×
10.05.2018
218.016.447b

Результат интеллектуальной деятельности: Комплексный скважинный прибор

Вид РИД

Изобретение

Аннотация: Изобретение относится к геофизической технике и может быть использовано при проведении геофизических исследований и ремонтно-изоляционных работ в действующих скважинах. Техническим результатом является снижение нагрузки на рессоры пружинных центраторов комплексного скважинного прибора. Комплексный скважинный прибор содержит цилиндрический корпус, в котором установлены функциональный блок, аппаратура спектрального гамма-каротажа с источником высоковольтного питания и датчики температуры и давления с источниками вторичного питания, магнитоимпульсный дефектоскоп, выполненный в виде продольного и сканирующего зондов, подключенных выходами к функциональному блоку, при этом выходы аппаратуры спектрального гамма-каротажа и датчиков температуры и давления подключены к функциональному блоку, а на цилиндрическом корпусе также закреплены пружинные центраторы, установленные на концах корпуса, выполненные в виде одной или нескольких пар арочных упругих рессор, закрепленных концами на узлах, скользящих по корпусу, и стопорного устройства. При этом на вершинах арочных рессор пружинных центраторов закреплены опорные башмаки из самосмазывающегося материала. 5 з.п. ф-лы, 2 ил.

Изобретение относится к геофизической технике и может быть использовано при проведении геофизических исследований и ремонтно-изоляционных работ в действующих скважинах.

Известен комплексный скважинный прибор (КСП) для исследования технического состояния скважин, спускаемый в скважину на каротажном кабеле и состоящий из цилиндрического корпуса, в котором размещены различные геофизические датчики с электронными схемами /Патент РФ №61342, кл. E21B 47/00, 2007/.

Недостатком аналога является ограниченность его применения из-за невозможности диагностики технического состояния обсадных колонн, насосно-компрессорных труб (НКТ) и оценки состояния заколонного пространства скважин.

Известен КСП, содержащий составной цилиндрический корпус, в котором установлены функциональный блок, аппаратура гамма-каротажа с источником высоковольтного питания и датчики температуры и давления с источником вторичного питания, при этом выходы аппаратуры гамма-каротажа и датчиков температуры и давления подключены к функциональному блоку, а на цилиндрическом корпусе также закреплены пружинные центраторы, установленные на концах корпуса, выполненные в виде одной или нескольких пар арочных упругих рессор, закрепленных концами на узлах, скользящих по корпусу, и стопорного устройства /Патент РФ №2495241, кл. E21B 47/00, 2012/.

Недостатком этого аналога является ограниченность его применения из-за невозможности диагностики технического состояния обсадных колонн и НКТ.

Известен КСП, содержащий цилиндрический корпус, в котором установлены функциональный блок, аппаратура спектрального гамма-каротажа с источником высоковольтного питания и датчики температуры и давления (СГК) с источником вторичного питания, магнитоимпульсный дефектоскоп (МИД), выполненный в виде продольного и сканирующего зондов, подключенных выходами к функциональному блоку, при этом выходы аппаратуры спектрального гамма-каротажа и датчиков температуры и давления подключены к функциональному блоку, а на цилиндрическом корпусе также закреплены пружинные центраторы (ПЦ), установленные на концах корпуса, выполненные в виде одной или нескольких пар арочных упругих рессор, закрепленных концами на узлах, скользящих по корпусу, и стопорного устройства /С.А. Егурцов, Т.В. Скрынник, Ю.В. Иванов, А.П. Зубарев. Управление процессами эксплуатации скважин ПХГ на основе применения современных методов исследований. Газовая промышленность, №12, 2015, стр. 67-70/.

Данный КСП принят за прототип.

Из-за комплексирования различных приборов в прототипе длина КСП увеличивается до 10 м и больше. Это приводит к повышенной нагрузке на рессоры центраторов, установленных на концах цилиндрического корпуса скважинного прибора, и как следствие этого - к нестабильности работы ПЦ и всего прибора.

Кроме того, увеличение длины КСП приводит к быстрому изнашиванию рессор ПЦ, а значит выходу из строя всего скважинного прибора.

Техническим результатом, получаемым в результате внедрения КСП, является устранение недостатков прототипа, т.е. снижение нагрузки на рессоры ПЦ, приводящей к нестабильности его работы и быстрому изнашиванию.

Данный технический результат достигают за счет того, что в известном КСП, содержащем цилиндрический корпус, в котором установлены функциональный блок, аппаратура спектрального гамма-каротажа с источником высоковольтного питания и датчики температуры и давления с источниками вторичного питания, магнитоимпульсный дефектоскоп, выполненный в виде продольного и сканирующего зондов, подключенных выходами к функциональному блоку, при этом выходы аппаратуры спектрального гамма-каротажа и датчиков температуры и давления подключены к функциональному блоку, а на цилиндрическом корпусе также закреплены ПЦ, установленные на концах корпуса, выполненные в виде одной или нескольких пар арочных упругих рессор, закрепленных концами на узлах, скользящих по корпусу, и стопорного устройства, на вершинах арочных рессор ПЦ закреплены опорные башмаки из самосмазывающегося материала.

Опорные башмаки ПЦ выполнены из полимерного самосмазывающегося композита.

Опорные башмаки ПЦ из самосмазывающегося материала выполнены в виде насадок, концентрично закрепленных на упругих рессорах.

В ПЦ симметрично основному опорному башмаку на рессорах закреплены аналогичные дополнительные опорные башмаки.

В ПЦ скользящие по корпусу узлы выполнены в виде кареток.

Опорные башмаки в ПЦ закреплены на арочных рессорах с возможностью их замены.

Изобретение поясняется чертежами. На фиг. 1 представлена конструктивная схема КСП; на фиг. 2 - схема его ПЦ.

КСП содержит (фиг. 1) цилиндрический корпус 1, в котором установлены функциональный блок 2, аппаратура 3 спектрального гамма-каротажа с источником 4 высоковольтного питания (не показан) и датчики 4, 5, соответственно, температуры и давления с источниками 6 вторичного питания, магнитоимпульсный дефектоскоп, выполненный в виде продольного 7 и сканирующего 8 зондов, подключенных выходами к функциональному блоку 2, при этом выходы аппаратуры 3 спектрального гамма-каротажа и датчиков температуры 4 и давления 5 подключены к функциональному блоку 2, а на цилиндрическом корпусе 1 также закреплены пружинные центраторы 9, 10, установленные на концах корпуса 1 (фиг. 1, 2), выполненные в виде одной или нескольких пар арочных упругих рессор 11, закрепленных концами на узлах 12, скользящих по корпусу 1, и стопорного устройства 13. На вершинах арочных рессор пружинных центраторов 9, 10 закреплены опорные башмаки 14, 15 из самосмазывающегося материала. Опорные башмаки 14, 15 пружинных центраторов 9, 10 могут быть выполнены из полимерного самосмазывающегося композита. Опорные башмаки 14, 15 ПЦ 9, 10 из самосмазывающего материала могут быть выполнены в виде насадок, концентрично закрепленных на упругих рессорах 11.

В пружинных центраторах 9, 10 симметрично основному опорному башмаку 14, 15 на рессорах 11 могут быть закреплены аналогичные дополнительные опорные башмаки.

В пружинных центраторах 9, 10 скользящие по корпусу 1 узлы 12 могут быть выполнены в виде кареток.

Опорные башмаки в пружинных центраторах 9, 10 закреплены на арочных рессорах 11 с возможностью их замены.

В комплект ПЦ входят запасные опорные башмаки для замены истертых при работе башмаков 14, 15.

КСП работает следующим образом.

Прибор опускается в скважину на каротажном кабеле (не показаны). Включают питание зондов и датчиков КСП. С помощью функционального блока 2 прибора проводится обработка полученной с СГК и МИД информации о различного рода дефектах обсадной колонны и НКТ и состоянии заколонного пространства скважины, например состоянии ее цементного камня.

Текущее измерение давления и температуры в точке расположения прибора проводится с помощью датчиков давления 4 и температуры 5.

Комплексный прибор при спуске и подъеме центрируется в скважине с помощью пружинных центраторов: верхнего 14 и нижнего 15. Ввиду большой длины КСП пружинные рессоры 11 ПЦ будут испытывать повышенное давление со стороны стенок скважины и как следствие этого быстрое истирание в месте контакта арочной пружинной рессоры 11 со стенкой скважины.

Это приводит к быстрому выходу из строя пружинных центраторов и необходимости его замены.

Для повышения эксплуатационных возможностей ПЦ, а значит и всего КСП, центраторы снабжают самосмазывающимися сменными опорными башмаками 14, 15.

Самосмазывающийся материал препятствует быстрому износу башмаков 14, 15, повышая время безремонтной эксплуатации КСП.

Этим достигается поставленный в изобретении технический результат: снижение нагрузки на рессоры центраторов КСП, приводящей к нестабильности его работы и быстрому изнашиванию.


Комплексный скважинный прибор
Комплексный скважинный прибор
Источник поступления информации: Роспатент

Показаны записи 81-90 из 100.
17.02.2020
№220.018.0361

Способ водогазового воздействия на пласт и насосно-эжекторная система для его осуществления

Изобретение относится к нефтяной промышленности и может быть использовано для реализации водогазового воздействия при повышении нефтеотдачи пластов. Техническим результатом заключается в обеспечении регулирования газосодержания водогазовой смеси в пластовых условиях до значений, обеспечивающих...
Тип: Изобретение
Номер охранного документа: 0002714399
Дата охранного документа: 14.02.2020
25.03.2020
№220.018.0f92

Способ интенсификации восстановления почвенно-растительного покрова нарушенных склонов

Изобретение относится к области рекультивации нарушенных склонов и может быть использовано для восстановления почвенно-растительного покрова на эрозионно-опасных участках тундровых земель. Способ интенсификации восстановления почвенно-растительного покрова нарушенных склонов заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002717503
Дата охранного документа: 23.03.2020
26.03.2020
№220.018.1012

Георешетка

Изобретение относится к области строительства, а именно для защиты грунта от размыва поверхностными водотоками на откосах насыпей промышленных площадок и автодорог, склонах, береговых участках водных преград, трассах подземных трубопроводов. Георешетка выполнена в виде ячеистой структуры,...
Тип: Изобретение
Номер охранного документа: 0002717536
Дата охранного документа: 24.03.2020
27.03.2020
№220.018.10cb

Способ рекультивации на склонах в условиях крайнего севера

Изобретение относится к области рекультивации нарушенных земель и может применяться для укрепления, защиты от эрозионных процессов и восстановления склоновых участков ландшафтов. Способ рекультивации на склонах в условиях Крайнего Севера заключается в том, что осуществляют укладку на...
Тип: Изобретение
Номер охранного документа: 0002717653
Дата охранного документа: 24.03.2020
28.03.2020
№220.018.110c

Реагентный состав для растворения карбонатного кольматанта

Изобретение относится к нефтегазовой промышленности. Технический результат - повышение эффективности растворения карбонатного кольматанта при одновременном сохранении от разрушения глинистого цемента породы терригенного пласта-коллектора, повышение надежности и продуктивности скважин....
Тип: Изобретение
Номер охранного документа: 0002717850
Дата охранного документа: 26.03.2020
28.03.2020
№220.018.1147

Утяжеленный тампонажный раствор

Изобретение относится к области цементирования обсадных колонн в нефтяных, газовых и газоконденсатных скважинах, вскрывающих пласты с аномально высокими давлениями и повышенными температурами. Утяжеленный тампонажный раствор содержит 37,43-39,02 мас. % портландцемента тампонажного, 24,17-27,29...
Тип: Изобретение
Номер охранного документа: 0002717854
Дата охранного документа: 26.03.2020
28.03.2020
№220.018.1166

Реагентный состав для растворения сульфатного кольматанта

Изобретение относится к нефтегазовой промышленности. Технический результат - повышение эффективности растворения сульфатного кольматанта, повышение надежности и продуктивности скважин. Реагентный состав для растворения сульфатного кольматанта включает, мас.%: комплексообразующее вещество...
Тип: Изобретение
Номер охранного документа: 0002717851
Дата охранного документа: 26.03.2020
03.07.2020
№220.018.2dba

Способ защиты подземных вод от загрязнений из поверхностных хранилищ жидких отходов, содержащих токсичные или радиоактивные вещества

Изобретение может быть использовано при строительстве, эксплуатации и ликвидации поверхностных хранилищ жидких отходов, содержащих токсичные или радиоактивные вещества, а также при очистке загрязненных вод поверхностных водоемов. Способ защиты подземных вод от загрязнений из поверхностных...
Тип: Изобретение
Номер охранного документа: 0002725250
Дата охранного документа: 30.06.2020
03.07.2020
№220.018.2def

Ингибированная грунтовка

Изобретение относится к ингибированным грунтовкам для лакокрасочных материалов. Описана ингибированная грунтовка, содержащая ингибирующую композицию для лакокрасочных материалов, включающую бензойную кислоту и октадециламин, взятые в эквимолекулярном соотношении, и грунтовку ПФ-0294 при...
Тип: Изобретение
Номер охранного документа: 0002725249
Дата охранного документа: 30.06.2020
11.07.2020
№220.018.3177

Способ заканчивания строительства эксплуатационной скважины с горизонтальным окончанием ствола

Изобретение относится к нефтяной и газовой промышленности, а именно к разработке нефтяных, газовых и газоконденсатных месторождений. Способ включает спуск и установку в горизонтальное окончание ствола нецементируемого хвостовика-фильтра с разобщающими пакерами, портами многостадийного...
Тип: Изобретение
Номер охранного документа: 0002726096
Дата охранного документа: 09.07.2020
Показаны записи 31-36 из 36.
22.06.2019
№219.017.8e42

Способ оценки фазового состояния углеводородных флюидов в поровом пространстве коллекторов нефтегазоконденсатных месторождений комплексом нейронных методов

Использование: для геофизических исследований нейтронными методами обсаженных нефтегазоконденсатных скважин (НГКС), а именно для оценки фазового состояния легких углеводородов в поровом пространстве коллекторов. Сущность изобретения заключается в том, что применяют нейтрон-нейтронный каротаж по...
Тип: Изобретение
Номер охранного документа: 0002692088
Дата охранного документа: 21.06.2019
03.07.2019
№219.017.a3e8

Способ определения минерализации пластовой жидкости в обсаженных нефтегазовых скважинах на основе стационарных нейтронных методов

Изобретение относится к нефтегазодобывающей промышленности, к методам нейтронного каротажа для определения минерализации скважинной жидкости по химическим элементам с аномальным поглощением нейтронов, с целью определения геологических параметров разрезов обсаженных нефтегазовых скважин....
Тип: Изобретение
Номер охранного документа: 0002693102
Дата охранного документа: 01.07.2019
17.10.2019
№219.017.d724

Способ контроля герметичности муфтовых соединений эксплуатационной колонны и выявления за ней интервалов скоплений газа в действующих газовых скважинах стационарными нейтронными методами

Изобретение относится к газодобывающей отрасли и может быть использовано для контроля герметичности муфтовых соединений эксплуатационных колонн (ЭК) в действующих газовых скважинах, а также для выявления интервалов скоплений газа за ЭК с использованием многозондового нейтронного каротажа....
Тип: Изобретение
Номер охранного документа: 0002703051
Дата охранного документа: 15.10.2019
27.12.2019
№219.017.f2e2

Метод нейтронной цементометрии для диагностики заполнения облегченным цементным камнем заколонного пространства нефтегазовых скважин (варианты)

Изобретение относится к нефтегазодобывающей промышленности, в частности к средствам контроля состояния цементного камня за обсадной колонной нефтегазовых скважин и качества цементирования. Технический результат заключается в повышении достоверности результатов исследований скважин нейтронными...
Тип: Изобретение
Номер охранного документа: 0002710225
Дата охранного документа: 25.12.2019
01.04.2020
№220.018.11e8

Способ и устройство контроля технического состояния внутренних защитно-изоляционных покрытий действующих промысловых трубопроводов

Использование: для контроля технического состояния внутреннего полимерного покрытия трубопроводов в процессе эксплуатации. Сущность изобретения заключается в том, что в способе контроля технического состояния внутренних защитно-изоляционных покрытий осуществляют: формирование участка...
Тип: Изобретение
Номер охранного документа: 0002718136
Дата охранного документа: 30.03.2020
20.04.2023
№223.018.4b5b

Способ оценки газонасыщенности галитизированных коллекторов газовых скважин в процессе проведения нейтрон-нейтронного каротажа

Изобретение относится к области ядерно-физических методов исследований газовых скважин, к способам оценки газонасыщенности коллекторов, поровое пространство которых, наряду с газом, содержит галит (соль). Заявлен способ оценки газонасыщенности галитизированных коллекторов путем регистрации и...
Тип: Изобретение
Номер охранного документа: 0002766063
Дата охранного документа: 07.02.2022
+ добавить свой РИД