×
10.05.2018
218.016.4578

Результат интеллектуальной деятельности: Способ формирования адаптивного сигнала управления боковым движением летательного аппарата

Вид РИД

Изобретение

№ охранного документа
0002650307
Дата охранного документа
11.04.2018
Аннотация: Изобретение относится к способу формирования адаптивного сигнала управления боковым движением летательного аппарата. Для осуществления способа измеряют углы рыскания и крена, углы отклонения рулевых поверхностей, угловой скорости рыскания, угловой скорости крена, поперечное ускорение, производят идентификацию аэродинамических характеристик летательного аппарата на основе восстановления угла скольжения, произведенного с использованием линейного непрерывного фильтра Калмана-Бьюси и погрешностей измерения поперечного ускорения, угловых скоростей рысканья и крена, корректируют коэффициенты усиления контура управления боковым движением, на основе которых формируют адаптивный сигнал управления боковым движением летательного аппарата. Обеспечивается качество стабилизации углового движения летательного аппарата в широком диапазоне скоростей и высот полета при действии возмущений.

Настоящее изобретение относится к бортовым автоматическим системам управления движением и стабилизации летательного аппарата, выполненного по нормальной аэродинамической схеме, совершающего маневры в широком диапазоне скоростей и высот полета, подвергающегося в процессе полета внешним и внутренним возмущающим воздействиям.

Из существующего уровня техники известны способ формирования адаптивного сигнала управления и стабилизации углового движения летательного аппарата (RU 2569580, опубл. 27.11.2015), способ формирования адаптивного сигнала управления и стабилизации углового движения летательного аппарата (RU 2339990, опубл. 27.11.2008).

Недостатками данных технических решений является необходимость введения дополнительных измерительных устройств для измерения скоростного напора и отсутствие учета допусков на аэродинамические характеристики летательного аппарата.

Наиболее близким к предлагаемому изобретению является «Способ формирования сигнала управления боковым движением летательного аппарата и устройство для его осуществления» (RU 2339990, опубл. 27.11.2008).

Этот способ состоит в том, что задают сигнал управления по курсу, измеряют сигнал углового положения и угловой скорости по курсу летательного аппарата, формируют сигнал рассогласования по курсу, равный разности сигналов управления и углового положения по курсу, усиливают сигнал рассогласования и угловой скорости по курсу, суммируют усиленный сигнал рассогласования и угловой скорости по курсу, измеряют сигнал углового положения и угловой скорости по крену, формируют сигнал рассогласования по крену, равный разности сигналов управления и углового положения по крену, усиливают сигнал рассогласования и угловой скорости по крену и суммируют усиленный сигнал рассогласования и угловой скорости по крену, формируют выходной сигнал управления по курсу посредством ограничения суммарного сигнала по курсу, формируют сигнал модульной функции как сумму релейного и нелинейного компонентов сигнала управления по курсу, формируют базовый сигнал управления по крену, равный сигналу управления по курсу при превышении сигналом модульной функции заданной величины зоны нечувствительности релейной и нелинейной компонент и равный нулю в противном случае, фильтруют базовый сигнал управления по крену, инвертируют отфильтрованный сигнал, формируют сигнал управления по крену как усиленный инвертированный сигнал и формируют выходной сигнал управления по крену посредством ограничения суммарного сигнала по крену.

Недостатками способа, принятого за прототип, являются отсутствие учета априорной информации о возмущающих воздействиях, отсутствие учета неточностей знания параметров атмосферы и неточностей знания аэродинамических характеристик летательного аппарата.

Решаемой в предлагаемом способе формирования адаптивного сигнала управления боковым движением летательного аппарата технической задачей является обеспечение требуемого качества стабилизации углового движения летательного аппарата в широком диапазоне скоростей и высот полета при действии возмущений.

Для решения указанной технической задачи в процессе полета производится идентификация аэродинамических характеристик летательного аппарата на основе восстановления угла скольжения, уточнения измеряемых угловых скоростей рыскания и крена, измеренных значений углов рыскания и крена и углов отклонения рулевых поверхностей летательного аппарата.

Восстановление угла скольжения производится с использованием линейного непрерывного фильтра Калмана с учетом погрешностей измерений поперечного ускорения и угловых скоростей рыскания и крена.

Сущность способа заключается в том, что производят идентификацию аэродинамических характеристик летательного аппарата на основе восстановления угла скольжения, измеренных углов рыскания и крена, углов отклонения рулевых поверхностей, угловой скорости рыскания, угловой скорости крена, а также поперечного ускорения, при этом восстановление угла скольжения производят с использованием линейного непрерывного фильтра Калмана-Бьюси с учетом погрешностей измерения поперечного ускорения и угловых скоростей рыскания и крена, корректируют коэффициенты усиления контура управления боковым движением летательного аппарата, формируют адаптивный сигнал управления боковым движением летательного аппарата на основе скорректированных коэффициентов.

Последовательность реализации способа формирования адаптивного сигнала управления боковым движением летательного аппарата описывается следующим образом.

Уравнения возмущенного бокового движения имеют следующий вид (1):

,

,

,

,

,

,

,

,

,

,

,

,

.

где β, ωx, ωy - угол скольжения, угловые скорости крена и рыскания соответственно,

, , , , , , , - аэродинамические коэффициенты ЛА,

q - скоростной напор,

m - масса ЛА,

S - характерная площадь ЛА,

L - характерная длина ЛА для приведения аэродинамических характеристик в канале рыскания,

D - характерный диаметр ЛА для приведения аэродинамических характеристик в канале крена,

V - скорость ЛА,

Ix, Iy - моменты инерции ЛА,

α - угол атаки ЛА,

σн, σэ - управляющие сигналы на рули направления и крена,

δн, δэ - суммарные углы отклонения рулей, задействованных в каналах рыскания и крена,

δни, δэи - суммарные измеренные углы отклонения рулей, задействованных в каналах рыскания и крена,

, , - возмущающие воздействия:

,

,

,

, , , , , - допуска на аэродинамические характеристики, %,

- возмущения, вызываемые ветровыми воздействиями, , 1/с,

Wz - скорость горизонтального ветра в поперечном направлении, м/с,

Kρ - отклонение плотности воздуха от номинальных значений, %,

KΔy, KΔz - допуска на положение центра масс ЛА в вертикальном и поперечном направлениях, м,

, , , , ,

, , ,

T - постоянная времени рулевого привода,

ψпр - программное значение угла рыскания,

Kψ, , - коэффициенты усиления контура стабилизации рыскания,

Kγ, , - коэффициенты усиления контура стабилизации крена.

Математическая модель измерений описывается системой уравнений (2)

Здесь n, δи - измеренные значения поперечной перегрузки и углов отклонения рулевых поверхностей соответственно,

, , - ошибки измерений угловых скоростей крена, рыскания и поперечной перегрузки соответственно.

Восстановление угла скольжения проводится на основе линейного непрерывного фильтра Калмана-Бьюси (ФКБ).

Векторные уравнения ФКБ (3) приведены ниже:

где - вектор оцениваемых параметров,

A - матрица правой части математической модели движения (1),

u - вектор известных составляющих правой части,

P - матрица ковариаций ошибки оценки в процессе оценки,

H - известная матрица правой части модели измерений,

R - матрица ковариаций шумов измерений,

Q - матрица ковариаций внешних возмущений.

Восстановление угла скольжения, а также оценки измеряемых с погрешностями угловых скоростей крена и рыскания проводятся с использованием следующих уравнений (4):

,

,

,

,

,

,

,

,

p21=p12,

p31=p13,

p32=p23.

Здесь , , - оценки угла скольжения и угловых скоростей крена и рыскания, , , - априорные дисперсии измерений, - априорная дисперсия угловой скорости ветрового порыва.

На основании уравнения (1) можно записать выражение для определения реализованного коэффициента :

Адаптивные сигналы управления боковым движением летательного аппарата формируются на основе скорректированных коэффициентов, , по формулам (6), (7):

Здесь b50 - значение коэффициента b5 для номинальных аэродинамических характеристик, , , - коэффициенты усиления, обеспечивающие выполнение требований к качеству переходных процессов при номинальных аэродинамических характеристиках, D - добротность рулевого привода, , вычисляются по формуле (8):

Сформированные адаптивные сигналы управления боковым движением летательного аппарата , имеют вид (9), (10):

Предложенная схема коррекции коэффициентов контура стабилизации на основе идентифицированных аэродинамических коэффициентов позволяет повысить качество переходных процессов отработки возмущений.

Эффективность принятого подхода к коррекции коэффициентов в процессе полета подтверждена результатами анализа и математического моделирования.

Все составные операции способа могут быть выполнены программно-алгоритмически в бортовых вычислительных машинах беспилотных летательных аппаратов.

Способ формирования адаптивного сигнала управления боковым движением летательного аппарата, при котором производят идентификацию аэродинамических характеристик летательного аппарата на основе восстановления угла скольжения, измеренных углов рыскания и крена, углов отклонения рулевых поверхностей, угловой скорости рыскания, угловой скорости крена, а также поперечного ускорения, при этом восстановление угла скольжения производят с использованием линейного непрерывного фильтра Калмана-Бьюси с учетом погрешностей измерения поперечного ускорения и угловых скоростей рыскания и крена, корректируют коэффициенты усиления контура управления боковым движением летательного аппарата, формируют адаптивный сигнал управления боковым движением летательного аппарата на основе скорректированных коэффициентов.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 161.
25.08.2017
№217.015.a302

Способ стабилизации движения ракеты при подводном старте и устройство для его осуществления

Изобретение относится к области ракетной техники, в частности к способам и устройствам стабилизации ракеты при подводном старте с движущегося носителя. Стабилизация движения ракеты при подводном старте сводится к обеспечению работы механизмов устройства стабилизации и последовательным командам...
Тип: Изобретение
Номер охранного документа: 0002607126
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.ae28

Способ теплового нагружения неметаллических конструкций

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на конструкцию летательного аппарата в наземных условиях и может быть использовано при стендовых испытаниях. Заявленный способ включает зонный нагрев с помощью радиационных нагревателей наружной поверхности...
Тип: Изобретение
Номер охранного документа: 0002612887
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.b070

Регулируемое сопло

Изобретение относится к ракетной технике и описывает устройство регулируемого сопла с регулирующим приводом и механизмом синхронизации. Регулируемое сверхзвуковое сопло содержит корпус, шарнирно закрепленные на нем дозвуковые и сверхзвуковые створки, образующие канал для истечения продуктов...
Тип: Изобретение
Номер охранного документа: 0002613358
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b124

Способ изготовления деталей из титановых сплавов

Изобретение относится к области металлургии и может быть использовано для оптимизации технологического процесса сверхпластической формовки ответственных силовых деталей. Изобретение позволяет улучшить прочностные характеристики деталей из титанового сплава ВТ8. Изготавливают силовые элементы из...
Тип: Изобретение
Номер охранного документа: 0002613003
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b138

Контрольный ротор для проверки балансировочного станка

Изобретение относится к области машиностроения и предназначено для проверки балансировочных станков и подтверждения их характеристик. Контрольный ротор состоит из вала и диска, на валу установлены радиально-упорные подшипники, зафиксированные от осевого перемещения разрезными стопорными...
Тип: Изобретение
Номер охранного документа: 0002613017
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b13f

Универсальный модуль фиксации ракет в пусковой установке

Изобретение относится к военной технике, в частности к устройствам удержания боеприпасов (ракет), и представляет собой универсальный модуль фиксации ракет в пусковой установке (УМФР). УМФР в пусковой установке (ПУ) состоит из металлического корпуса, выполненного из двух идентичных половин,...
Тип: Изобретение
Номер охранного документа: 0002613205
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b1e7

Передняя кромка летательного аппарата в условиях ее аэродинамического нагрева

Изобретение относится к тепловой защите главным образом сверх- и гиперзвуковых летательных аппаратов (ЛА). Передняя кромка ЛА выполнена в виде оболочки со сферическим затуплением, воспринимающим пиковые тепловые нагрузки, и боковыми поверхностями, воспринимающими пониженные тепловые нагрузки....
Тип: Изобретение
Номер охранного документа: 0002613190
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b208

Способ ориентации орбитального космического аппарата с программно-управляемыми батареями солнечными

Изобретение относится к управлению относительным движением космических аппаратов (КА), преимущественно с одноосно вращающимися панелями солнечных батарей (СБ). В процессе полета ориентированный по местной вертикали КА непрерывно вращается по курсу, а панели СБ синхронно и непрерывно...
Тип: Изобретение
Номер охранного документа: 0002613097
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b7a8

Способ изготовления деталей из титановых сплавов

Изобретение может быть использовано для изготовления методом сверхпластической деформации ответственных силовых деталей из титанового сплава ВТ6, в частности шпангоутов, люков, обтекателей. Предварительно проводят электролитическую модификацию сплава никелем. Нагревают сплав до температуры...
Тип: Изобретение
Номер охранного документа: 0002614919
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b7fa

Шаровая опора

Изобретение относится к области авиа- и ракетостроительного машиностроения и может быть использовано в создании узлов трения, где в качестве опор скольжения используются сферические шарнирные подшипники. Шаровая опора содержит корпус, выполненный из двух крышек, независимо соединенных между...
Тип: Изобретение
Номер охранного документа: 0002615024
Дата охранного документа: 03.04.2017
Показаны записи 1-1 из 1.
25.08.2017
№217.015.b7fc

Способ формирования сигнала стабилизации продольного углового движения беспилотного летательного аппарата

Изобретение относится к способу формирования сигнала стабилизации продольного углового движения беспилотного летательного аппарата. Для формирования сигнала производят идентификацию аэродинамических характеристик летательного аппарата на основе восстановления угла атаки определенным образом,...
Тип: Изобретение
Номер охранного документа: 0002615028
Дата охранного документа: 03.04.2017
+ добавить свой РИД