×
10.05.2018
218.016.3cc8

Результат интеллектуальной деятельности: Способ обработки опорных витков пружин и роботизированный комплекс для его осуществления

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при производстве крупногабаритных стальных пружин. Обработку опорных витков проводят поочередно, при этом одновременно с плазменной резкой осуществляют подачу сжатого воздуха по меньшей мере одной струей вдоль оси пружины в направлении обрабатываемого опорного витка с помощью распылителя, который заводят внутрь пружины в зоне обработки. Обработкой опорных витков пружины плазменной резкой и подачей сжатого воздуха управляют посредством компьютеризованной системы. Роботизированный комплекс для обработки опорных витков пружин содержит поворотный стол с приводом и механизмами фиксации пружин и плазмотрон, сопло которого смонтировано на роботе-манипуляторе. Компьютеризованная система управления связана с приводом поворотного стола, плазмотроном и роботом-манипулятором. Распылитель соединен с системой подачи сжатого воздуха и смонтирован с возможностью подачи по меньшей мере одной струи сжатого воздуха вдоль оси пружины в направлении обрабатываемого опорного витка. Комплекс оснащен механизмом осевого перемещения распылителя. Технический результат заключается в повышении прочности пружин. 2 н. и 6 з.п. ф-лы, 2 ил.

Изобретение относится к области механической обработки металла и может применяться для обработки опорных витков винтовых пружин методом плазменной резки при производстве крупногабаритных стальных пружин.

Из уровня техники известен способ обработки опорных витков пружин (см. «Роботизированная технология плазменной резки торцов пружин» компании Белфингрупп, интернет-ресурсы http://belfingroup.eu/about-the-company/our-reference-list/robotizirovannyij-kompleks-plazmennoj-rezki-torczov-pruzhin.html, а так же https://www.youtube.com/watch?v=HXM54JcakXo), выбранный в качестве прототипа, включающий поочередную обработку опорных витков пружины плазменной резкой.

Недостатком известного способа является вероятность попадания на поверхность пружины продукта плазменной резки, а именно, металла, нагретого до температуры более 1000°C, что вызывает образование трещин опорных витков в результате их локального нагрева и, тем самым, снижает качество обрабатываемых пружин.

Из уровня техники известен роботизированный комплекс (см. «Роботизированная технология плазменной резки торцов пружин» компании Белфингрупп, интернет-ресурсы http://belfingroup.eu/about-the-company/our-reference-list/robotizirovannyij-kompleks-plazmennoj-rezki-torczov-pruzhin.html, а также https://www.youtube.com/watch?v=HXM54JcakXo, выбранный в качестве прототипа, содержащий поворотный стол с приводом и механизмами фиксации пружин, плазмотрон, сопло которого смонтировано на роботе-манипуляторе, компьютеризированную систему управления. При этом, привод поворотного стола, робот-манипулятор, плазмотрон связаны с компьютеризированной системой управления.

Недостатком известного комплекса является низкое качество готовой продукции, поскольку в процессе обработки опорных витков пружин методом плазменной резки не исключено попадание на поверхность пружины неизбежно возникающих продуктов данного процесса (металла нагретого до температуры более 1000°С) с последующим образованием трещин в результате локального нагрева.

Технический результат, достигаемый при использовании способа обработки опорных витков пружин и роботизированного комплекса для осуществления данного способа, заключается в повышении прочности пружин.

Технический результат достигается в способе обработки опорных витков пружин, включающем поочередную обработку опорных витков пружины плазменной резкой, отличающемся от прототипа тем, что во время обработки производится подача сжатого воздуха по меньшей мере одной струей вдоль оси пружины в направлении обрабатываемого опорного витка.

Для повышения производительности заявленного способа обрабатываемая пружина фиксируется в зоне загрузки-выгрузки на поворотном столе, при помощи которого подается в зону обработки, а обработка опорных витков пружины осуществляется плазмотроном, сопло которого смонтировано на роботе-манипуляторе. При этом, подача пружины в зону обработки и зону загрузки-выгрузки, обработка опорных витков пружины, подача сжатого воздуха управляется компьютеризованной системой.

Технический результат достигается в роботизированном комплексе для обработки опорных витков пружин, содержащем поворотный стол с приводом и механизмами фиксации пружин, плазмотрон, сопло которого смонтировано на роботе-манипуляторе, компьютеризованную систему управления, связанную с приводом поворотного стола, плазмотроном, роботом-манипулятором, отличающимся от прототипа тем, что содержит систему подачи сжатого воздуха, соединенную с распылителем, механизм осевого перемещения распылителя.

По первому варианту механизм осевого перемещения распылителя содержит пневмоцилиндр и штангу, соединяющую поршень пневмоцилиндра с распылителем. При этом механизм осевого перемещения распылителя механически не связан с поворотным столом.

По второму варианту роботизированный комплекс содержит два распылителя, а механизм осевого перемещения распылителей содержит пневмоцилиндр и две штанги, каждая из которых соединяет поршень пневмоцилиндра с одним из распылителей. При этом механизм осевого перемещения распылителя механически связан с поворотным столом.

Изобретение поясняется чертежами, где на Фиг. 1 изображен роботизированный комплекс по первому варианту исполнения, на Фиг. 2 - роботизированный комплекс по второму варианту исполнения.

Способ обработки опорных витков пружин методом плазменной резки может быть осуществлен при помощи роботизированного комплекса, содержащего поворотный стол 1 с приводом (не показан) и двумя механизмами фиксации пружин, закрепленными радиально на противоположных краях поворотного стола 1. С одной из сторон поворотного стола 1, в зоне загрузки-выгрузки, расположен установочный упор 2, взаимодействующий с пневмоцилиндром 3. С противоположной стороны поворотного стола, в зоне обработки, расположен робот-манипулятор 4 с размещенным на нем соплом 5 плазмотрона (не показан).

Механизмы фиксации пружин состоят из расположенных на противоположных краях поворотного стола 1 призматических ложементов 61 и 62 и призм 71 и 72, взаимодействующих, соответственно, с пневмоцилиндрами 81 и 82.

По первому варианту (Фиг. 1) роботизированный комплекс содержит систему подачи сжатого воздуха (не показано), соединенную с распылителем 9, который, в свою очередь, соединен с механизмом его осевого перемещения, содержащим штангу 10, соединяющую распылитель 9 с поршнем 11 пневмоцилиндра. Штанга 10 смонтирована с возможностью продольного перемещения таким образом, чтобы в рабочем, выдвинутом, положении распылитель 9 располагался внутри обрабатываемой пружины. Механизм осевого перемещения распылителя 9 может быть смонтирован над поворотным столом 1 на подвесной стойке 12, закрепленной, в свою очередь, на поверхности фиксации 13. В других частных случаях исполнения механизм осевого перемещения распылителя 9 может быть смонтирован рядом с поворотным столом 1, вне зоны действия последнего.

По второму варианту (Фиг. 2) роботизированный комплекс содержит систему подачи сжатого воздуха (не показано), соединенную с распылителями 91, 92 которые, в свою очередь, соединены с механизмом их осевого перемещения, содержащим штанги 101, 102, соединяющие распылители 91, 92 с поршнем 11 пневмоцилиндра. Штанги 101 и 102 смонтированы над поворотным столом 1 с возможностью совместного продольного перемещения так, чтобы в рабочем, выдвинутом положении один из распылителей 91 и 92 располагался внутри обрабатываемой пружины. Механизм осевого перемещения распылителей 91, 92 смонтирован в центре поворотного стола 1 с возможностью синхронного с ним вращения.

С приводом поворотного стола 1, роботом-манипулятором 4, системой подачи сжатого воздуха, механизмом осевого перемещения распылителей 91, 92 связана компьютеризированная система управления (не показана).

Способ обработки опорных витков пружин состоит в выполнении циклов обработки пружин, каждый из которых состоит из четырех подциклов.

По первому варианту в ходе первого подцикла последовательно выполняют следующие операции: пружину загружают в роботизированный комплекс в зоне загрузки-выгрузки; фиксируют пружину в заданном положении при помощи одного из двух механизмов фиксации; поворотом поворотного стола подают пружину в зону обработки.

По первому варианту исполнения в ходе второго подцикла последовательно выполняют следующие операции: заводят распылитель внутрь пружины в зоне обработки; при помощи робота-манипулятора обрабатывают первый опорный виток пружины плазменной резкой, одновременно подавая сжатый воздух через распылитель на обрабатываемый опорный виток; по завершении плазменной резки выводят распылитель из пружины в зоне обработки; поворотом поворотного стола подают пружину в зону загрузки-выгрузки.

По первому варианту исполнения в ходе третьего подцикла последовательно выполняют следующие операции: освобождают пружину от механизма фиксации; переворачивают пружину на 180°, меняя местами обработанный и противоположный ему опорные витки; фиксируют перевернутую пружину при помощи механизма фиксации; поворотом поворотного стола подают пружину в зону обработки.

По первому варианту исполнения в ходе четвертого подцикла последовательно выполняют следующие операции: заводят распылитель внутрь пружины в зоне обработки; при помощи робота-манипулятора обрабатывают второй опорный виток пружины плазменной резкой, одновременно подавая сжатый воздух через распылитель на обрабатываемый опорный виток; по завершении плазменной резки выводят распылитель из пружины в зоне обработки; поворотом поворотного стола подают пружину в зону загрузки-выгрузки; освобождают пружину от механизма фиксации; выгружают пружину из роботизированного комплекса.

Если обозначить первую пружину, загружаемую в роботизированный комплекс как П1, вторую П2, третью - П3, то по первому варианту исполнения начало первого подцикла обработки пружины П2 по времени совпадает с началом второго подцикла обработки пружины П1, а начало первого подцикла обработки пружины П3 следует за окончанием четвертого подцикла обработки пружины П1.

По второму варианту исполнения в ходе первого подцикла последовательно выполняют следующие операции: пружину загружают в роботизированный комплекс в зоне загрузки-выгрузки; фиксируют пружину в заданном положении при помощи одного из двух механизмов фиксации; поворотом поворотного стола подают пружину в зону обработки; заводят один из распылителей внутрь пружины в зоне обработки.

По второму варианту исполнения в ходе второго подцикла последовательно выполняют следующие операции: при помощи робота-манипулятора обрабатывают первый опорный виток пружины плазменной резкой, одновременно подавая сжатый воздух через распылитель на обрабатываемый опорный виток; по завершении плазменной резки поворотом поворотного стола подают пружину в зону загрузки-выгрузки; выводят распылитель из пружины в зоне загрузки-выгрузки.

По второму варианту исполнения в ходе третьего подцикла последовательно выполняют следующие операции: освобождают пружину от механизма фиксации; переворачивают пружину на 180°, меняя местами обработанный и противоположный ему опорные витки; фиксируют перевернутую пружину при помощи механизма фиксации; поворотом поворотного стола подают пружину в зону обработки; заводят распылитель внутрь пружины в зоне обработки.

По второму варианту исполнения в ходе четвертого подцикла последовательно выполняют следующие операции: при помощи робота-манипулятора обрабатывают второй опорный виток пружины плазменной резкой, одновременно подавая сжатый воздух через распылитель на обрабатываемый опорный виток; по завершении плазменной резки поворотом поворотного стола подают пружину в зону загрузки-выгрузки; выводят распылитель из пружины в зоне разгрузки-выгрузки, освобождают пружину от механизма фиксации, выгружают пружину из роботизированного комплекса.

Если обозначить первую пружину, загружаемую в роботизированный комплекс как П1, вторую П2, третью - П3, то по второму варианту исполнения начало первого подцикла обработки пружины П2 по времени совпадает с началом второго подцикла обработки пружины П1, а начало первого подцикла обработки пружины П3 следует за окончанием четвертого подцикла обработки пружины П1.

Предлагаемый способ обработки опорных витков пружин методом плазменной резки с помощью предлагаемого роботизированного комплекса, по первому варианту исполнения, осуществляют следующим образом (Фиг. 1).

Цикл обработки первой пружины (далее пружина I) начинается с того, что оператор фиксирует пружину I на поворотном столе 1 в механизме фиксации пружин, находящемся в зоне загрузки-выгрузки. Для этого оператор загружает пружину I в призматический ложемент 61, ориентируя один из опорных витков пружины I по установочному упору 2. Далее оператор дает команду на запуск программы, согласно которой компьютеризованная система управления через пневмоцилиндр 3 отводит упор 2, через пневмоцилиндр 81 прижимает пружину I призмой 71 к призматическому ложементу 61, через привод поворачивает поворотный стол 1, переводя пружину 1 в зону обработки.

После поворота стола 1 компьютеризованная система управления через пневмоцилиндр 3 возвращает упор 2 в исходное положение и в зоне загрузки-выгрузки начинается цикл обработки второй пружины (далее пружина II). Оператор загружает пружину II в призматический ложемент 62, аналогично тому, как это описано в отношении пружины I.

В это время компьютеризованная система управления через механизм осевого перемещения распылителя 9 заводит его внутрь пружины I, через робот-манипулятор 4 подводит сопло 5 к первому опорному витку пружины I. включает плазмотрон, через распылитель 9 подает сжатый воздух вдоль оси пружины I в направлении первого опорного витка пружины I, через робот-манипулятор 4 выполняет плазменную резку первого опорного витка пружины I. Образующиеся при этом фрагменты нагретого металла сдуваются сжатым воздухом, подаваемым через распылитель 9.

После завершения обработки первого опорного витка пружины I компьютеризованная система управления выключает плазмотрон, через робот-манипулятор 4 отводит сопло 5 в исходное положение, через механизм осевого перемещения распылителя 9 выводит его из пружины I.

Далее оператор дает команду на запуск программы, согласно которой компьютеризованная система управления через пневмоцилиндр 3 отводит упор 2, через пневмоцилиндр 82 прижимает пружину II призмой 72 к призматическому ложементу 62, через привод поворачивает поворотный стол 1, переводя пружину II в зону обработки, а пружину I - в зону загрузки-выгрузки, через пневмоцилиндр 81 освобождает пружину I от призмы 71, через пневмоцилиндр 3 возвращает упор 2 в исходное положение.

После этого оператор переворачивает пружину I на 180° и загружает пружину I в призматический ложемент 61, ориентируя второй, еще не обработанный опорный виток по упору 2.

В это время компьютеризованная система через механизм осевого перемещения распылителя 9 заводит его внутрь пружины II, через робот-манипулятор 4 подводит сопло 5 к первому опорному витку пружины II, включает плазмотрон, через распылитель 9 подает сжатый воздух вдоль оси пружины II в направлении первого опорного витка пружины II, через робот-манипулятор 4 производит плазменную резку первого опорного витка пружины II. Фрагменты нагретого металла, образующиеся при обработке, сдуваются сжатым воздухом.

После завершения обработки первого опорного витка пружины II компьютеризованная система управления выключает плазмотрон, через робот-манипулятор 4 отводит сопло 5 в исходное положение, через механизм осевого перемещения распылителя 9 выводит его из пружины II.

Далее по команде оператора запускается программа, согласно которой компьютеризованная система управления через пневмоцилиндр 3 отводит упор 2, через пневмоцилиндр 81 прижимает пружину I призмой 71 к призматическому ложементу 61, через привод поворачивает поворотный стол 1, переводя пружину II в зону загрузки-выгрузки, а пружину I в зону обработки, через пневмоцилиндр 82 освобождает пружину II от призмы 72,через пневмоцилиндр 3 возвращает упор 2 в исходное положение.

После этого оператор переворачивает пружину II на 180° и загружает ее в призматический ложемент 62, ориентируя ее второй опорный виток по упору 2.

Тем временем, после поворота поворотного стола 1 компьютеризованная система управления, через механизм осевого перемещения распылителя 9 заводит его внутрь пружины I, через робот-манипулятор 4 подводит сопло 5 ко второму опорному витку пружины I, включает плазмотрон, через распылитель 9 подает сжатый воздух вдоль оси пружины I в направлении второго опорного витка, через робот-манипулятор 4 выполняет плазменную резку второго опорного витка пружины I. Раскаленный металл, благодаря потоку сжатого воздуха, не попадает на витки.

После завершения обработки второго опорного витка пружины I компьютеризованная система управления выключает плазмотрон, через робот-манипулятор 4 отводит сопло 5 в исходное положение, через механизм осевого перемещения распылителя 9 выводит его из пружины I.

Далее по команде оператора запускается программа, согласно которой компьютеризованная система управления через пневмоцилиндр 3 отводит упор 2, через пневмоцилиндр 82 прижимает пружину II призмой 72 к призматическому ложементу 62, через привод поворачивает поворотный стол 1, переводя пружину II в зону обработки, а пружину I - в зону загрузки-выгрузки, через пневмоцилиндр 81 освобождает пружину I от призмы 71, через пневмоцилиндр 3 возвращает упор 2 в исходное положение.

После этого оператор выгружает пружину I из роботизированного комплекса. Hа этом цикл обработки пружины I закончен.

Предлагаемый способ обработки опорных витков пружин методом плазменной резки с помощью предлагаемого роботизированного комплекса, по второму варианту исполнения, повторяет способ обработки опорных витков пружин с помощью предлагаемого роботизированного комплекса, по первому варианту исполнения, за исключением следующего (Фиг. 2). Заведение распылителя 91 внутрь пружины в зоне обработки выполняется одновременно с выводом распылителя 92 из пружины в зоне загрузки-выгрузки. При повороте стола 1 выполняется синхронный поворот механизма осевого перемещения распылителей 91 и 92, при этом распылитель, находящийся в зоне обработки, подается в зону загрузки-выгрузки внутри пружины.


Способ обработки опорных витков пружин и роботизированный комплекс для его осуществления
Способ обработки опорных витков пружин и роботизированный комплекс для его осуществления
Источник поступления информации: Роспатент

Показаны записи 1-2 из 2.
26.08.2017
№217.015.da24

Способ изготовления пружин и агрегат для его воплощения

Группа изобретений относится к изготовлению стальных пружин. Способ изготовления пружин включает подачу и нагрев навиваемого материала, навивку на вертикальную оправку, погружение оправки с навитой пружиной в закалочную ванну, перемещение оправки с навитой пружиной по закалочной ванне от места...
Тип: Изобретение
Номер охранного документа: 0002623968
Дата охранного документа: 29.06.2017
30.05.2019
№219.017.6b6b

Способ обработки опорных витков пружин методом плазменной резки, роботизированный комплекс и линия для его воплощения

Изобретение относится к линии для обработки топорных витков пружин из стали. Линия содержит роботизированный комплекс с плазмотроном и роботом-манипулятором, второй роботизированный комплекс и узел перезагрузки. Второй роботизированный комплекс включает плазмотрон и робот-манипулятор, а...
Тип: Изобретение
Номер охранного документа: 0002689482
Дата охранного документа: 28.05.2019
Показаны записи 11-20 из 50.
20.01.2018
№218.016.15b7

Линия для производства пружин горячей навивкой (варианты)

Изобретения относятся к производству пружин, изготавливаемых горячей навивкой. Линии содержат установку отбраковки прутков, установку мерной резки прутков, устройство нагрева прутков, устройство навивки пружин из прутков, устройство непрерывно-последовательной закалки пружин, печь для отпуска...
Тип: Изобретение
Номер охранного документа: 0002635115
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.18a9

Устройство для открывания и закрывания крышек разгрузочных люков вагона-хоппера

Изобретение относится к железнодорожному транспорту, в частности к вагонам-хопперам с разгрузочными люками. Устройство для открывания и закрывания крышек разгрузочных люков вагона-хоппера содержит установленные в опорах (4) вращения продольные приводные валы с ручными приводами в виде червячных...
Тип: Изобретение
Номер охранного документа: 0002636241
Дата охранного документа: 21.11.2017
17.02.2018
№218.016.2cb2

Литое железнодорожное колесо с маркировочными знаками и способ литья железнодорожного колеса с маркировочными знаками

Изобретение относится к литейному производству. Отливку железнодорожного колеса изготавливают в формах из смесей холодного отверждения или полученных вакуумно-пленочным способом. Штампы с маркировочными знаками закрепляют на литейной модели низа или верха отливки в местах литейной модели....
Тип: Изобретение
Номер охранного документа: 0002643537
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.371d

Котел вагона-цистерны

Изобретение относится к железнодорожным цистернам. Котел вагона-цистерны содержит обечайку (1) и люк с горловиной (3), закрепленной в обечайке котла. Место соединения горловины люка с обечайкой усилено накладкой (4), установленной на поверхности обечайки и охватывающей горловину люка. Накладка...
Тип: Изобретение
Номер охранного документа: 0002646709
Дата охранного документа: 06.03.2018
10.05.2018
№218.016.40dd

Способ вакуумно-пленочной формовки и литейная форма

Изобретение относится к литейному производству. Собирают модельную оснастку. На подмодельную плиту устанавливают модели отливки. На поверхность модели отливки, на которой при формовке или заливке синтетическая плёнка подвержена разрушающим воздействиям, закрепляют усиливающие элементы для их...
Тип: Изобретение
Номер охранного документа: 0002649192
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.4d51

Люк цистерны

Изобретение относится к ёмкостям для хранения и транспортирования агрессивных жидкостей и может быть использовано в железнодорожном, морском, автомобильном, речном транспорте. Выполнение люка цистерны в виде отливки позволяет получить единую равнопрочную и жёсткую деталь, объединяющую в себе...
Тип: Изобретение
Номер охранного документа: 0002652310
Дата охранного документа: 25.04.2018
29.05.2018
№218.016.5513

Надрессорная балка

Изобретение относится к железнодорожному транспорту, в частности к надрессорным балкам. Надрессорная балка включает в себя верхний пояс, нижний пояс, содержащий в концевых частях опорные поверхности, сопряжённые с наклонными элементами, две вертикальные боковые стенки, соединённые с верхним...
Тип: Изобретение
Номер охранного документа: 0002654233
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.561c

Узел соединения упоров автосцепного устройства с хребтовой балкой

Изобретение относится к области железнодорожного транспорта, а именно к узлам соединения упоров автосцепного устройства с хребтовой балкой. Узел соединения упоров автосцепного устройства с хребтовой балкой содержит передний и задний упоры, выполненные раздельными, установленные в проемах...
Тип: Изобретение
Номер охранного документа: 0002654458
Дата охранного документа: 17.05.2018
16.06.2018
№218.016.6217

Полувагон сочлененный

Изобретение относится к рельсовым транспортным средствам, а именно к сочлененным полувагонам. В полувагоне сочленом использование одной общей тележки (7) для секций (2), (3) полувагона и выполнение в межтележечном пространстве каждой секции понижения пола с образованием дополнительного...
Тип: Изобретение
Номер охранного документа: 0002657712
Дата охранного документа: 14.06.2018
16.06.2018
№218.016.629e

Полувагон (варианты)

Изобретение относится к железнодорожному транспорту. В полувагоне пятниковые стойки боковых стенок (3.1) усилены дополнительными стойками (3.2.2), установленными вертикально. По первому варианту на концевых участках боковых стенок закреплены усиливающие концевые элементы (4). По второму...
Тип: Изобретение
Номер охранного документа: 0002657703
Дата охранного документа: 14.06.2018
+ добавить свой РИД