодой применяется как предварительная обработка в процессе гидрокрекинга, в частности, в процессе гидрокрекинга, называемого одностадийным, или в процессе гидрокрекинга, называемого двухстадийным. Гидрокрекинг позволяет превратить нефтяные фракции, в частности, вакуумные дистилляты (DSV), в более легкие и более ценные продукты (бензин, средние дистилляты).

Способ гидрокрекинга, называемый одностадийным, обычно включает сначала глубокую гидроочистку, целью которой является осуществить глубокое гидродеазотирование и десульфирование сырья перед введением его на катализатор или катализаторы гидрокрекинга. Указанный одностадийный способ гидрокрекинга особенно выгоден, когда указанный катализатор или катализаторы гидрокрекинга содержат подложку, содержащую кристаллы цеолита. Эта глубокая гидроочистка сырья приводит лишь к ограниченной конверсии сырья в более легкие фракции, которая остается недостаточной и, таким образом, должна быть завершена на более активном катализаторе или катализаторах гидрокрекинга. Однако следует отметить, что между разными катализаторными слоями отсутствует какое-либо разделение потоков: весь поток, выходящий из катализаторного слоя гидроочистки, вводится на катализаторный слой или слои, содержащие указанные катализаторы гидрокрекинга, а затем осуществляется разделение образованных продуктов. Эта версия гидрокрекинга имеет вариант, включающий возвращение непреобразованной фракции на по меньшей мере один из слоев катализаторов гидрокрекинга в целях более высокой конверсии сырья. Предпочтительно, способ гидроочистки согласно изобретению, включающий особую последовательность согласно стадиям a) и b), осуществляется в процессе одностадийного гидрокрекинга до катализатора гидрокрекинга. Он позволяет, кроме того, ограничить содержание органического азота на выходе с этапа предварительной обработки, чтобы защитить катализатор гидрокрекинга на основе цеолита, который очень чувствителен к органическому азоту.

Способ гидрокрекинга, называемый двухстадийным, включает первую стадию, целью которой, как и в одностадийном способе, является осуществить гидроочистку сырья, а также достичь конверсии сырья обычно порядка 40-60%. Поток, выходящий с первой стадии, подвергают затем разделению, обычно путем дистилляции, чаще всего называемому промежуточным разделением, целью которого является разделить продукты конверсии от непреобразованной фракции. На второй стадии двухстадийного способа гидрокрекинга согласно изобретению обрабатывается единственная фракция сырья, не преобразованная на первой стадии. Это разделение позволяет двухстадийному способу гидрокрекинга согласно изобретению быть более селективным по средним дистиллятам (керосин + дизельное топливо), чем одностадийный способ согласно изобретению. Действительно, промежуточное разделение продуктов конверсии предотвращает их "сверхкрекирование" в нафту и газы на второй стадии на катализаторе гидрокрекинга. Кроме того, следует отметить, что непрореагировавшая фракция сырья, обработанного на второй стадии, имеет обычно очень низкие содержания NH3, а также органических азотсодержащих соединений, обычно менее 20 в.ч./млн, даже менее 10 в.ч./млн.

Указанную первую стадию осуществляют в присутствии особой последовательности катализаторов согласно изобретению и катализатора гидрокрекинга, чтобы реализовать гидроочистку и получить конверсию обычно порядка 40-60%. Катализаторные слои в указанной особой последовательности катализаторов согласно изобретению предпочтительно находятся по потоку выше катализатора гидрокрекинга. Указанную вторую стадию обычно осуществляют в присутствии катализатора гидрокрекинга, имеющего другой состав, чем у катализатора, использующегося на указанной первой стадии.

Процессы гидрокрекинга обычно проводят при температуре от 250 до 480°C, благоприятно от 320 до 450°C, предпочтительно от 330 до 435°C, под давлением от 2 до 25 МПа, предпочтительно от 3 до 20 МПа, причем объемная скорость (объемный расход сырья, деленный на объем катализатора) составляет от 0,1 до 20 ч-1, предпочтительно от 0,1 до 6 ч-1, предпочтительно от 0,2 до 3 ч-1, и количество вводимого водорода таково, чтобы объемное отношение "литры водорода/литры углеводорода" составляло от 80 до 5000 л/л, чаще всего от 100 до 2000 л/л.

Катализаторы гидрокрекинга являются бифункциональными: они сочетают кислотную функцию с гидрирующей-дегидрирующей функцией. Кислотная функция вносится пористыми подложками, удельная поверхность которых варьируется обычно от 150 до 800 м2/г, и которые имеют поверхностную кислотность, такими как галогенированные оксиды алюминия (в частности, хлорированные или фторированные), комбинации оксидов бора и алюминия, мезопористые аморфные или кристаллические алюмосиликаты и цеолиты, диспергированные в оксидном связующем. Гидрирующая-дегидрирующая функция обеспечивается присутствием активной фазы на основе по меньшей мере одного металла группы VIB и, возможно, по меньшей мере одного металла группы VIII периодической системы элементов. Наиболее распространенными композициями являются композиции типа никель-молибден (NiMo) и никель-вольфрам (NiW), реже типа кобальт-молибден (CoMo). После получения гидрирующая-дегидрирующая функция часто реализуется в форме оксида. Обычные методы, приводящие к образованию гидрирующей-дегидрирующей фазы катализаторов HCK, состоят в осаждении одного или нескольких молекулярных предшественников по меньшей мере одного металла группы VIB и, возможно, по меньшей мере одного металла группы VIII на кислую оксидную подложку методом сухой пропитки, за которой следуют этапы созревания, сушки и обжига, приводящие к образованию оксидной формы указанного применяемого металла(ов). Так как активной и стабильной формой для способов HCK является сульфированная форма, эти катализаторы должны подвергаться этапу сульфирования. Его проводят на установке соответствующего процесса (тогда говорят о сульфировании in-situ) или заранее до загрузки катализатора в установку (тогда говорят о сульфировании ex-situ).

Применение способа согласно изобретению в процессе FCC

Альтернативно, способ гидроочистки согласно изобретению предпочтительно реализуется как предварительная обработка в процессе каталитического крекинга в псевдоожиженном слое (или процессе FCC, от английского Fluid Catalytic Cracking). Процесс FCC может осуществляться классическим способом, известным специалисту, в соответствующих условиях крекинга в целях получения углеводородных продуктов с более низким молекулярным весом. Краткое описание каталитического крекинга (в том числе первое промышленное применение, относящееся к 1936 г. (способ HOUDRY) или к 1942 г. для использования катализатора в псевдоожиженном слое) можно найти, например, в энциклопедии ULLMANS ENCYCLOPEDIA OF INDUSTRIAL CHEMISTRY VOLUME A 18, 1991, p. 61-64.

Обычно используют классический катализатор, содержащий матрицу, возможно добавку и по меньшей мере один цеолит. Количество цеолита может колебаться, но обычно оно составляет примерно 3-60 вес.%, часто примерно 6-50 вес.% и чаще всего примерно 10-45 вес.%. Цеолит обычно диспергирован в матрице. Количество добавки обычно составляет примерно 0-30 вес.%, часто примерно 0-20 вес.%. Количество матрицы составляет дополнение до 100 вес.%. Добавку обычно выбирают из группы, состоящей из оксидов металлов группы IIA периодической системы элементов, таких, например, как оксид магния или оксид кальция, оксидов редкоземельных элементов и титанатов металлов группы IIA. Матрица чаще всего представляет собой оксид кремния, оксид алюминия, алюмосиликат, силикомагний, глину или смесь двух или более из этих продуктов. Наиболее часто используемым цеолитом является цеолит Y.

Крекинг осуществляют в по существу вертикальном реакторе в режиме восходящего потока (riser) или в режиме нисходящего потока (dropper). Выбор катализатора и рабочих условий зависит от искомых продуктов и обрабатываемого сырья, как это описано, например, в статье M. MARCILLY p.р. 990-991, опубликованной в журнале Французского института нефти, 11-12.1975, р. 969-1006. Обычно работают при температуре от примерно 450°C до примерно 600°C и при времени пребывания в реакторе меньше 1 минуты, часто от примерно 0,1 до примерно 50 секунд.

Предварительная обработка позволяет, кроме того, ограничить содержание органического азота на выходе этапа предварительной обработки, чтобы защитить катализатор каталитического крекинга на основе цеолита, который очень чувствителен к органическому азоту.

Примеры

Следующие примеры демонстрируют, что способ гидроочистки согласно изобретению, использующий последовательность катализаторов в оксидной форме и катализатора с добавками, имеет улучшенную активность, в частности, в отношении HDN, и улучшенную стабильность по сравнению со способом, использующим только катализаторы с добавками.

Приготовление катализаторов A, B, C и D

Приготовление подложки

Использовали матрицу, состоящую из ультрадисперсного таблитчатого бемита или алюмогеля. Этот гель смешивали с водным раствором, содержащим 66%-ную азотную кислоту (7 вес.% кислоты на грамм сухого геля), затем размешивали 15 минут. По окончании размешивания полученную пасту пропускали через фильеру, имеющую цилиндрические отверстия диаметром 1,6 мм. Затем экструдаты сушили в течение ночи при 120°C, после чего обжигали при 600°C в течение 2 часов на влажном воздухе, содержащем 50 г воды на кг сухого воздуха. В результате получают экструдаты подложки, имеющие удельную поверхность 300 м2/г. Рентгеновский анализ выявил, что подложка состоит только из кубического оксида алюминия гамма с низкой степенью кристалличности.

Катализатор A: обожженный катализатор NiMoP/оксид алюминия

В случае катализатора A на основе никеля на описанную выше подложку из оксида алюминия, имеющую вид экструдата, добавляют никель, молибден и фосфор. Пропиточный раствор готовят растворением при высокой температуре оксида молибдена и гидрокарбоната никеля в водном растворе фосфорной кислоты, чтобы получить приближенный состав 4/22/5, выраженный в вес.% оксидов никеля, молибдена и в вес.% фосфорного ангидрида от количества сухих веществ в конечном катализаторе. После сухой пропитки экструдаты оставляют созревать в атмосфере, насыщенной водой, на 8 ч, затем их сушат в течение ночи при 90°C. Обжиг при 450°C в течение 2 часов дает в результате катализатор A.

В этом случае конечный состав катализатора A, выраженный на оксиды, следующий: MoO3=22,0±0,2 (вес.%), NiO=4,1±0,1 (вес.%) и P2O5=5,0±0,1 (вес.%).

Катализатор B: катализатор NiMoP/оксид алюминия с добавкой уксусной кислоты и диметилсукцината (DMSU)

В случае катализатора B на основе никеля на описанную выше подложку из оксида алюминия, имеющую вид экструдата, добавляют никель, молибден и фосфор. Пропиточный раствор готовят растворением при высокой температуре оксида молибдена и гидрокарбоната никеля в водном растворе фосфорной кислоты, чтобы получить приближенный состав 5/25/6, выраженный в вес.% оксидов никеля, молибдена и в вес.% фосфорного ангидрида от количества сухих веществ в конечном катализаторе. После сухой пропитки экструдаты оставляют созревать в атмосфере, насыщенной водой, на 8 ч, затем их сушат в течение ночи при 90°C. В сухую пропитанную подложку катализатора B добавляют затем путем сухой пропитки раствор, содержащий смесь диметилсукцината (DMSU) и уксусной кислоты (чистота 75%). Мольные отношения следующие: DMSU/Mo=0,85 моль/моль, DMSU/уксусная кислота=0,5 моль/моль. Катализатор подвергают также этапу созревания в течение 3 ч при 20°C на воздухе, а затем сушке в печи типа печи с проницаемым слоем при 120°C в течение 3 ч.

В этом случае конечный состав катализатора B, выраженный на оксиды, следующий: MoO3=25,1±0,2 (вес.%), NiO=5,1±0,1 (вес.%) и P2O5=6,0±0,1 (вес.%).

Катализатор C: катализатор NiMoP/оксид алюминия с добавкой лимонной кислоты

В случае катализатора C на основе никеля на описанную выше подложку из оксида алюминия, имеющую вид экструдата, добавляют никель, молибден и фосфор. Пропиточный раствор готовят растворением при высокой температуре оксида молибдена, гидрокарбоната никеля и лимонной кислоты в водном растворе фосфорной кислоты, чтобы получить приближенный состав 5/25/6, выраженный в вес.% оксидов никеля, молибдена и в вес.% фосфорного ангидрида от количества сухих веществ в конечном катализаторе. Количество лимонной кислоты, выраженное как мольное отношение к молибдену, есть лимонная кислота/Mo=0,4 моль/моль. После сухой пропитки экструдаты оставляют на 8 ч созревать в атмосфере, насыщенной водой, затем их сушат в течение ночи при 90°C, а затем подвергают сушке в печи типа печи с проницаемым слоем при 140°C в течение 3 ч.

В этом случае конечный состав катализатора C, выраженный на оксиды, следующий: MoO3=22,5±0,2 (вес.%), NiO=4,2±0,1 (вес.%) и P2O5=5,0±0,1 (вес.%).

Катализатор D: катализатор NiMoWP/алюмосиликат с добавкой лимонной кислоты

Порошок алюмосиликата готовили путем совместного осаждения композиции, состоящей из 30% SiO2 и 70% Al2O3. Затем изготавливали подложку катализатора, содержащую этот алюмосиликат. Для этого смешивали матрицу, состоящую из полученного выше алюмосиликата, с водным раствором, содержащим 66%-ную азотную кислоту (7 вес.% кислоты на грамм сухого геля), затем размешивали 15 минут. После размешивания полученную пасту пропускали через фильеру, имеющую трехдольчатые отверстия диаметром 2 мм. Затем экструдаты сушили в течение ночи при 120°C, после чего обжигали при 550°C в течение 2 часов на воздухе. Наконец, экструдаты обрабатывали водяным паром при 750°C в течение 2 ч. Эти экструдаты и являются алюмосиликатной подложкой. Пропиточный раствор готовят путем растворения при высокой температуре оксида молибдена и гидрокарбоната никеля, фосфорно-вольфрамовой кислоты и лимонной кислоты в водном растворе фосфорной кислоты, чтобы получить состав примерно 6/2/18/5, выраженный в вес.% оксидов никеля, молибдена, вольфрама и в вес.% фосфорного ангидрида от количества сухих веществ в конечном катализаторе. Количество лимонной кислоты, выраженное как мольное отношение к молибдену, равно лимонная кислота/Mo=0,4 моль/моль.

В этом случае конечный состав катализатора D, выраженный на оксиды, следующий: MoO3=6,2±0,2 (вес.%), NiO=2,4±0,1 (вес.%), WO3=18,1±0,1 (вес.%) и P2O5=5,0±0,1 (вес.%).

Оценка различных последовательностей катализаторов A, B, C и D в гидроочистке вакуумного дистиллята

Используемое сырье представляет собой вакуумный дистиллят и с TMP 474°C (T5%=389°C, T50%=468°C, T70%=498°C). Характеристики сырья следующие: сера 2,6 вес.%, азот 1350 ч/млн, основный азот 392 ч/млн, смолы 9,1 вес.%.

Испытание проводится в пилотном изотермическом реакторе с неподвижным проницаемым слоем, причем потоки циркулируют снизу вверх. Реактор содержит две каталитические зоны, позволяющие оценить разные последовательности катализаторов A, B, C и D. Сырье проходит сначала через первую зону, наполненную первым катализатором, а затем через вторую зону, наполненную вторым катализатором.

Согласно примеру 1 (не по изобретению), обе каталитические зоны целиком (100% объема) занимает катализатор с добавками (катализатор B).

Согласно примеру 2 (не по изобретению), обе каталитические зоны целиком (100% объема) занимает обожженный катализатор (катализатор A).

Согласно примерам 3, 4 и 5 (по изобретению), первая зона заполнена обожженным катализатором (катализатор A: 30 об.%), а вторая катализатором с добавками (катализатор B, C или D: 70 об.%).

После сульфирования исследуемого вакуумного дистиллята, к которому добавлено 2 вес.% диметилдисульфида, in situ при 350°C в установке под давлением проводили испытание на гидроочистку в следующих рабочих условиях: полное давление 150 бар (15 МПа), VVH 2 ч-1, отношение H2/сырье 1000 л/л и температура 380°C.

Следующая таблица показывает степень HDN и HDS (в %), осуществленной в реакторе, а также стабильность последовательности катализаторов. Степень HDN рассчитывается следующим образом: HDN(%)=(Nвыход-Nвход)/Nвход. Степень HDS рассчитывается следующим образом: HDS(%)=(Sвыход-Sвход)/Sвход. Стабильность рассчитывается следующим образом: (%HDN через 600 ч/%HDN через 300 ч).

Результаты четко показывают, что последовательность "катализатор в оксидной форме/катализатор с добавками" (примеры 3, 4 и 5) позволяет получить более высокую каталитическую активность в отношении HDN при сохранении высокой активности по HDS, и более высокую стабильность, чем последовательность только катализаторов с добавками (пример 1) или последовательность только "катализаторов в оксидной форме" (пример 2).

Таблица
HDN, HDS и стабильность
Пример Засыпка катализатора(ов) в реакторе (первая зона/вторая зона) HDN
(%)
HDS
(%)
Стабильность
1 сравнительный 100 об.% катализатора B (NiMoP с добавкой) 93 99,8 90
2 сравнительный 100 об.% катализатора A (обожженный NiMoP) 84 99,8 90
3 согласно изобретению 30 об.% катализатора A (обожженный NiMoP) + 70 об.% катализатора B (NiMoP с добавкой) 96 99,8 95
4 согласно изобретению 30 об.% катализатора A (обожженный NiMoP) + 70 об.% катализатора C (NiMoP с добавкой) 94 99,9 92
5 согласно изобретению 70 об.% катализатора A (обожженный NiMoP) + 30 об.% катализатора D (NiMoWP с добавкой) 95 99,8 92

Источник поступления информации: Роспатент

Показаны записи 1-10 из 159.
27.02.2013
№216.012.2c54

Способ и устройство для быстрого качественного и количественного определения серы в осадочных породах и в нефтепродуктах

Группа изобретений относится к определению серы в различных материалах. В способе качественного и количественного определения серы в образце осадочных пород или нефтепродуктов, в котором осуществляют следующие этапы: - нагревание указанного образца в пиролизной печи в неокисляющей атмосфере,...
Тип: Изобретение
Номер охранного документа: 0002476875
Дата охранного документа: 27.02.2013
20.07.2013
№216.012.5683

Катализатор на основе цеолита izm-2 и способ гидроконверсии/гидрокрекинга углеводородного сырья

Изобретение относится к катализатору, который включает в себя: - подложку, содержащую по меньшей мере один твердый кристаллический IZM-2, в рентгенограмме которого имеются по меньшей мере спектральные линии, записанные в таблице ниже, где FF = очень интенсивная; F = интенсивная; m = средняя;...
Тип: Изобретение
Номер охранного документа: 0002487755
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.5925

Катализатор, содержащий цеолит izm-2 и, по меньшей мере, один металл, и его применение в способах превращения углеводородов

Описан катализатор, содержащий, по меньшей мере, один цеолит IZM-2, по меньшей мере, одну матрицу и, по меньшей мере, один металл, выбранный из металлов групп VIII, VIB и VIIB, причем указанный цеолит демонстрирует дифракционную картину на рентгенограмме, включающую, по меньшей мере, полосы,...
Тип: Изобретение
Номер охранного документа: 0002488442
Дата охранного документа: 27.07.2013
20.08.2013
№216.012.5f6c

Катализатор селективного гидрирования и способ его получения

Изобретение относится к катализатору и способу селективного гидрирования полиненасыщенных углеводородных соединений, присутствующих в нефтяных фракциях, преимущественно происходящих из парового или каталитического крекинга, в соответствующие алкены. Описан катализатор, включающий никель на...
Тип: Изобретение
Номер охранного документа: 0002490060
Дата охранного документа: 20.08.2013
10.10.2013
№216.012.72f5

Избирательный рецикл тяжелого газойля для оптимальной интеграции перегонки тяжелой нефти и переработки вакуумного газойля

Изобретение относится к способу перегонки тяжелого вакуумного остатка и переработки вакуумного газойля, где сырье вакуумного остатка сначала подвергают перегонке тяжелой нефти. Способ включает в себя вакуумное разделение выходящего потока указанной перегонки для получения потока тяжелого...
Тип: Изобретение
Номер охранного документа: 0002495086
Дата охранного документа: 10.10.2013
20.10.2013
№216.012.76ba

Оптимизированные способ и устройство сжигания в химическом контуре жидких углеводородов

Изобретение относится к сжиганию в химическом контуре жидких углеводородов. Объектами настоящего изобретения являются устройство и усовершенствованный способ сжигания в химическом контуре, по меньшей мере, одной жидкой углеводородной загрузки, в котором жидкую загрузку распыляют при помощи...
Тип: Изобретение
Номер охранного документа: 0002496054
Дата охранного документа: 20.10.2013
10.11.2013
№216.012.7c9e

Способ удаления серо-, азот- и галогенсодержащих примесей, присутствующих в синтез-газе

Изобретение может быть использовано в химической промышленности. Способ удаления серо-, азот- и галогенсодержащих примесей, присутствующих в синтез-газе, таких как HS, COS, CS, HCN, NH, HF, HCl, HBr и HI, содержит: а) этап совместного гидролиза COS и HCN и улавливания галогенированных...
Тип: Изобретение
Номер охранного документа: 0002497575
Дата охранного документа: 10.11.2013
10.12.2013
№216.012.8924

Устройство регулирования рабочих условий в установке каталитического крекинга с двумя системами подъема

Изобретение относится к области каталитического крекинга нефтяных фракций. Изобретение касается способа получения бензина и совместного получения пропилена, в котором используется установка каталитического крекинга, содержащая зону регенерации катализатора и реакционную зону с двумя системами...
Тип: Изобретение
Номер охранного документа: 0002500790
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8cd5

Способ получения средних дистиллятов гидрокрекингом сырья, полученного в процессе фишера-тропша, в присутствии катализатора, содержащего твердый izm-2

Изобретение относится к способу получения средних дистиллятов из парафинового сырья, полученного синтезом Фишера-Тропша. В способе используют катализатор гидрокрекинга/гидроизомеризации, содержащий гидрирующий-дегидрирующий металл, выбранный из группы, образованной из металлов группы VIB и...
Тип: Изобретение
Номер охранного документа: 0002501736
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8cff

Способ конверсии тяжелого сырья в бензин и пропилен с регулируемым выходом

Изобретение относится к способу конверсии тяжелого углеводородного сырья. Изобретение касается способа совместного получения бензина и пропилена из тяжелого углеводородного сырья с начальной точкой кипения выше 340°C на установке каталитического крекинга (FCC), за которой следует установка...
Тип: Изобретение
Номер охранного документа: 0002501778
Дата охранного документа: 20.12.2013
Показаны записи 1-3 из 3.
20.07.2013
№216.012.5683

Катализатор на основе цеолита izm-2 и способ гидроконверсии/гидрокрекинга углеводородного сырья

Изобретение относится к катализатору, который включает в себя: - подложку, содержащую по меньшей мере один твердый кристаллический IZM-2, в рентгенограмме которого имеются по меньшей мере спектральные линии, записанные в таблице ниже, где FF = очень интенсивная; F = интенсивная; m = средняя;...
Тип: Изобретение
Номер охранного документа: 0002487755
Дата охранного документа: 20.07.2013
25.08.2017
№217.015.c363

Способ получения катализатора гидроконверсии, содержащего по меньшей мере один цеолит nu-86

Изобретение относится к способу получения катализатора, включающему по меньшей мере следующие последовательные этапы: a) по меньшей мере приготовление подложки, содержащей от 0,2 до 30 мас.% цеолита NU-86 и от 70 до 99,8 мас.% неорганической пористой матрицы, причем массовые содержания выражены...
Тип: Изобретение
Номер охранного документа: 0002617987
Дата охранного документа: 02.05.2017
20.01.2018
№218.016.1c2f

Катализатор, содержащий по меньшей мере один цеолит nu-86, по меньшей мере один цеолит usy и пористую неорганическую матрицу, и способ гидроконверсии углеводородного сырья с использованием этого катализатора

Изобретение относится к катализатору гидрокрекинга углеводородного сырья, содержащему по меньшей мере один металл, выбранный из группы, состоящей из металлов группы VIB и группы VIII периодической системы, используемых по отдельности или в смеси, и подложки, содержащей по меньшей мере один...
Тип: Изобретение
Номер охранного документа: 0002640585
Дата охранного документа: 10.01.2018
+ добавить свой РИД