×
10.05.2018
218.016.4656

Результат интеллектуальной деятельности: Способ определения пористости материала

Вид РИД

Изобретение

№ охранного документа
0002650427
Дата охранного документа
13.04.2018
Аннотация: Изобретение относится к контрольно-измерительной технике и может найти применение в строительной, горной и других отраслях промышленности преимущественно при определении пористости пористых строительных материалов. Способ заключается в том, что при определении полной пористости материала, например бетона, образец предварительно высушивают до постоянной массы, затем устанавливают на специальную подставку в вакуум-камеру, частично заполненную дистиллированной водой, и одновременно осуществляют процесс вакуумирования сухого образца и воды. Процесс дегазации осуществляется до тех пор, пока из воды не выйдет весь воздух, т.е. при визуальном наблюдении из воды не перестанут выделяться пузыри. После дегазации воды и образца образец погружают в воду для насыщения пор, освобожденных от воздуха, и выдерживают в вакуум-камере в течение 30 минут. После разгерметизации вакуум-камеры образец достают из воды и удаляют свободную влагу с поверхности образца промоканием. Водонасыщенный образец взвешивают и по приращению массы определяют насыщение пор в испытываемом материале. Технический результат - повышение точности определения полной пористости материала.

Изобретение относится к контрольно-измерительной технике и может найти применение в строительной, горной и других отраслях промышленности, преимущественно при определении пористости пористых строительных материалов.

Известен способ определения пористости материала путем определения его водонасыщения, при котором образец, высушенный до постоянной массы, предварительно выдерживают в воде до насыщения, затем помещают вакуум-камеру и одновременно с вакуумированием осуществляют его нагрев до температуры кипения воды [АС СССР №920472, G01N 15/08 - аналог].

Недостатком способа является то, что в результате предварительного насыщения водой образца в обычных условиях в мелких порах останется воздух, закупоренный водой, который при последующем вакуумировании и кипячении не выйдет, снижая тем самым точность определения пористости материала.

Недостатком способа является также то, что вследствие нагрева образца, насыщенного водой, до температуры кипения воды часть в крупных порах, превратившись в пар, испарится, не позволяя с достаточной степенью точности определить точность пористости материала.

Недостатком способа является также то, что вакуумирование образца, насыщенного водой, вызовет отсос части воды из пор, снизив массу поглощенной воды, и, соответственно, точность измерения пористости материала.

Известен способ оценки пористого материала путем определения водонасыщения, заключающийся в вакуумировании высушенного до постоянного массы образца с последующем насыщением его водой [ГОСТ 2409-95. Материалы и изделия огнеупорные. Метод определения открытой и общей пористости - прототип].

Недостатком известного способа является то, что при определении общей пористости отвакуумированный образец насыщают недегазированной водой, содержащей достаточно большой объем «растворенного» воздуха, который при насыщении образца занимает определенный объем пор, снижая тем самым точность определения полной пористости материала.

Технический результат - повышение точности определения полной пористости материала.

Техническая задача - повышение точности определения полной пористости материала за счет повышения его водопоглощения.

Решение технической задачи

Техническая задача решается тем, что в способе определения пористости материала, включающем вакуумирование высушенного до постоянной массы образца с последующим насыщением его водой, в котором вакуумирование сухого образца, размещенного на специальной подставке внутри вакуум-камеры, частично заполненной дистиллированной водой, осуществляют одновременно с вакуумированием воды и затем, по истечении времени дегазации воды, образец погружают в воду для насыщения пор, освобожденных от воздуха, водой и выдерживают в вакуум-камере в течение 30 мин, после чего с поверхности образца удаляют свободную влагу промоканием, взвешивают и по приращению массы определяют полную пористость образца.

Сущность способа заключается в том, что при определении полной пористости материала, например бетона, образец предварительно высушивают до постоянной массы, затем устанавливают на специальную подставку в вакуум-камеру (например, эксикатор), частично заполненную дистиллированной водой, и одновременно осуществляют процесс вакуумирования сухого образца и воды. Процесс дегазации осуществляется до тех пор, пока из воды не выйдет весь воздух, т.е. при визуальном наблюдении из воды не перестанут выделяться пузыри. После дегазации воды и образца образец погружают в воду для насыщения пор, освобожденных от воздуха, водой и выдерживают в вакуум-камере в течение 30 минут. Время выдержки образца, необходимое для полного водонасыщения, определено экспериментальным путем. После разгерметизации вакуум-камеры образец достают из воды и удаляют свободную влагу с поверхности образца промоканием. Водонасыщенный образец взвешивают и по приращению массы определяют насыщение пор в испытываемом материале.

Таким образом, предлагаемый способ определения пористости материала за счет максимального заполнения водой пор, свободных от защемленного в них воздуха, позволяет, по сравнению со способом по прототипу, наиболее точно определить полную пористость материала, что и является новым техническим результатом заявляемого способа.

Способ определения пористости материала, включающий вакуумирование высушенного до постоянной массы образца с последующим насыщением его водой, отличающийся тем, что вакуумирование сухого образца, размещенного на специальной подставке внутри вакуум-камеры, частично заполненной дистиллированной водой, осуществляют одновременно с вакуумированием воды и затем, по истечении времени дегазации воды, образец погружают в воду для насыщения освобожденных от воздуха пор водой и выдерживают в вакуум-камере в течение 30 мин, после чего с поверхности образца удаляют свободную влагу промоканием, взвешивают и по приращению массы определяют полную пористость образца.
Источник поступления информации: Роспатент

Показаны записи 211-220 из 362.
26.06.2019
№219.017.9252

Способ определения функционального зазора между поверхностями трения-скольжения

Изобретение относится к области машиностроения, в частности к способам исследования функционального и морфологического состояния одиночных и многоопорных подшипников скольжения в двигателях внутреннего сгорания и трубопроводных систем путем измерения радиальных зазоров между поверхностями...
Тип: Изобретение
Номер охранного документа: 0002692294
Дата охранного документа: 24.06.2019
06.07.2019
№219.017.a6c9

Способ автоматического управления процессом абсорбции

Изобретение относится к области повышения эффективности функционирования процессов и аппаратов и может быть использовано в химической, фармацевтической, нефтеперерабатывающей, нефтяной, газоперерабатывающей, металлургической и пищевой промышленности. Способ автоматического управления процессом...
Тип: Изобретение
Номер охранного документа: 0002693785
Дата охранного документа: 04.07.2019
06.07.2019
№219.017.a6dd

Озоностойкая эластомерная композиция на основе бутадиен-стирольного каучука

Изобретение относится к области создания эластомерных композиций на основе бутадиен-стирольного каучука, которые можно использовать для изготовления резинотехнических изделий, обладающих стойкостью к действию износа, в шинной промышленности и других отраслях, где необходима озоностойкость....
Тип: Изобретение
Номер охранного документа: 0002693766
Дата охранного документа: 04.07.2019
06.07.2019
№219.017.a6f4

Использование n,n-(пропан-1,3-дил)бис(1,7,7-триметилбицикло[2,2,1]гептан-2-имина) в качестве ускорителя вулканизации для резиновых смесей на основе каучуков общего назначения

Изобретение относится к ингредиентам резиновой смеси и может быть использовано в шинной и резинотехнической промышленности. Применение N,N-(пропан-1,3-дил)бис(1,7,7-триметилбицикло[2,2,1]гептан-2-имина) в качестве ускорителя вулканизации для резиновых смесей на основе каучуков общего...
Тип: Изобретение
Номер охранного документа: 0002693771
Дата охранного документа: 04.07.2019
06.07.2019
№219.017.a71c

Использование n,n-(гексан-1,6-дил)бис(1,7,7-триметилбицикло[2,2,1]гептан-2-имина) в качестве ускорителя вулканизации для резиновых смесей на основе каучуков общего назначения

Изобретение относится к ингредиентам резиновой смеси и может быть использовано в шинной и резинотехнической промышленности. Применение N,N-(гексан-1,6-дил)бис(1,7,7-триметилбицикло[2,2,1]гептан-2-имина) в качестве ускорителя вулканизации для резиновых смесей на основе каучуков общего...
Тип: Изобретение
Номер охранного документа: 0002693769
Дата охранного документа: 04.07.2019
19.07.2019
№219.017.b690

Пневмогидравлическая рессора подвески транспортного средства

Изобретение относится к подвескам транспортных средств. Пневмогидравлическая рессора содержит цилиндр с поршнем и штоком и гидроаккумулятор, соединенный с полостью цилиндра через клапан. В корпусе клапана перпендикулярно оси штока и параллельно друг другу выполнены соединительный канал, первое...
Тип: Изобретение
Номер охранного документа: 0002694706
Дата охранного документа: 16.07.2019
01.08.2019
№219.017.bae6

Дульный тормоз

Изобретение относится к надульным устройствам огнестрельного оружия. Дульный тормоз содержит плоский корпус, пулевой канал, боковые каналы, которые отводят пороховые газы. Каналы выполнены криволинейными образующими с переменным сечением в виде сопла Лаваля. Углы осей выходных каналов дульного...
Тип: Изобретение
Номер охранного документа: 0002695972
Дата охранного документа: 29.07.2019
01.08.2019
№219.017.bb0a

Задняя подвеска колес автомобиля

Изобретение относится к подвескам автомобиля. Задняя подвеска колес автомобиля содержит балку заднего моста, реактивные штанги, телескопические гидроамортизаторы и пневморессоры. Пневморессоры включают пневмобаллоны рукавного типа и полые поршни. На верхнем торце по оси поршня установлены буфер...
Тип: Изобретение
Номер охранного документа: 0002696049
Дата охранного документа: 30.07.2019
21.08.2019
№219.017.c1ce

Способ получения термо- и теплостойких полимеров на основе трис-[(1-галогенметил-2-метакрилокси)этокси]фосфинов

Изобретение относится к области полимеризационных процессов, в частности к разработке реакционно-способных фотополимеризующихся композиций, которые могут быть использованы для ускоренного формирования термо- и теплостойких покрытий с пониженной горючестью. Способ получения термо- и теплостойких...
Тип: Изобретение
Номер охранного документа: 0002697721
Дата охранного документа: 19.08.2019
21.08.2019
№219.017.c1d3

Способ получения тетрагидрофурфурилового спирта

Изобретение относится к способу получения тетрагидрофурфурилового спирта, заключающемуся во взаимодействии фурфурилового спирта с молекулярным водородом в присутствии никельсодержащего катализатора, при этом в качестве катализатора используют наночастицы никеля, иммобилизованные на оксиде...
Тип: Изобретение
Номер охранного документа: 0002697710
Дата охранного документа: 19.08.2019
Показаны записи 1-1 из 1.
04.02.2020
№220.017.fd81

Сооружение башенного типа для установки ветроэлектрогенераторов

Изобретение относится к области строительства. Сооружение башенного типа для установки ветроэлектрогенераторов содержит две идентичные многоярусные башни, неподвижно установленные на фундаменте. Каждая из башен содержит восемь вертикальных железобетонных колон, выполненных в виде пластин и...
Тип: Изобретение
Номер охранного документа: 0002712861
Дата охранного документа: 31.01.2020
+ добавить свой РИД