×
10.05.2018
218.016.41b8

ТЕРМОЭЛЕКТРИЧЕСКИЙ ТРАНСФОРМАТОР ПОСТОЯННОГО НАПРЯЖЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002649068
Дата охранного документа
29.03.2018
Краткое описание РИД Свернуть Развернуть
Аннотация: Термоэлектрический трансформатор предназначен для преобразования постоянного напряжения одного значения в другое с гальванической развязкой без промежуточного преобразования первичного напряжения в переменное. Данный термоэлектрический трансформатор постоянного напряжения содержит радиатор и три термоэлектрических модуля, причем электрические выводы первого модуля подключены к первичному источнику постоянного напряжения, а второго – выходные. Поверхность первой теплообменной пластины первого термоэлектрического модуля термически соединена с поверхностью первой теплообменной пластины второго теплоэлектрического модуля. При этом поверхности вторых теплообменных пластин первого и второго теплоэлектрических модулей соединены через теплопровод, на котором образована теплообменная поверхность, соединенная с поверхностью первой теплообменной пластины дополнительно введенного третьего термоэлектрического модуля. При этом поверхность второй теплообменной пластины этого модуля соединена с радиатором, а его электрические выводы являются дополнительными выходными выводами. Технический результат заключается в повышения КПД трансформатора. 2 з.п. ф-лы, 2 ил.
Реферат Свернуть Развернуть

Настоящее изобретение относится к области электротехники, а точнее к устройствам преобразования постоянного напряжение в постоянное и предназначено для применения в тех случаях, когда для питания электронного узла требуется гальванически развязанное напряжение, отличное по уровню от первичного источника и с полным отсутствием каких-либо помех, неизбежно возникающих в традиционных преобразователях. Например, для питания особо высокочувствительных инфракрасных детекторов, когда качество напряжение превалирует над коэффициентом полезного действия (КПД) преобразователя.

В настоящее время построение таких преобразователей возможно на основе термоэлектрических модулей (модулей Пельтье), представляющих собой законченное устройство в виде набора полупроводниковых термопар, определенным образом электрически соединенных между собой, причем термически холодные спаи термопар связаны с одной теплообменной пластиной, а горячие соответственно с другой пластиной, расположенной напротив первой. Пластины изготавливаются, как правило, из керамики с очень высокой теплопроводностью, обеспечивающей эффективный теплообмен, и высоким удельным сопротивлением, позволяющим создать гальваническую развязку требуемого качества. Современная промышленность производит такие модули с различным числом термопар, рассчитанных на широкий диапазон как токов, так и напряжений.

Одно из устройств, способное решить поставленную задачу, описано в [1]. В нем напряжение, которое может быть и постоянным, подается на омический нагреватель, повышающий температуру термически связанной с ним теплообменной пластины термоэлектрического модуля. Вторая теплообменная пластина модуля охлаждается. Благодаря разности температур холодных и горячих спаев возникает эффект Зеебека, и на выходе термоэлектрического модуля появляется напряжение, значение которого, в соответствии с требуемым коэффициентом трансформации, может быть подобрано за счет числа термопар в модуле.

В [2] описан более эффективный термоэлектрический трансформатор постоянного напряжения из двух термоэлектрических модулей, в котором больший перепад температур на теплообменных пластинах выходного термоэлектрического модуля, использующего также эффект Зеебека, создается за счет второго термоэлектрического модуля, одна из теплообменных пластин которого термически соединена с одной из теплообменных пластин первого. Вторые теплообменные пластины обоих модулей соединены с радиаторами. Первичное постоянное напряжение подается на второй термоэлектрический модуль, и разность температур его теплообменных пластин, появляющаяся из-за эффекта Пельтье, передается на выходной термоэлектрический модуль.

Однако рассматриваемый термоэлектрический трансформатор постоянного напряжения, принятый за прототип, также обладает невысоким КПД. Часть энергии, потребляемой от источника первичного постоянного напряжения, благодаря эффектам Пельтье и Зеебека превращается в полезную энергию на выходе второго термоэлектрического модуля, но большая ее часть в виде джоулевых потерь на сопротивлениях термопар бесполезно рассеивается в окружающем пространстве.

Задачей, на решение которой направлено настоящее изобретение, является повышение КПД термоэлектрического трансформатора постоянного напряжения.

Поставленная задача решается за счет того, что в термоэлектрическом трансформаторе постоянного напряжения, содержащем радиатор и два термоэлектрических модуля, причем электрические выводы первого модуля подключены к первичному источнику постоянного напряжения, а выводы второго - выходные, поверхность первой теплообменной пластины первого термоэлектрического модуля термически соединена с поверхностью первой теплообменной пластины второго термоэлектрического модуля, сделано следующее. Поверхности вторых теплообменных пластин первого и второго теплоэлектрических модулей термически соединены через теплопровод, на котором образована теплообменная поверхность, соединенная с поверхностью первой теплообменной пластины дополнительно введенного третьего термоэлектрического модуля, при этом поверхность второй теплообменной пластины этого модуля термически соединена с радиатором. Электрические выводы третьего дополнительно введенного термоэлектрического модуля являются дополнительными выходными. Кроме того, поверхность первой теплообменной пластины первого термоэлектрического модуля термически может быть соединена с поверхностью первой теплообменной пластины второго термоэлектрического модуля с помощью теплопровода. На поверхность блока с двумя термоэлектрическими модулями может быть нанесена термоизоляция.

КПД предлагаемого термоэлектрического трансформатора выше чем у прототипа, потому что помимо полезной энергии, получаемой преобразованиями на эффектах Пельтье-Зеебека с помощью двух первых модулей, вырабатывается еще и дополнительная полезная энергия введенным третьим термоэлектрическим модулем, использующим эффект Зеебека, путем преобразования части тепловой энергии, обусловленной потерями Джоуля в сопротивлениях модулей, ранее бесполезно рассеиваемой в пространстве. Выходные выводы первого и дополнительного модулей могут быть подключены к раздельным нагрузкам или к общей при согласно последовательном их соединении, либо параллельно.

Сущность изобретения поясняется чертежами.

На фиг. 1 изображен термоэлектрический трансформатор постоянного напряжения в разрезе.

На фиг. 2 показан вариант термоэлектрического трансформатора постоянного напряжения в разрезе с упрощенной конструкцией теплопроводов.

Предлагаемый термоэлектрический трансформатор постоянного напряжения устроен следующим образом (см. фиг. 1).

Первый термоэлектрический модуль 1 поверхностью своей первой теплообменной пластины 2 термически соединен с поверхностью первой теплообменной пластиной 3 второго термоэлектрического модуля 4. Поверхность второй теплообменной пластины 5 первого термоэлектрического модуля 1 с помощью теплопровода 6 термически соединена с поверхностью второй теплообменной пластины 7 термоэлектрического модуля 4. Теплопровод 6 может быть как цельным, так и составным. Электрические выводы 8 и 9 первого термоэлектрического модуля 1 подключены к источнику первичного напряжения, не показанного на фиг. 1 для упрощения. Электрические выводы 10 и 11 термоэлектрического модуля 4 являются выходными, с них напряжение поступает на нагрузку, также не показанную на фиг. 1.

На теплопроводе 6 образована теплообменная поверхность, которая термически соединена с поверхностью первой теплообменной пластины 12 дополнительно введенного термоэлектрического модуля 13. Поверхность второй теплообменной пластины 14 этого модуля термически соединена с радиатором 15. Радиатор 15 охлаждается либо воздухом, либо имеет жидкостное охлаждение. Электрические выводы 16 и 17 термоэлектрического модуля 13 являются дополнительными выходными.

Наружная поверхность термоэлектрического трансформатора постоянного напряжения покрывается слоем термоизоляции 18. Термоизоляцией целесообразно заполнить и пустоты в конструкции трансформатора.

Вариант термоэлектрического трансформатора постоянного напряжения, показанный на фиг. 2, по аналогии содержит все узлы устройства по фиг. 1, но использование в виде пластины теплопровода 19, термически соединяющего поверхности теплообменных пластин 2 и 3 термоэлектрических модулей 1 и 4 соответственно, позволяет упростить и конструкцию теплопровода 6, который также может быть выполнен в виде пластины.

В термоэлектрических трансформаторах постоянного напряжения и по фиг. 1, и по фиг. 2 к выходным выводам 10 и 11 термоэлектрического модуля 4 и к дополнительным выходным выводам 16 и 17 термоэлектрического модуля 13 может быть подключена раздельная нагрузка или общая, если выходные выводы соединить согласно последовательно либо параллельно.

В предложенном устройстве, после подачи первичного (преобразуемого) постоянного напряжения на входные выводы 8 и 9, по первому термоэлектрическому модулю 1 начинает протекать ток, и благодаря эффекту Пельтье на его теплообменных пластинах 2 и 5 появляется разность температур, которая передается на теплообменные пластины 3 и 7 термоэлектрического модуля 4. В соответствии с эффектом Зеебека на выводах 10 и 11 этого модуля появляется напряжение, которое поступает на нагрузку. Токи источника питания, протекающего по термоэлектрическому модулю 1, и нагрузки, протекающие по термоэлектрическому модулю 4, приводят к джоулевым потерям в сопротивлениях термопар модулей, в связи с чем происходит повышение их температур, а следовательно, и температуры теплопровода 6, термически связывающего теплообменные пластины 5 и 7. Появляющаяся разность температур между нагревающимся теплопроводом 6 и радиатором 15 передается на теплообменные пластины 5 и 14 дополнительно введенного термоэлектрического модуля 13, и на его выходных выводах 16 и 17 благодаря эффекту Зеебека возникает напряжение, которое поступает на нагрузку. После достижения устройством теплового баланса наступает рабочий режим термоэлектрического трансформатора постоянного напряжения. Таким образом, часть неизбежных потерь тепловой энергии как в термоэлектрическом модуле 1, так и в термоэлектрическом модуле 4, рассеиваемой в окружающей среде радиатором 15, превращается в полезную энергию.

Требуемые значения напряжений на выходных выводах 10, 11 и 16, 17 обеспечиваются выбором термоэлектрических модулей 4 и 13 с определенным числом термопар. При невозможности обеспечить требуемые параметры выходного напряжения выбором одного модуля может быть использовано несколько модулей, причем целесообразно по температуре их включить параллельно, а по напряжению - согласно последовательно либо параллельно. Работа термоэлектрических модулей 4 и 13 на общую нагрузку требует согласования их выходных параметров, так что в общем случае эти модули могут оказаться с разным числом термопар и даже разных размеров.

В зависимости от полярности поданного первичного напряжения на выводы 8 и 9 первого термоэлектрического модуля 1 температура теплообменных пластин 2 и 3 термоэлектрических модулей 1 и 4 может быть как выше, так и ниже теплообменных пластин 5 и 7, но принцип работы при этом сохраняется. На фиг. 1 и 2 знаками "+" и "-" показан пример рационального расположения теплообменных пластин соответственно с горячими и холодными спаями термопар широко распространенных термоэлектрических модулей типа ТЕС1-12706 (127 термопар). Эксперименты показали, что трансформатор, построенный по фиг. 1 на упомянутых модулях, при преобразовании входной мощности 21 Вт имел КПД, равный 2,27%, в то время как у прототипа он был 1,56%, а с омическим нагревателем - 1,23%. Нагрузка использовалась раздельная, согласованная. Нужно отметить, что использованные модули не являются генераторными, и максимальная температура была ограничена 100°С. Использование генераторных термоэлектрических модулей позволит поднять температуру преобразования и в соответствии с циклом Карно существенно повысить КПД.

Источники информации

1. Патент RU 2542616 от 15.08.2013, H01L 35/00, ВЫПРЯМИТЕЛЬ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ.

2. Патент US 3316474 (A) от 25.04.1967, H01L 35/32, THERMOELECTRIC TRANSFORMER.


ТЕРМОЭЛЕКТРИЧЕСКИЙ ТРАНСФОРМАТОР ПОСТОЯННОГО НАПРЯЖЕНИЯ
ТЕРМОЭЛЕКТРИЧЕСКИЙ ТРАНСФОРМАТОР ПОСТОЯННОГО НАПРЯЖЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-2 из 2.
10.04.2015
№216.013.3c93

Экранированный датчик тока

Изобретение относится к метрологии, в частности к датчикам тока. Экранированный датчик тока содержит магнитопровод чувствительного элемента с обмотками, помещенный в магнитный экран, представляющий собой контейнер из сочлененных между собой стенки, основания и крышки с отверстиями, внутренней...
Тип: Изобретение
Номер охранного документа: 0002546995
Дата охранного документа: 10.04.2015
26.08.2017
№217.015.eaaf

Магнитный экран и способ его изготовления

Группа изобретений относится к области радиоэлектроники и электротехники и может использоваться как для уменьшения излучения какого-либо устройства путем его экранирования, так и для уменьшения помех от внешнего магнитного поля на датчики. Магнитный экран состоит из скрепленных между собой...
Тип: Изобретение
Номер охранного документа: 0002627928
Дата охранного документа: 14.08.2017
Показаны записи 1-1 из 1.
26.08.2017
№217.015.eaaf

Магнитный экран и способ его изготовления

Группа изобретений относится к области радиоэлектроники и электротехники и может использоваться как для уменьшения излучения какого-либо устройства путем его экранирования, так и для уменьшения помех от внешнего магнитного поля на датчики. Магнитный экран состоит из скрепленных между собой...
Тип: Изобретение
Номер охранного документа: 0002627928
Дата охранного документа: 14.08.2017
+ добавить свой РИД