×
10.05.2018
218.016.4658

СПОСОБ ПОДАВЛЕНИЯ ДЕФОРМАЦИОННЫХ ПОЛОС НА ПОВЕРХНОСТИ АЛЮМИНИЙ-МАГНИЕВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к обработке давлением металлических сплавов системы алюминий-магний, демонстрирующих прерывистую деформацию и локализацию деформации в полосах, вызывающих преждевременную коррозию и разрушение этих сплавов. Способ подавления деформационных полос на поверхности заготовок из алюминий-магниевых сплавов в процессе обработки давлением включает пропускание через заготовку при ее обработке давлением электрического тока, при этом предварительно в течение не менее 0,8 с заготовку обрабатывают током плотностью не менее 60 А/мм, после чего в момент зарождения деформационной полосы, определяемый по отрицательному скачку напряжения длительностью 1 мс, через заготовку пропускают прямоугольный импульс тока амплитудой 60 А/мм. Изобретение позволяет снизить затраты электроэнергии при металлообработке, повысить качество обрабатываемой поверхности и увеличить долговечность алюминий-магниевых сплавов, применяемых при производстве автомобилей и авиационной техники. 3 ил.

Изобретение относится к способам обработки алюминиевых сплавов, включающим механическую обработку давлением с одновременным приложением импульсного электрического поля с целью подавления механических неустойчивостей сплава под давлением, вызывающих образование деформационных полос на поверхности конечного продукта.

Существует несколько видов обработки металлов и полупроводников на основе процесса давления - прокатка, штамповка, волочение и плющение, где для повышения производительности и качества обработки может быть использован электропластический эффект (ЭПЭ) (Троицкий О.А., Баранов Ю.В., Авраамов Ю.С., Шляпин А.Д. Физические основы и технологии обработки современных материалов, том 1 и том 2. - Москва-Ижевск, Институт компьютерных исследований, 2004 г.).

Настоящее изобретение относится к алюминиевым сплавам, проявляющим в условиях механической обработки давлением прерывистую деформацию, известную как эффект Портевена-Ле Шателье (ПЛШ). Полосы локализованной деформации, связанные с прерывистой деформацией, ухудшают качество поверхности промышленных изделий и вызывают преждевременную коррозию и внезапное разрушение.

Наиболее близким к предлагаемому способу является способ обработки металлов по патенту России №2544721 (Кл. C22F 1/047, публикация 20.03.2015), включающий механическую обработку заготовки из листового сплава Al-Mg с одновременным пропусканием постоянного тока низкой плотности 20-30 А/мм2.

Недостаток этого способа - отсутствие оптимального сочетания диапазона плотности тока, длительности пропускания постоянного тока и температурно-скоростных условий деформирования. В частности, ток пропускается по заготовке в течение всего времени деформирования, даже на участках деформационной кривой, на которых в отсутствие тока прерывистая деформация не наблюдается, что также ограничивает возможности метода.

Технической задачей предлагаемого решения является оптимизация условий электротоковой обработки промышленных сплавов Al-Mg, применяемых при производстве авиакосмической техники и автомобилей, с целью снижения затрат на электроэнергию, улучшения качества поверхности промышленных изделий, увеличения долговечности алюминий-магниевых сплавов без потери прочности и пластичности.

Апробация способа производилась на промышленном алюминий-магниевом сплаве АМг5, который в отсутствие тока демонстрирует прерывистую деформацию ПЛШ. Образцы в виде двухсторонних лопаток с размером рабочей части 6×3×0.5 мм вырезали машинным способом из листового проката вдоль направления холодной прокатки. После отжига при 420°C и закалки на воздухе средний размер зерна составил около 10 мкм.

Испытания на растяжение с постоянной скоростью деформирования проводили в жесткой испытательной машине Instron (модель 3344). При испытании в жестком режиме прерывистая деформация проявляется в виде повторяющихся скачков разгрузки амплитудой 5-15 МПа. Для исследования влияния электрического тока на прерывистое течение образец электрически изолировали от испытательной машины с помощью захватов из плавленого кварца. В качестве источника тока использовали низковольтный (5В) источник постоянного тока SE-600-5 с ограничительным сопротивлением - балластным реостатом РБ-306П. Процессы полосообразования и распространения локализованной деформации на поверхности плоского образца контролировали с помощью высокоскоростной видеокамеры VS-FAST/G6 (НПО Видеоскан). Скачки нагрузки измеряли с помощью тензодатчика Zemic A3-C3-100kg-3V с чувствительностью 1.5 мкВ/Н в полосе частот 0-2 кГц.

Схема эксперимента представлена на Фиг. 1. Образец 1 растягивали с постоянной скоростью Импульсный сигнал тензодатчика 2, вызванный резким скачком разгрузки, запускает генератор прямоугольных импульсов тока 3 с помощью блока управления 4, который включает блок задержки на время td (0.1-1000 мс) между запускающим импульсом от тензодатчика и импульсом тока, и генератор прямоугольных импульсов тока с заданной амплитудой (~10-110 А), длительностью переднего фронта и крыши τ (0.1-10 с) порядка и больше длительности скачка напряжения. Прямоугольный импульс тока пропускался через деформируемый образец во время ожидания скачка деформации с целью его подавления. Основанием для такого способа является обнаруженный авторами эффект подавления постоянным током прерывистой деформации ПЛШ (Патент РФ №2544721).

Принципиальная схема блока управления показана на Фиг. 2. Для формирования импульсов тока использовался мощный источник постоянного тока напряжением 5 В с максимальным током до 110 A (Mean Well SE-600-5). Ток коммутировался с помощью полевого транзистора IRFP064N, управление которым осуществлялось по цепи затвора напряжением 12 В. Длительность крыши импульсов в экспериментах варьировалась с дискретностью 1 или 10 мс.

Амплитуда скачка сигнала тензодатчика в момент формирования первичной полосы деформации, как правило, составляет 60-200 мВ. Формирование прямоугольного импульса тока производилось относительно этого момента. Ядром устройства, схема которого приведена на Фиг. 2, является микропроцессор, управляющий дисплеем и выполняющий выбранную программу. Выбор из нескольких заложенных программ, отличающих временными характеристиками формируемого токового импульса и его моментом начала действия относительно скачка, производится кнопками S2 и S3. Номер программы и устанавливаемые временные соотношения индицируются на дисплее DIS1. Для приведения устройства в исходное состояние предназначена кнопка S1.

Запуск программы производится по сигналу тензодатчика, подаваемого на коннектор J3. Его обработка происходит в компараторе IC2A с регулируемым порогом срабатывания. Его величина устанавливается с помощью регулировки R6 и составляет 30 мВ. Управление включением/выключением коммутирующего полевого транзистора осуществляется компаратором с открытым коллектором ICЗА. Благодаря этой его особенности стало возможным при 5-вольтовом питании компаратора получить на его выходе 12-вольтовые импульсы (коннектор J2). Его выход предназначен для работы с высокоомной нагрузкой, которой является затвор полевого транзистора. Логический уровень сигнала на выходе J5 определяется логикой исполняемой программы. Вывод обеспечивает втекающий/вытекающий ток до 20 мА при напряжении 5 В. Обеспечение устройства необходимыми напряжениями на 5 В и 12 В производится соответствующими внешними источниками питания. Потребление тока по 5В не превышает 50 мА, по 12В - не более 10 мА.

Скоростная видеосъемка, синхронизированная с сигналом силового отклика σ(t), показывает, что стадия зарождения полосы деформации и ее быстрое распространение через сечение образца сопровождается резким отрицательным скачком напряжения (скачком разгрузки) длительностью ~1 мс. Генератор прямоугольного импульса тока запускается от скачка сигнала тензодатчика по достижении этим сигналом порогового значения. Поскольку в отсутствие электротоковой обработки амплитуда скачков разгрузки растет с ростом деформирующего напряжения, то варьированием порогового значения тензосигнала можно контролировать стадию деформирования, в которой генератор прямоугольного импульса тока включается от некоторого i-го скачка, амплитуда которого превысила порог запуска генератора. Таким образом, установкой порога срабатывания можно настроить устройство на подавление, например, только самых крупных скачков - скачков типа C, которые сопровождаются возникновением нераспространяющихся (статических) полос деформации, наиболее опасных для прочности сплава.

В примере, представленном на Фиг. 3, длительность крыши прямоугольного импульса тока устанавливали приблизительно равной или больше среднего времени между скачками, т.е. для исследования возможности этим импульсом тока подавить следующий i+1-й скачок деформации или несколько последующих скачков, а время задержки td между моментом запуска генератора t0 и началом генерации прямоугольного импульса тока варьировали от эксперимента к эксперименту в пределах от 0 до Время предварительной электротоковой обработки сплава до следующего скачка вычисляется как (Фиг. 3). Таким образом, варьированием времени задержки td данная методика позволяет контролировать время электротоковой обработки ttr и измерять вероятность подавления очередного i+1-го скачка и соответственно подавлять процесс зарождения первичной полосы деформации.

Статистический анализ попыток подавления очередного скачка прямоугольным импульсом тока амплитудой jm=60 А/мм2 показал, что при 0<ttr<0.3 с вероятность подавления скачка напряжения равна нулю, при ttr>0.8 с эта вероятность равна единице, а в промежуточной области 0.3 с<ttr<0.8 с, вероятность подавления монотонно возрастает от нуля и стремится к единице. Вместе с тем, если импульс тока через образец стартует непосредственно после зарождения полосы деформации (в пределах до 3 мс), то он не оказывает заметного влияния на эволюцию этой полосы и характеристики скачка деформации, вызванного данной полосой. После окончания прямоугольного импульса тока скачки напряжения возобновляются через время τR≈0.5 с (см. Фиг. 3), которое характеризует инерционность эффекта подавления током прерывистой деформации. Следовательно, для подавления процесса зарождения деформационных полос и скачков напряжения необходима предварительная обработка данного сплава в течении не менее 0.8 с током плотностью не менее 60 А/мм2 (при ). Предположительно это время необходимо для растворения током малых преципитатов (зон Гинье-Престона), образующихся на ранних стадиях старения сплава. Полученные результаты подтверждают преципитатную модель подавления током прерывистой деформации ПЛШ [Brechet Y., Estrin Y. // Acta Metal. Mater. 1995. V. 43. №3. P. 955-963].

Таким образом, экспериментально установлено, что электрический ток: а) подавляет процесс зарождения деформационных полос; б) не влияет на распространение полос, если зарождение произошло до включения тока. Из полученных результатов следует, что электрический ток является примером селективного воздействия на процесс зарождения деформационных полос и может быть использован для его подавления, а следовательно, и подавления развития пластических неустойчивостей в алюминий-магниевом сплаве.

Краткое описание чертежей

Фиг. 1. Схема синхронизации сигнала датчика усилия (тензодатчика), связанного с зарождением первичной деформационной полосы с генератором прямоугольных импульсов тока, подавляющих полосообразование. 1 - образец, 2 - тензодатчик усилия, 3 - генератор прямоугольного импульса тока, 4 - блок управления (см. Фиг. 2), 5 - видеокамера, 6 - захваты из плавленого кварца.

Фиг. 2. Принципиальная электрическая схема блока управления.

Фиг. 3. Фрагмент скачкообразной кривой деформации сплава AMg5 и эпюра прямоугольного импульса тока без эффекта подавления (а), когда Jm<60 А/мм2, и с подавлением скачков током (б) при jm=60 А/мм2. Δt - время между соседними скачками, td<Δt - время задержки между скачком разгрузки и начальным моментом генерации импульса тока, τR - время восстановления скачков на деформационной кривой, τ=2 с - длительность «крыши» прямоугольного импульса тока.

Способ подавления деформационных полос на поверхности заготовок из алюминий-магниевых сплавов в процессе обработки давлением, включающий пропускание через заготовку при ее обработке давлением электрического тока, отличающийся тем, что предварительно в течение не менее 0,8 с заготовку обрабатывают током плотностью не менее 60 А/мм, после чего в момент зарождения деформационной полосы, определяемый по отрицательному скачку напряжения длительностью 1 мс, через заготовку пропускают прямоугольный импульс тока амплитудой 60 А/мм.
СПОСОБ ПОДАВЛЕНИЯ ДЕФОРМАЦИОННЫХ ПОЛОС НА ПОВЕРХНОСТИ АЛЮМИНИЙ-МАГНИЕВЫХ СПЛАВОВ
СПОСОБ ПОДАВЛЕНИЯ ДЕФОРМАЦИОННЫХ ПОЛОС НА ПОВЕРХНОСТИ АЛЮМИНИЙ-МАГНИЕВЫХ СПЛАВОВ
СПОСОБ ПОДАВЛЕНИЯ ДЕФОРМАЦИОННЫХ ПОЛОС НА ПОВЕРХНОСТИ АЛЮМИНИЙ-МАГНИЕВЫХ СПЛАВОВ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 22.
04.07.2018
№218.016.6a5c

Термографический способ контроля объектов и устройство для его осуществления

Группа изобретений относится к области неразрушающего контроля и может быть использована для идентификации близких к поверхности дефектов в контролируемом объекте. Термографический способ контроля изделий включает нагрев либо охлаждение участка контролируемого объекта. Далее регистрируют...
Тип: Изобретение
Номер охранного документа: 0002659617
Дата охранного документа: 03.07.2018
02.08.2018
№218.016.77a8

Способ прогнозирования нарушений репродуктивного здоровья у женщин фертильного возраста

Изобретение относится к области медицины, а именно к гинекологии, и может быть использовано для прогнозирования нарушений репродуктивного здоровья у женщин фертильного возраста. Способ включает определение процента CD3+CD8+, CD16+CD56+, CD19+клеток среди лимфоцитов крови, уровней в сыворотке...
Тип: Изобретение
Номер охранного документа: 0002662918
Дата охранного документа: 31.07.2018
21.10.2018
№218.016.94c7

Термографический способ контроля объектов и устройство для его осуществления

Группа изобретений относится к области неразрушающего контроля и может быть использована для идентификации близких к поверхности дефектов в контролируемом объекте. Заявлен термографический способ контроля изделий, который содержит следующие шаги: нагревают участок контролируемого объекта с...
Тип: Изобретение
Номер охранного документа: 0002670186
Дата охранного документа: 18.10.2018
13.01.2019
№219.016.af51

Устройство для измерения температуры

Предлагаемое изобретение относится к измерительной технике и может быть использовано для измерения физических величин с первичными резисторными датчиками. Устройство содержит термометр сопротивления R, включенный в мостовую схему 1, диагональ питания которой через балластный резистор 2...
Тип: Изобретение
Номер охранного документа: 0002676821
Дата охранного документа: 11.01.2019
17.03.2019
№219.016.e2b6

Измеритель температуры

Изобретение относится к технике измерения температуры, а точнее к измерителям температуры, в которых температуру определяют по величине сигнала термопреобразователя в переходном режиме. Измеритель температуры содержит термопреобразователь 1, например термоэлектрический преобразователь,...
Тип: Изобретение
Номер охранного документа: 0002682101
Дата охранного документа: 14.03.2019
01.09.2019
№219.017.c4f4

Способ получения композиционного материала с противомикробными свойствами на основе оксида графена и наночастиц оксида меди

Изобретение относится к способу получения композиционного материала с противомикробными свойствами на основе оксида графена и наночастиц оксида меди и может найти применение главным образом в области нанобиотехнологий и наномедицины для изготовления препаратов, подавляющих жизнедеятельность...
Тип: Изобретение
Номер охранного документа: 0002698713
Дата охранного документа: 29.08.2019
01.09.2019
№219.017.c5ba

Способ подавления механической неустойчивости алюминиевого сплава

Использование: для подавления механических неустойчивостей алюминиевого сплава В95пч. Сущность изобретения заключается в том, что используют установку датчика акустической эмиссии вблизи потенциально опасного участка (концентратора напряжения) изделия или конструкции, осуществляют...
Тип: Изобретение
Номер охранного документа: 0002698518
Дата охранного документа: 28.08.2019
01.09.2019
№219.017.c5e0

Электрохимический способ раннего выявления повреждений в алюминиевых сплавах, деформируемых в водной среде

Изобретение может быть использовано в системах непрерывного бесконтактного высокоскоростного мониторинга состояния деформируемой металлической поверхности и ранней диагностики повреждаемости конструкций из алюминиевых сплавов систем Al-Zn-Cu-Mg, Al-Mg-Mn, Al-Li-Mg, эксплуатируемых в водных...
Тип: Изобретение
Номер охранного документа: 0002698519
Дата охранного документа: 28.08.2019
02.09.2019
№219.017.c5ee

Способ изготовления керамики на основе диоксида циркония

Изобретение относится к способу получения керамики на основе диоксида циркония с трансформируемой тетрагональной кристаллической фазой и может быть использовано для изготовления износостойких деталей сферической формы, например, в качестве мелющего бисера. Согласно изобретению в качестве основы...
Тип: Изобретение
Номер охранного документа: 0002698880
Дата охранного документа: 30.08.2019
03.10.2019
№219.017.d1a8

Способ получения наноструктурированной композиционной керамики на основе оксидов циркония, алюминия и кремния

Изобретение относится к способам получения высокопрочных материалов, а именно композиционной керамики на основе стабилизированного диоксида циркония и корунда с добавлением диоксида кремния. Изобретение может быть использовано при производстве прочных и износостойких деталей для различных...
Тип: Изобретение
Номер охранного документа: 0002701765
Дата охранного документа: 01.10.2019
Показаны записи 1-9 из 9.
27.12.2014
№216.013.14e8

Бесконтактный электромагнитный метод диагностики повреждаемости деформируемых металлических конструкций в условиях обледенения

Изобретение относится к способам неразрушающего контроля и диагностики состояния механической неустойчивости и раннего предупреждения об опасности разрушения материалов и изделий, эксплуатируемых в условиях обледенения. Способ включает установку плоского емкостного датчика вблизи наиболее...
Тип: Изобретение
Номер охранного документа: 0002536776
Дата охранного документа: 27.12.2014
20.03.2015
№216.013.33be

Способ обработки листовых заготовок из алюминиевых сплавов системы al-mg.

Изобретение относится к обработке давлением металлических сплавов системы алюминий-магний, демонстрирующих прерывистую пластическую деформацию и локализацию деформации в полосах, вызывающих ухудшение качества поверхности и внезапное разрушение этих сплавов, и может быть использовано в...
Тип: Изобретение
Номер охранного документа: 0002544721
Дата охранного документа: 20.03.2015
25.08.2017
№217.015.c5b2

Акустико-эмиссионный способ раннего выявления повреждений в деформируемых алюминиевых сплавах

Использование: для диагностики механических неустойчивостей и раннего предупреждения об опасности разрушения изделий и конструкций из алюминиевых сплавов, демонстрирующих полосообразование и прерывистую деформацию. Сущность изобретения заключается в том, что на поверхности конструкции вблизи...
Тип: Изобретение
Номер охранного документа: 0002618760
Дата охранного документа: 11.05.2017
26.08.2017
№217.015.de12

Способ повышения механической устойчивости и прочности листовых заготовок из алюминий-магниевых сплавов с использованием эффекта электропластической деформации

Изобретение относится к обработке давлением металлических сплавов системы алюминий-магний, демонстрирующих прерывистую пластическую деформацию и локализацию деформации в полосах, вызывающих ухудшение качества поверхности и внезапное разрушение этих сплавов. Способ обработки листовых заготовок...
Тип: Изобретение
Номер охранного документа: 0002624877
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.def4

Дистанционный способ раннего обнаружения повреждений металлических конструкций из алюминиевых сплавов

Использование: для бесконтактного электромагнитного неразрушающего контроля листовых алюминиевых сплавов. Сущность изобретения заключается в том, что способ включает установку плоского емкостного датчика вблизи потенциально опасного участка поверхности (концентратора напряжения) металла,...
Тип: Изобретение
Номер охранного документа: 0002624995
Дата охранного документа: 11.07.2017
01.09.2019
№219.017.c5ba

Способ подавления механической неустойчивости алюминиевого сплава

Использование: для подавления механических неустойчивостей алюминиевого сплава В95пч. Сущность изобретения заключается в том, что используют установку датчика акустической эмиссии вблизи потенциально опасного участка (концентратора напряжения) изделия или конструкции, осуществляют...
Тип: Изобретение
Номер охранного документа: 0002698518
Дата охранного документа: 28.08.2019
01.09.2019
№219.017.c5e0

Электрохимический способ раннего выявления повреждений в алюминиевых сплавах, деформируемых в водной среде

Изобретение может быть использовано в системах непрерывного бесконтактного высокоскоростного мониторинга состояния деформируемой металлической поверхности и ранней диагностики повреждаемости конструкций из алюминиевых сплавов систем Al-Zn-Cu-Mg, Al-Mg-Mn, Al-Li-Mg, эксплуатируемых в водных...
Тип: Изобретение
Номер охранного документа: 0002698519
Дата охранного документа: 28.08.2019
01.05.2020
№220.018.1a99

Электрофизический способ повышения прочности и механической устойчивости листовых заготовок из алюминий-магниевых сплавов

Изобретение относится к металлургии, а именно к обработке давлением сплавов системы Аl-Mg, проявляющих прерывистую деформацию и локализацию деформации в полосах, негативно влияющих на качество поверхности и коррозионные свойства этих сплавов. Способ обработки листовых заготовок промышленных...
Тип: Изобретение
Номер охранного документа: 0002720289
Дата охранного документа: 28.04.2020
06.07.2020
№220.018.2fac

Электрохимический способ раннего выявления повреждений в титановых сплавах, деформируемых в водной среде

Использование: для бесконтактного высокоскоростного мониторинга состояния деформируемой металлической поверхности и ранней диагностики повреждаемости конструкций из титановых сплавов, эксплуатируемых в водных средах. Сущность изобретения заключается в том, что способ включает установку...
Тип: Изобретение
Номер охранного документа: 0002725692
Дата охранного документа: 03.07.2020
+ добавить свой РИД