×
10.05.2018
218.016.4120

Результат интеллектуальной деятельности: Сенсибилизированный красителем металлооксидный солнечный элемент

Вид РИД

Изобретение

Аннотация: Изобретение относится к области солнечной фотоэнергетики, в частности к созданию устройств для прямого преобразования солнечной энергии в электрическую с использованием сенсибилизированных красителем металлооксидных солнечных элементов (МО СЭ). Наиболее успешно настоящее изобретение может быть применено в солнечных энергоустановках для работы при высокой и низкой освещенности, в том числе в условиях рассеянного света. В конструкции сенсибилизированного красителем МО СЭ использован фотоэлектрод в виде фотопреобразующего мезопористого наноструктурированного слоя из наночастиц металлооксида, сенсибилизированных адсорбированным на них красителем, и светорассеивающий слой, выполненный из микрочастиц металлооксида. При этом фотопреобразующий слой выполнен из наночастиц металлооксида на основе тройной системы формулы TiMeO, где Me обозначает Nb или редкоземельный металл, выбранный из группы: Sm, Yb, Eu, а величина "x" варьируется в пределах от 0,01 до 0,1. Изобретение обеспечивает возможность более чем на 20% увеличить КПД преобразования солнечной энергии в электрическую в сенсибилизированных солнечных элементах типа МО СЭ. 3 з.п. ф-лы, 2 табл., 2 пр., 3 ил.

Изобретение относится к области солнечной фотоэнергетики, в частности к созданию устройств для прямого преобразования солнечной энергии в электрическую с использованием сенсибилизированных красителем металлооксидных солнечных элементов. Наиболее успешно настоящее изобретение может быть применено в солнечных энергоустановках для работы при высокой и низкой освещенности, в том числе в условиях рассеянного света.

Мировое производство солнечных элементов и панелей в последнее десятилетие показывает ежегодный прирост около 40%, а суммарная мощность произведенных в 2015 году солнечных панелей превысила величину в 80 ГВт. Развитие солнечной фотоэнергетики требует постоянного совершенствования параметров солнечных элементов (СЭ), главным из которых является эффективность преобразования солнечной энергии в электрическую (КПД).

Экономическим параметром, определяющим конкурентоспособность конкретного типа СЭ или солнечной панели, является стоимость ватта его номинальной мощности, которая для традиционных коммерческих СЭ составляет на сегодняшний день менее одного доллара США за один ватт. К традиционным и наиболее распространенные типам производимых в мире СЭ относятся фотопреобразователи на основе кристаллического, поликристаллического и аморфного кремния, а также тонкопленочные элементы на основе CIGS (copper indium gallium deselenide). Данные типы СЭ хорошо зарекомендовали себя при эксплуатации в стандартных условиях при высокой солнечной освещенности (1000 Вт/м2). Однако, при низкой интенсивности солнечного освещения (менее 100 Вт/м2) и при работе в условиях рассеянной (диффузной) освещенности КПД в СЭ данного типа снижается по мере уменьшения интенсивности освещения. В этой связи особый интерес представляют новые типы СЭ 3-го поколения на основе сенсибилизированных красителем мезопористых наноструктурированных слоев металлооксидов или металлооксидные солнечные элементы (МО СЭ), разработанные под руководством Михаэля Гретцеля (В. O'Regan and М. Gratzel, Nature, 1991, 353). Англоязычные аналоги аббревиатуры МО СЭ обозначаются как DSC или DSSC (nanocrystalline dye-sensitized solar cell). МО СЭ хорошо адаптированы к работе в условиях низкой и диффузной освещенности, а КПД преобразования в них практически не изменяется по сравнению со значениями, наблюдаемыми в условиях высокой интенсивности освещения. Другим важным преимуществом МО СЭ является простота изготовления и, как следствие, низкая стоимость ватта номинальной мощности, которая в случае массового производства СЭ данного типа оценивается в 0,1-0,2 доллара США за один ватт. К настоящему времени КПД лабораторных образцов МО СЭ составляет величину 10-12%, которая ниже КПД традиционных СЭ на основе кремния и CIGS. В связи с этим научный и инженерный поиск направлен сейчас на оптимизацию конструкции МО СЭ, использование новых перспективных материалов для фотоэлектродов, разработку новых типов сенсибилизаторов и выявление других возможностей увеличения эффективности преобразования солнечной энергии в электрическую в МО СЭ.

Известен сенсибилизированный красителем МО СЭ для выработки электричества в условиях прямого солнечного освещения, в котором фотоэлектрод выполнен в виде фотопреобразующего мезопористого наноструктурированного слоя из наночастиц диоксида титана или другого простого металлооксида, сенсибилизированных молекулами красителя (заявка US 2005/0067009, опубл. 31.03.2005). Для увеличения эффективности МО СЭ авторы используют просветляющий буферный слой, который уменьшает потери, связанные с эффектом отражения светового потока от поверхности солнечного элемента. Главным недостатком этого известного МО СЭ является использование для конструирования фотоэлектродов простых оксидов (бинарных систем металл-кислород), в результате чего даже с учетом использования дополнительного буферного слоя, эффективность преобразования (КПД) не превышает величину в 8%.

Известен сенсибилизированный красителем МО СЭ с мезопористым наноструктурированным фотоэлектродом на основе диоксида титана, в котором для получения повышенной эффективности преобразования света выбрано наиболее оптимальное соотношение поперечных размеров наночастиц диоксида титана (an aspect ratio of the titanium dioxide nanoparticles), которые использованы для формирования фотоэлектрода (EP 2613330, опубл. 10.07.2013). Главным недостатком этого известного сенсибилизированного красителем МО СЭ является низкая эффективность преобразования света, равная 6,4%, из-за недостатков использования в конструкции фотоэлектрода бинарной системы в виде диоксида титана.

Наиболее близким к предлагаемому сенсибилизированному красителем МО СЭ является сенсибилизированный красителем металлооксидный солнечный элемент, описанный в патенте US 2011/0061722, опубл. 17.03.2011 (прототип). СЭ-прототип содержит два прозрачных электрода (первый и второй), размещенных на двух прозрачных подложках. Свет падает на первую прозрачную подложку. Второй прозрачный электрод (на второй прозрачной подложке) обращен в сторону первого электрода. Между электродами располагается фотоэлектрод, включающий фотопреобразующий мезопористый наноструктурированный слой из наночастиц диоксида титана, сенсибилизированных адсорбированным на них красителем, сформированный на поверхности первого электрода, и один или два светорассеивающих слоя, выполненных из микрочастиц диоксида титана (или другого металлооксида) размером от 100 до 1000 нм. Пространство между первым и вторым электродами заполнено электролитом. Светорассеивающие мезопористые слои введены в конструкцию СЭ-прототипа для увеличения эффективности его работы.

Главным недостатком СЭ-прототипа является низкая эффективность преобразования света, которая незначительно увеличивается при введении в конструкцию светорассеивающего слоя, но в результате не превышает величины в 6%. Низкая эффективность обусловлена использованием в качестве материала для фотопреобразующего слоя наночастиц простого оксида (диоксида титана).

Задачей предлагаемого изобретения является разработка сенсибилизированного красителем металлооксидного солнечного элемента (МО СЭ) с повышенной, по сравнению с имеющимися на сегодняшний день аналогами, эффективностью преобразования солнечной энергии в электрическую.

Решение поставленной задачи достигается предлагаемым сенсибилизированным красителем металлооксидным солнечным элементом (МО СЭ), включающим два электрода, первый и второй, обращенных друг к другу и размещенных на двух подложках, фотоэлектрод в виде фотопреобразующего мезопористого наноструктурированного слоя из наночастиц металлооксида, сенсибилизированных адсорбированными на них молекулами красителя, сформированный на поверхности первого прозрачного электрода, светорассеивающий слой, выполненный из микрочастиц металлооксида, и электролит в пространстве между электродами, в котором фотопреобразующий слой выполнен в виде металлооксида из наночастиц тройной системы формулы: Ti(1-x)MexO2, где

Me обозначает Nb или редкоземельный металл, выбранный из группы: Sm, Yb, Eu, величина "x" варьируется в пределах от 0,01 до 0,1.

Светорассеивающий слой сформирован на поверхности фотоэлектрода.

Светорассеивающий слой может быть выполнен из микрочастиц диоксида титана со средним размером 400 нм.

Второй электрод и/или вторая подложка в МО СЭ могут быть непрозрачными.

Пространство между первым и вторым электродами заполняется электролитом.

Предлагаемое изобретение относится к новым типам высокоэффективных сенсибилизированных красителями МО СЭ. Повышение эффективности преобразования света в заявляемом МО СЭ достигается за счет использования для формирования фотоэлектрода мезопористого наноструктурированного металлооксидного слоя из наночастиц тройного соединения, что позволяет более чем на 20% увеличить КПД преобразования солнечной энергии в электрическую.

На фиг. 1 представлена схема предлагаемого сенсибилизированного красителем МО СЭ.

В предлагаемом МО СЭ 1 в качестве первой подложки, на которую падает световой поток, использована прозрачная стеклянная пластина 2, на которую нанесен первый прозрачный электрод 3, представляющий собой проводящий слой оксида олова, допированного фтором (FTO: fluoride tin oxide) или индием (ITO: indium tin oxide). На поверхности первого электрода 3 сформирован фотоэлектрод 4 в виде мезопористого наноструктурированного оксидного слоя из наночастиц тройного соединения формулы Ti(1-x)MexO2. На поверхности наночастиц фотоэлектрода 4 абсорбированы молекулы сенсибилизирующего красителя. Непосредственно на поверхности фотоэлектрода 4 сформирован светорассеивающий слой 5 в виде мезопористого слоя из микрочастиц диоксида титана. Поверхность светорассеивающего мезопористого слоя 5 обращена ко второму электроду 3а, аналогичному электроду 3 и сформированному на второй подложке 2а, на который нанесен тонкий прозрачный слой платины 6. Второй электрод 3а и вторая подложка 2а могут быть как прозрачными, так и непрозрачными. Пространство между первым 3 и вторым 3а электродами заполняется электролитом.

Принципиальным отличием предлагаемого МО СЭ от известного (прототипа) является использование в качестве фотоэлектрода мезопористого наноструктурированного слоя металлооксида, состоящего из наночастиц тройного соединения, в результате чего эффективность преобразования солнечной энергии в электрическую в предложенном МО СЭ значительно возрастает по сравнению с другими модификациями МО СЭ, в которых фотоэлектроды выполнены из наночастиц бинарной системы простого металлооксида.

Приводим пример осуществления изобретения и полученные данные при измерении фотоэлектрических параметров (включая КПД) серии образцов МО СЭ, в которых в качестве материала для фотоэлектродов была использована тройная система Ti(1-x)NbxO2, а величина "x" варьировалась в образцах в пределах от 0 до 0,05.

Пример 1

Была изготовлена серия сенсибилизированных красителем металлооксидных солнечных элементов (МО СЭ), в каждом из которых фотоэлектрод был выполнен из наночастиц тройной системы Ti(1-x)NbxO2 с варьируемой величиной "x". Фотоэлектроды площадью около 0,5 см2 представляли собой фотопреобразующие мезопористые наноструктурированные слои металлооксида толщиной около 10 мкм, состоящие из наночастиц тройного соединения на основе титана, ниобия и кислорода со средним размером частиц 20 нм, и были сформированы на поверхности прозрачных проводящих электродов, расположенных на прозрачных стеклянных подложках. Величина "x", которая отражает соотношение содержания атомов Ti и Nb в тройной системе, в представленном примере варьировалась от образца к образцу в пределах от 0 до 0,05 с шагом в 0,005. В каждом образце на поверхности фотоэлектрода был сформирован мезопористый светорассеивающий слой толщиной около 3 мкм, состоящий из микрочастиц диоксида титана средним размером около 400 нм.

Фотоэлектрические характеристики и КПД изготовленных МО СЭ были измерены при освещении солнечных элементов имитатором солнечного излучения Abet 10500 (Abet Technologies, США) световой мощностью Pin=100 мВт/см2. Измерения осуществлялись с использованием универсального анализатора Keithley SCS-4200 (Keithley, США), который позволял записывать вольт-амперные характеристики освещаемого имитатором солнечного излучения МО СЭ и автоматически измерял основные фотоэлектрические параметры, включая значение тока короткого замыкания (ISC), напряжение холостого хода (VOC) и фактор заполнения (FF). Расчет эффективности (КПД) МО СЭ проводился с использованием измеренных параметров вольт-амперной характеристики с учетом освещаемой площади образца, равной S=0,5 см2, и мощности освещения образца имитатором солнечного излучения, которая составляла значение Pin=100 мВт/см2.

Эффективность преобразования (КПД) солнечного элемента (η) рассчитывалась по известной в фотовольтаике формуле (1) как отношение максимальной вырабатываемой солнечным элементом мощности (Pmax) к величине падающей нормально к его поверхности мощности солнечного излучения (Pin), что вычислялось как произведение величины тока короткого замыкания (ISC), выраженного в миллиамперах на единицу площади образца в см2 (мА/см2), напряжения холостого хода (VOC) в вольтах (В) и безразмерного фактора заполнения (FF), деленное на мощность падающего солнечного излучения (Pin), выраженную в милливаттах на единицу площади в см2 (мВт/см2), и площадь образца S, выраженную в см2. Для вычисления значения КПД в процентах полученный результат умножался на 100 (%):

В таблице представлены данные измерений основных параметров исследованных образцов МО СЭ с фотоэлектродами, изготовленными из наночастиц металлооксида тройной системы на основе титана и ниобия Ti(1-x)NbxO2 с варьируемой величиной "x" и вычисленные по формуле (1) значения КПД солнечных элементов.

Как видно из таблицы, эффективности преобразования (η) в исследованных образцах МО СЭ с фотоэлектродами, выполненными на основе тройной системы, существенно выше, чем в контрольном образце на основе бинарной системы в виде диоксида титана (образец №1). При этом было показано, что при x=0,025 достигается максимальное значение эффективности в 9,7%, что на 20% превышает эффективность контрольного образца МО СЭ с фотоэлектродом, выполненным на основе бинарной системы диоксида титана. В качестве иллюстрации на фиг. 2 представлены сравнительные виды графиков вольт-амперных характеристик образцов №1 и №6 с фотоэлектродами, выполненными, соответственно, на основе бинарной системы TiO2 (образец №1 с КПД=8,1%) и тройной системы Ti0,975Nb0,025O2 (образец №6 с КПД=9,7%).

Другим примером осуществления изобретения являются данные, полученные при измерении фотоэлектрических параметров (включая КПД) серии образцов МО СЭ, в которых в качестве материала для фотоэлектродов была использована тройная система, включающая редкоземельный элемент самарий - Ti(1-x)SmxO2, а величина "x" варьировалась в образцах в пределах от 0 до 0,03.

Пример 2

Была изготовлена серия сенсибилизированных красителем металлооксидных солнечных элементов (МО СЭ), фотоэлектроды которых были выполнены из металлооксидных наночастиц тройной системы, включающей редкоземельный элемент самарий (Sm) - Ti(1-x)SmxO2. Величина "x", которая отражает соотношение содержания атомов Ti и Sm в тройной системе, в представленном примере варьировалась от образца к образцу в пределах от 0 до 0,03 с шагом в 0,005. В каждом образце на поверхности фотоэлектрода был сформирован мезопористый светорассеивающий слой толщиной около 3 мкм, состоящий из микрочастиц диоксида титана средним размером около 400 нм.

Фотоэлектрические характеристики и КПД изготовленных МО СЭ были измерены при освещении солнечных элементов имитатором солнечного излучения световой мощностью Pin=100 мВт/см2. В таблице 2 представлены данные измерений основных параметров исследованных образцов МО СЭ с фотоэлектродами Ti(1-x)SmxO2 и вычисленные по формуле (1) значения КПД солнечных элементов.

Как видно из таблицы 2, эффективности преобразования (η) во всех исследованных образцах МО СЭ с фотоэлектродами, выполненными на основе указанной тройной системы, превышают соответствующее значение для контрольного образца на основе бинарного соединения TiO2 (образец №1). При этом было показано, что при х=0,025 в МО СЭ на основе тройной системы Ti(1-x)SmxO2 (образец №6) достигается максимальное значение эффективности в 8,9%, что на 10,1% превышает эффективность контрольного образца МО СЭ с фотоэлектродом, выполненным на основе простого оксида (TiO2). В качестве иллюстрации на фиг. 3 представлены сравнительные виды графиков вольт-амперных характеристик образцов №1 и №6 с фотоэлектродами, выполненными, соответственно, на основе простого оксида (образец №1 с КПД=8,1%) и сложного оксида на основе тройной системы Ti0,975Sm0,025O2 (образец №6 с КПД=8,9%).


Сенсибилизированный красителем металлооксидный солнечный элемент
Сенсибилизированный красителем металлооксидный солнечный элемент
Сенсибилизированный красителем металлооксидный солнечный элемент
Источник поступления информации: Роспатент

Показаны записи 41-50 из 63.
24.11.2019
№219.017.e566

Способ полимерного заводнения в слабосцементированном коллекторе

Изобретение относится к нефтяной и газовой промышленности, конкретно к разработке месторождений со слабосцементированным коллектором. В способе полимерного заводнения в слабосцементированном коллекторе, включающем закачку в нагнетательные скважины водного раствора полимера заданной...
Тип: Изобретение
Номер охранного документа: 0002706978
Дата охранного документа: 21.11.2019
14.12.2019
№219.017.ee01

Состав и способ получения пакета присадок к гидравлическим маслам и всесезонное гидравлическое масло, его содержащее

Изобретение относится к нефтепереработке и нефтехимии, конкретно к составу и способу получения пакета присадок к всесезонным гидравлическим маслам для гидросистем промышленного оборудования и всесезонному гидравлическому маслу, содержащему этот пакет. Способ приготовления пакета присадок к...
Тип: Изобретение
Номер охранного документа: 0002708887
Дата охранного документа: 12.12.2019
13.01.2020
№220.017.f4d1

Ингибитор коррозии и способ его получения

Изобретение относится к ингибиторам коррозии, которые используются в нефтегазодобывающей промышленности, в частности, к составам, применяемым в качестве ингибиторов коррозии в минерализованных средах. Способ включает получение активной основы реакцией триэтилентетрамина и жирных кислот...
Тип: Изобретение
Номер охранного документа: 0002710700
Дата охранного документа: 09.01.2020
15.02.2020
№220.018.027d

Способ использования катализатора гидрирования диолефинов в процессе гидрогенизационной переработки нефтяного сырья

Изобретение относится к способам использования катализатора гидрирования диолефинов в процессе гидрогенизационной переработки нефтяного сырья и может быть использовано в нефтеперерабатывающей промышленности. Предлагается способ использования катализатора гидрирования диолефинов в процессе...
Тип: Изобретение
Номер охранного документа: 0002714139
Дата охранного документа: 12.02.2020
15.02.2020
№220.018.02cd

Состав и способ приготовления катализатора гидрирования диолефинов

Изобретение относится к нефтеперерабатывающей промышленности, в частности к катализаторам гидрооблагораживания нефтяных фракций, а именно, к катализаторам защитного слоя для гидрирования диолефинов и к способам их приготовления. Предлагается катализатор гидрирования диолефинов для использования...
Тип: Изобретение
Номер охранного документа: 0002714138
Дата охранного документа: 12.02.2020
17.02.2020
№220.018.034e

Система подводного позиционирования устройства типа "купол" для ликвидации подводных разливов нефти

Изобретение относится к подводному позиционированию несамоходной подводной техники и удержанию ее в заданных координатах, в частности специализированного устройства типа «купол» для ликвидации подводных разливов нефти. Техническим результатом изобретения является обеспечение возможности точного...
Тип: Изобретение
Номер охранного документа: 0002714336
Дата охранного документа: 14.02.2020
06.03.2020
№220.018.09ce

Депрессорно-диспергирующая присадка к дизельным топливам и способ ее получения

Изобретение раскрывает депрессорно-диспергирующую присадку к дизельному топливу, содержащую смесь депрессорного и диспергирующего компонентов, при этом она в качестве депрессорного компонента содержит полимерное соединение, полученное реакцией радикальной сополимеризации малеинового ангидрида и...
Тип: Изобретение
Номер охранного документа: 0002715896
Дата охранного документа: 04.03.2020
28.03.2020
№220.018.1116

Состав для предотвращения асфальтосмолопарафиновых отложений

Изобретение относится к нефтедобывающей промышленности, в частности к составам для предотвращения отложения асфальтенов, смол и парафинов, и может быть использовано в процессах добычи, транспорта и хранения нефти. Состав ингибитора образования асфальтосмолопарафиновых отложений содержит, масс....
Тип: Изобретение
Номер охранного документа: 0002717859
Дата охранного документа: 26.03.2020
04.05.2020
№220.018.1af7

Состав для удаления асфальтосмолопарафиновых отложений

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для удаления и растворения асфальтосмолопарафиновых отложений (АСПО) с поверхности скважинного и нефтепромыслового оборудования, в резервуарах и нефтесборных коллекторах, напорных и магистральных трубопроводах....
Тип: Изобретение
Номер охранного документа: 0002720435
Дата охранного документа: 29.04.2020
21.06.2020
№220.018.28e3

Состав для предотвращения кальциевых солеотложений

Изобретение относится к нефтедобыче, а именно к составам для предотвращения осаждения неорганических солей при добыче и транспорте нефти. Состав для предотвращения кальциевых солеотложений, включающий нитрилотриметилфосфоновую кислоту - НТФ, оксиэтилидендифосфоновую кислоту - ОЭДФ,...
Тип: Изобретение
Номер охранного документа: 0002723809
Дата охранного документа: 17.06.2020
Показаны записи 1-7 из 7.
27.10.2014
№216.013.0171

Тандемный солнечный фотопреобразователь

Изобретение относится к области солнечной фотоэнергетики, в частности к устройствам для прямого преобразования солнечной энергии в электрическую. Предложен тандемный солнечный фотопреобразователь, содержащий два расположенных один под другим солнечных элемента, верхний из которых является...
Тип: Изобретение
Номер охранного документа: 0002531767
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.0172

Двусторонний солнечный фотопреобразователь (варианты)

Изобретение относится к области солнечной фотоэнергетики, а именно к устройствам для прямого преобразования солнечной энергии в электрическую. Предложены два варианта двустороннего солнечного фотопреобразователя (ФП), содержащего два идентичных солнечных элемента (СЭ) на основе...
Тип: Изобретение
Номер охранного документа: 0002531768
Дата охранного документа: 27.10.2014
25.08.2017
№217.015.bf28

Солнечный фотоэлектрический модуль со стационарным концентратором (варианты)

Изобретение относится к области солнечной фотоэнергетики, в частности к устройствам для прямого преобразования солнечной энергии в электрическую с использованием концентраторов солнечного излучения, и может быть использовано в солнечных энергоустановках для работы в условиях как высокой, так и...
Тип: Изобретение
Номер охранного документа: 0002617041
Дата охранного документа: 19.04.2017
26.08.2017
№217.015.e5e8

Тандемный металлооксидный солнечный элемент

Изобретение относится к области солнечной фотоэнергетики. Тандемный металлооксидный солнечный элемент содержит два расположенных один под другим по ходу светового потока металлооксидных солнечных элемента (МО СЭ) на основе мезоскопических слоев сенсибилизированного металлооксида, имеющих общий...
Тип: Изобретение
Номер охранного документа: 0002626752
Дата охранного документа: 31.07.2017
04.04.2018
№218.016.36aa

Способ получения мезопористой наноструктурированной пленки металло-оксида методом электростатического напыления

Изобретение может быть использовано при изготовлении металлооксидных солнечных элементов, сенсоров, систем запасания энергии, катализаторов. Для получения мезопористой наноструктурированной пленки металлооксида методом электростатического напыления напыляемый материал помещают в контейнер с...
Тип: Изобретение
Номер охранного документа: 0002646415
Дата охранного документа: 05.03.2018
11.06.2018
№218.016.614c

Фотосенсибилизатор для солнечных элементов

Изобретение относится к области солнечной энергетики, в частности к фотосенсибилизаторам для металлоксидных солнечных элементов. Фотосенсибилизатор представляет собой 4-[(Е)-[(2Е)-3-[4-(диметиламино)фенил]проп-2-ен-1-илиден]амино]бензойную кислоту. Фотосенсибилизатор получают одностадийным...
Тип: Изобретение
Номер охранного документа: 0002657084
Дата охранного документа: 08.06.2018
01.09.2019
№219.017.c501

Металлооксидный солнечный элемент

Изобретение относится к области солнечной фотоэнергетики, в частности к устройствам для прямого преобразования солнечной энергии. Предложен металлооксидный солнечный элемент на основе наноструктурированных слоев металлооксида, сенсибилизированного поглощающей свет субстанцией, включающий...
Тип: Изобретение
Номер охранного документа: 0002698533
Дата охранного документа: 28.08.2019
+ добавить свой РИД