×
10.05.2018
218.016.40f7

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ИСПАРЕНИЯ ЖИДКОСТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области приборостроения, в частности, может быть использовано в устройствах дозирования газов, а также может быть использовано в химической, нефтеперерабатывающей и других областях промышленности. В устройстве для испарения жидкости, содержащем мини- или микроканал для протока газа, в нижней стенке которого имеется каверна с жидкостью прямоугольной формы, согласно изобретению в нижней стенке канала на границе раздела газ-жидкость содержится решетка, состоящая из продольных ребер прямоугольной формы, причем верхняя грань ребра имеет продольную канавку треугольной формы. Технический результат - повышение интенсивности испарения, снижение металлоемкости испарителей. 2 ил.

Изобретение относится к области приборостроении, в частности, может быть использовано в устройствах дозирования газов, а также может быть использовано в химической, нефтеперерабатывающей и других областях промышленности.

В ряде случаев в промышленности необходимо при относительно невысокой температуре испарить некоторый объем жидкости. Часто такое испарение происходит в поток газа другой жидкости или в воздух. Так, в дозаторах газа к основному потоку газа, например азота, воздуха или аргона, подмешивается строго определенная концентрация другого газа, например водяного пара, этилового спирта или фреона. Причем последний образуется за счет испарения некоторого количества жидкости.

Наиболее близкое техническое решение описано в статье (Lyulin Y.V. and Kabov О.А., Measurement of the Evaporation Mass Flow Rate in a Horizontal Liquid Layer Partly Opened into Flowing Gas, Technical Physics Letters, vol. 39, No. 9, pp.795-797, 2013; Scheid В., Margerit J., Iorio C.S., Joannes L., Heraud M., Queeckers P., Dauby P.C., Colinet P. // Experiments in Fluids. 2012. V. 52. P. 1107-1119), в котором газ прокачивается в плоском мини- или микроканале, в нижней стенке которого имеется каверна с жидкостью. Уровень жидкости либо поддерживается постоянным с помощью специальных устройств, либо может изменяться и быть выпуклым в газовую фазу или вогнутым в каверну.

Недостатком данного устройства является сравнительно низкая интенсивность удельного испарения (кг/м2с), которая слабо зависит от скорости газа и снижается с увеличением размера каверны (Yu. V. Lyulin, D.V. Feoktistov, I.A. Afanas'ev, E.S. Chachilo, O.A. Kabov and G.V. Kuznetsov, Measuring the Rate of Local Evaporation from the Liquid Surface under the Action of Gas Flow, Technical Physics Letters, vol. 41, No. 7, pp. 665-667, 2015.). Например, в работе (Lyulin Y.V. and Kabov O.A., Evaporative convection in a horizontal liquid layer under shear-stress gas flow, Int. J. of Heat and Mass Transfer, Vol. 70, pp. 599-609, 2014) получена зависимость расхода испарения Q от скорости газа U:

Q ~ U0.15

Другим недостатком этого устройства является то, что оно может работать только при положении, близком к горизонтальному. При существенном отклонении от горизонтального положения жидкость может вытекать из каверны, что приводит к нестационарному испарению.

Задачей заявляемого изобретения является повышение интенсивности испарения, повышение эффективности системы в целом, снижение металлоемкости испарителей, обеспечение их работы на транспортных средствах.

Поставленная задача решается тем, что в устройстве для испарения жидкости, содержащем мини- или микроканал для протока газа, в нижней стенке которого имеется каверна с жидкостью прямоугольной формы, согласно изобретению в нижней стенке канала на границе раздела газ-жидкость содержится решетка, состоящая из продольных ребер прямоугольной формы, причем верхняя грань ребра имеет продольную канавку треугольной формы.

Решетка разделяет относительно большую поверхность границы раздела газ-жидкость на микро- или мини-ячейки и тем самым интенсифицирует испарение. Интенсификация достигается за счет образования значительного количества контактных линий газ-жидкость-твердое тело.

На фиг. 1 показано устройства для испарения жидкости (вид сверху). На фиг. 2 показан поперечный разрез ребер решетки.

1 - поток газа, 2 - каверна с жидкостью, 3 - ребра решетки (n=5), 4 - выход парогазовой смеси, 5 - испаряющаяся жидкость, 6 - мениск жидкости, 7 - контактная линия газ-жидкость-твердое тело, 8 - продольная канавка.

Устройство работает следующим образом.

Поток газа 1 поступает в мини- или микроканал. Решетка 3 разделяет относительно большую поверхность границы раздела газ-жидкость на микро- или мини-ячейки и тем самым интенсифицирует испарение. Интенсификация достигается за счет образования значительного количества контактных линий газ-жидкость-твердое тело 7 (фиг. 2б). Как показано в работах (М. Potash Jr., P. Wayner Jr., Evaporation from a twodimensional extended meniscus, Int. J. HeatMassTransfer, 15(10), pp. 1851-1863, 1972; P. Stephan, C. Busse, Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls, Int. J. Heat Mass Transfer, 35(2), pp. 383-391, 1992), именно в этой локальной области происходит существенная интенсификация теплообмена и испарения. Интенсификация связана с наличием сверхтонкой пленки жидкости в данной области, а также интенсивной микроциркуляцией жидкости, вызванной поверхностными силами в данной области. Данная область часто называется микрорегионом. В некоторых работах интенсификация теплообмена в микрорегионе достигалась до 10 и более раз (Vladimir S. Ajaev, Oleg A. Kabov, Heat and mass transfer near contact lines on heated surfaces, Int. J. of Heat and Mass Transfer, 2017). В работе авторов (A.L. Karchevsky, I.V. Marchuk and O.A. Kabov, Calculation of the heat flux near the liquid-gas-solid contact line, Applied Mathematical Modeling, 40, pp. 1029-1037, 2016) экспериментально получена нитрификация теплообмена в 3-5 раз.

Степень увеличения длины контактных линий определяется параметром:

N=(2(A+B)+2nA)/(2(А+В)

Здесь А и В - размеры полости с жидкостью, n - число ребер в решетке. Если А=В и n=10, то N=1+n/2=6.

В случае недостаточного уровня испаряющейся жидкости 5 (фиг. 2а) мениск 6 находится между ребрами. В случае переполнения каверны жидкости, пульсаций расхода, существенного отклонения устройства от горизонтального и т.п. точки контактной линии фиксируются на канавке, фиг. 2б. При этом мениск жидкости становится выпуклым.

Механизм смачивания капиллярной канавки и «зацепления» контактных линий на поверхности с микроканавками рассмотрен в работе (Gibbs, J.W. The Collected Works of J. Willard Gibbs; Yale University Press: New Haven, CT, 1961; vol. 1, p. 326). Установлено, что жидкость зацепляется за микроканавку, если краевой угол смачивания не превышает θс. Критический краевой угол смачивания можно определить по следующей формуле:

θс=(180°-ϕ)+θе

Здесь ϕ - угол между верхней гранью ребра и гранью микроканавки, θе - краевой угол смачивания жидкостью плоской поверхности ребра. Приведенная формула была подтверждена в работе авторов (Grishaev V., Amirfazli A., Chikov S., Lyulin Y., Kabov O., Study of edge effect to stop liquid spillage for microgravity application, Microgravity sci. technol., vol. 25, pp. 27-33, 2013). Таким образом, использование решетки препятствует вытеканию жидкости за пределы каверны и обеспечивает работу подобных устройств на транспортных средствах. Решетка может быть изготовлена из любого достаточно хорошо смачиваемого материала. Изготовление решетки из металла с высокой теплопроводностью приведет к дополнительной интенсификации испарения. Оптимальная ширина канавки составляет 50-100 микрон. Оптимальный размер толщины ребра решетки составляет 150-300 микрон. Высота ребра решетки должна быть много меньше размеров каверны с жидкостью.

Данное устройство повышает интенсивность испарения, снижает металлоемкость испарителя, обеспечивает его работу на транспортных средствах - автомобили, скоростные поезда, морские суда, самолеты.

Устройство для испарения жидкости, содержащее мини- или микроканал для протока газа, в нижней стенке которого имеется каверна с жидкостью прямоугольной формы, отличающееся тем, что в нижней стенке канала на границе раздела газ-жидкость содержится решетка, состоящая из продольных ребер прямоугольной формы, причем верхняя грань ребра имеет продольную канавку треугольной формы.
УСТРОЙСТВО ДЛЯ ИСПАРЕНИЯ ЖИДКОСТИ
УСТРОЙСТВО ДЛЯ ИСПАРЕНИЯ ЖИДКОСТИ
Источник поступления информации: Роспатент

Показаны записи 91-95 из 95.
12.04.2023
№223.018.43f2

Теплопередающая стенка теплообменника и способ формирования покрытия для интенсификации теплообмена теплопередающей стенки теплообменника

Группа изобретений относится к теплопередающей стенке теплообменника и способу формирования покрытия для интенсификации теплообмена теплопередающей стенки теплообменника. Основа теплопередающей стенки теплообменника выполнена из содержащего алюминий материала и снабжена указанным покрытием,...
Тип: Изобретение
Номер охранного документа: 0002793671
Дата охранного документа: 04.04.2023
16.05.2023
№223.018.60ce

Паромасляное горелочное устройство

Изобретение относится к жидкотопливным горелочным устройствам, использующим для горения перегретый водяной пар. Паромасляное горелочное устройство содержит цилиндрический корпус, состоящий из двух частей, основания и цилиндрического корпуса, соединенных через теплоизоляционную прокладку. В дно...
Тип: Изобретение
Номер охранного документа: 0002740722
Дата охранного документа: 20.01.2021
16.05.2023
№223.018.6127

Термоанемометр для измерения скорости газа в противоточном газокапельном потоке

Изобретение относится к термоанемометрическим средствам измерения скорости газа и может быть применено при исследовании различных сред, в том числе агрессивных. Заявлен термоанемометр для измерения скорости газа в противоточном газокапельном потоке, содержащий один или более чувствительных...
Тип: Изобретение
Номер охранного документа: 0002747098
Дата охранного документа: 26.04.2021
16.06.2023
№223.018.7a66

Комплекс переработки твёрдых коммунальных отходов с автоматизированной сортировкой неорганической части и плазменной газификацией органического остатка

Изобретение относится к области переработки твердых коммунальных отходов (ТКО) IV - V класса опасности, включающей предварительную автоматизированную сортировку отходов с получением вторичного сырья и плазменную газификацию органической части с получением синтез-газа, пригодного для...
Тип: Изобретение
Номер охранного документа: 0002731729
Дата охранного документа: 08.09.2020
16.06.2023
№223.018.7b68

Вихревая камера для проведения химических реакций в псевдоожиженном слое частиц

Изобретение относится к вихревой камере для проведения химических реакций в псевдоожиженном слое частиц. Камера выполнена в виде двух соосных круговых усеченных конусов, образующих своими поверхностями кольцевой конический канал, стенки которого сходятся к верху к вертикальной оси камеры, а...
Тип: Изобретение
Номер охранного документа: 0002751943
Дата охранного документа: 21.07.2021
Показаны записи 11-15 из 15.
20.01.2018
№218.016.1e3a

Интенсивный конденсатор пара с контрастным и градиентным смачиванием

Изобретение относится к области интенсификации теплообмена при конденсации внутри труб и каналов, а также конденсации на поверхностях, расположенных в объеме пара. Интенсивный конденсатор пара с контрастным и градиентным смачиванием выполнен в форме охлаждаемого цилиндра, на внешнюю поверхность...
Тип: Изобретение
Номер охранного документа: 0002640888
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e46

Плоский эффективный конденсатор-сепаратор для микрогравитации и транспортных приложений

Изобретение относится к области мини- и микросистем, которые используют в электронике, медицине, энергетике, аэрокосмической индустрии, на транспорте и могут применяться в устройствах для охлаждения электроники. Согласно изобретению конденсатор и сепаратор выполнены в виде плоского охлаждаемого...
Тип: Изобретение
Номер охранного документа: 0002640887
Дата охранного документа: 12.01.2018
10.05.2018
№218.016.413a

Способ охлаждения электронного оборудования с использованием комбинированных пленочных и капельных потоков жидкости

Изобретение относится к теплотехнике и может быть использовано в системах охлаждения электронного оборудования. В способе охлаждения электронного оборудования с использованием комбинированных пленочных и капельных потоков жидкости, основанном на движении тонкой пленки жидкости за счет потока...
Тип: Изобретение
Номер охранного документа: 0002649170
Дата охранного документа: 30.03.2018
19.11.2019
№219.017.e3c4

Способ охлаждения электронного оборудования пленочными и капельными потоками жидкости с использованием оребрения

Изобретение относится к теплотехнике и может быть использовано в системах охлаждения электронного оборудования. В способе охлаждения электронного оборудования пленочными и капельными потоками жидкости с использованием оребрения поверхность электронного компонента орошают потоками микрокапель...
Тип: Изобретение
Номер охранного документа: 0002706325
Дата охранного документа: 15.11.2019
29.05.2023
№223.018.7280

Устройство для формирования расслоенного течения жидкости в микро- и миниканалах

Изобретение относится к энергетике и теплотехнике и может быть использовано в системах охлаждения оборудования в солнечной энергетике. Технический результат - создание устройства для формирования расслоенного течения жидкости в микро- и миниканалах с целью существенной интенсификации...
Тип: Изобретение
Номер охранного документа: 0002796381
Дата охранного документа: 22.05.2023
+ добавить свой РИД