×
10.05.2018
218.016.3aa5

Результат интеллектуальной деятельности: СПОСОБ МНОГООБОРОТНОЙ ИНЖЕКЦИИ ЗАРЯЖЕННЫХ ЧАСТИЦ В ЦИКЛИЧЕСКИЙ УСКОРИТЕЛЬ

Вид РИД

Изобретение

№ охранного документа
0002647497
Дата охранного документа
16.03.2018
Аннотация: Изобретение относится к ускорительной технике и может быть использовано в циклических ускорителях. Способ многооборотной инжекции заряженных частиц в циклический ускоритель заключается в том, что для ввода частиц на линейном участке орбиты ускорителя, частицы предварительно инжектируются в магнитные поля двух разнополярных инжекционных диполей. С помощью полей этих диполей частицы вводят на равновесную орбиту и ускоряют на равновесной орбите, а перед тем как вывести частицы на второй и последующие обороты, частицы отклоняют магнитными полями двух дополнительных разнополярных диполей, в которых ускоренные частицы, минуя устройство ввода пучка в систему, снова инжектируют в магнитные поля инжекционных разнополярных диполей, которые выводят частицы на равновесную орбиту ускорителя, где происходит их накопление. Технический результат – увеличение интенсивности и уменьшение радиального фазового объема накопленного пучка заряженных частиц в циклическом ускорителе. 1 з.п. ф-лы, 2 ил.

Изобретение относится к ускорительной технике и может быть использовано в циклических ускорителях.

Как известно, заряженные частицы, инжектированные в постоянное магнитное поле циклического ускорителя, совершив несколько оборотов в камере ускорителя, погибают на вводном устройстве (инжекторе) или апертурных элементах камеры и не захватываются в режим ускорения. Существует два метода накопления частиц в камере ускорителя: 1) увеличение числа инжектируемых импульсов (многократная инжекция); 2) увеличение длительности импульсов инжекции (многооборотная инжекция). Наиболее распространенными методами многооборотной инжекции являются метод с заполнением 4-мерного поперечного фазового пространства с помощью линейного разностного резонанса связи радиальных и вертикальных бетатронных колебаний и метод с постепенным заполнением горизонтального аксептанса ускорителя за счет смещения локального искажения горизонтальной проекции замкнутой орбиты.

В качестве прототипа выбираем способ многооборотной инжекции [1, 2], заключающийся в том, что в процессе инжекции изменяют параметры орбиты частиц и самих частиц при помощи электрических и магнитных полей с целью постепенного заполнения горизонтальной фазовой плоскости до размера, определяемого аксептансом ускорителя.

Недостатком такого способа многооборотной инжекции являются наличие ограничений на число захваченных оборотов и увеличение радиального фазового объема пучка при накоплении в нем частиц.

Целью предлагаемого изобретения является увеличение интенсивности и уменьшение радиального фазового объема накопленного пучка заряженных частиц.

Способ заключается в том, что в процессе инжекции изменяют параметры орбиты частиц и самих частиц при помощи электрических и магнитных полей, для ввода частиц на линейном участке орбиты ускорителя, частицы предварительно инжектируются в магнитные поля двух разнополярных инжекционных диполей, с помощью полей этих диполей частицы вводят на равновесную орбиту, ускоряют на равновесной орбите, а перед тем как вывести частицы на второй и последующие обороты, частицы отклоняют магнитными полями двух дополнительных разнополярных диполей, в которых ускоренные частицы, минуя устройство ввода пучка в систему, снова инжектируют магнитные поля инжекционных разнополярных диполей, которые выводят частицы на равновесную орбиту ускорителя, где происходит их накопление.

Способ допускает использование в инжекционных и дополнительных диполях однородных магнитных полей с одинаковой величиной магнитной индукции.

Отличительными признаками заявляемого способа является следующее.

Для ввода частиц на линейном участке орбиты ускорителя, частицы предварительно инжектируются в магнитные поля двух разнополярных инжекционных диполей, с помощью полей этих диполей частицы вводят на равновесную орбиту, ускоряют на равновесной орбите, а перед тем как вывести частицы на второй и последующие обороты, частицы отклоняют магнитными полями двух дополнительных разнополярных диполей, в которых ускоренные частицы, минуя устройство ввода пучка в систему, снова инжектируют магнитные поля инжекционных разнополярных диполей, которые выводят частицы на равновесную орбиту ускорителя, где происходит их накопление. В одном из вариантов способа магнитные поля инжекционных и дополнительных диполей формируют однородными и имеющими одинаковую величину магнитной индукции.

Поставленная цель достигается тем, что совокупность всех существенных признаков позволяет осуществить многооборотную инжекцию и накопление частиц на равновесной орбите.

Перечень иллюстраций

На Фиг. 1 (Приложение) приведена схема ускорителя с системами инжекции пучка,

где:

1 - инжекционные разнополярные диполи,

2 - дополнительные разнополярные диполи,

3 - источник заряженных частиц,

4 - инжекционная ускоряющая система,

5 - отклоняющие магниты,

6 - ускоряющая система ускорителя.

На Фиг. 2 (Приложение) приведена схема многооборотной инжекции с использованием разно-полярных магнитных диполей, где:

1 - магнитные диполи, которые отклоняют частицы от равновесной орбиты, (DM - диполи),

2 - магнитные диполи, которые отклоняют частицы к равновесной орбите (RM - диполи),

3 - траектория частиц, энергия которых равна энергии инжекции,

4 - траектория частиц, которые были ускорены на первом обороте,

5 - траектория частиц, ускоренных на первом и втором оборотах,

- инжекционная пара диполей с противоположной полярностью магнитного поля,

±М2 - дополнительная пара диполей с противоположной полярностью магнитного поля.

Способ работает следующим образом. Пучок заряженных частиц инжектируется в магнитную систему, которая состоит из двух диполей с разной полярностью магнитной индукции (Фиг. 1). В случае, когда поля диполей однородны, частицы в диполе движутся по круговой траектории с циклическим радиусом R

R=P/q Bz,

где Р - полный импульс частицы, Bz - величина магнитной индукции в диполе, q - заряд частицы.

Изменение поперечного импульса в диполе, Py, будет равно

dPy/dt=qνxBz, dPy=qBzνxdt,

где νx - продольная скорость частицы, t - время.

На выходе первого инжекционного диполя поперечный импульс достигнет величины

P1,y=P0,y-qBzx1, (qBzx1≤P),

где x1 - длина траектории частицы в первом диполе Р0, y - поперечный импульс на входе в систему инжекционных диполей, Р - полный импульс частицы.

На выходе второго диполя с обратной полярностью импульс будет равен

Р2,y1,y+qBzx20,y-qBz(x12),

где х2 - длина траектории частицы во втором инжекционном диполе.

При равенстве длин траекторий в диполях (х12) импульс на выходе второго диполя будет равен входному импульсу Р2,y0, у.

Для центральных частиц пучка х120, Р0,у=0, и ось пучка будет введена на равновесную орбиту ускорителя.

Ускорение частиц на первом и последующих оборотах приводит к увеличению циклического радиуса частиц в полях диполей и, следовательно, к уменьшению смещения частиц от равновесной орбиты ускорителя. Разность смещений пучка Δy1=yinj-y1 называют «промашкой» пучка на первом обороте. Здесь y1 - максимальное смещение пучка от равновесной орбите на первом обороте, yinj - смещение от равновесной орбиты пучка при его инжекции. Величина «промашки» зависит от величины yinj≈х0 и отношения Pinj1

где

Pinj - инжекционный импульс,

Р1 - импульс частицы после первого оборота,

ΔР1 - прирост импульса частицы, ускоренной на первом обороте.

Для случая, когда кинетическая энергия инжектируемых частиц qUinj много меньше энергии покоя частиц Мс2, qUinj/Mc2<<1 отношение импульсов равно

где qΔU - прирост энергии частицы на каждом обороте.

Увеличение числа оборотов (n), накопление частиц на равновесной орбите сопровождается увеличением разброса энергий в захваченном пучке qΔUn=nqΔU. После ускорения частиц относительный разброс энергий в пучке будет равен nqΔU/qUacc, где qUacc - кинетическая энергия ускоренных частиц. С целью уменьшения этой величины ускорение частиц в процессе инжекции не должно быть большим. При ΔU/Uinj<<1 на первом обороте отношение импульсов будет равно

Однако уменьшение прироста энергии частиц ΔU приводит к уменьшению «промашки» Δy1, требуемая величина которой определяется поперечным фазовым объемом пучка. «Промашка» на первом обороте инжекции при малых ΔU равна

где θ=arccos(yinj/Rinj), a Rinj=Pinj/qBz - циклический радиус частицы в поле Bz.

Например при ΔU/Uinj=2% и θ=10° «промашка» составит Δн1≅0.12yinj

Выбором координаты инжекции , можно задавать требуемую величину «промашки» Δy1. Для последующих оборотов частиц «промашка» Δyn<Δy1.

В данном методе многооборотной инжекции не используется постепенное заполнение горизонтальной и вертикальной фазовых плоскостей ускорителя, при котором инжектированные частицы смещаются в фазовой плоскости так, что бы освободить место для вновь инжектированных частиц.

В данном методе пучки частицы каждого последующего оборота выводятся на равновесную орбиту ускорителя. И если инжектируется согласованный пучок, то вертикальный поперечный эмиттанс накопленного пучка будет равен эмиттансу инжектированного пучка.

Величина относительного энергетического разброса частиц на выходе ускорителя пропорциональна числу захваченных оборотов (N) и обратно пропорциональна отношениям:

и

где yinj - величина смещения инжектированного пучка; Δy1 - величина промашки пучка на первом обороте; qUacc - кинетическая энергия ускоренных частиц; qUinj - кинетическая энергия инжектированных частиц; q - заряд частиц.

Величина относительного энергетического разброса равна:

где θ=arccos(yinj/Rinj).

Величина энергетического разброса при данном способе многооборотной инжекции, может быть достаточно малой и удовлетворять целому ряду физических задач. А для многих промышленных применений не имеет существенного значения. При заданных параметрах Δy1, Uinj, Uacc и sinθ относительный энергетический разброс в ускоренном пучке может быть уменьшен путем увеличения смещения пучка при инжекции yinj.

Особые преимущества данный способ имеет при его использовании в индукционных циклических ускорителях с постоянным магнитным полем. Поскольку такие ускорители имеют низкий порог энергии инжекции qUinj, это позволяет существенно уменьшить величину разброса частиц по энергиям при инжекции и относительный энергетический разброс частиц в ускоренном пучке.

При ускорении многозарядных ионов циклический радиус ионов будет зависит от величины их зарядности, q. Чем больше зарядность иона, тем больше циклический радиус в данном поле диполя и тем больше промашка на первом обороте. Это обстоятельство позволяет производить селекцию зарядности накопленных в ускорителе ионов.

Литература

1. В.И. Волков, И.Н. Мешков, В.А. Михайлов, Г.В. Трубников, А.В. Тузиков, А.А. Фатеев. Концептуальный проект системы инжекции пучков тяжелых ионов в бустер ускорительного комплекса NICA. Письма в ЭЧАЯ, 2014, Т. 11, №5 (189), с. 1045-1067.

2. Е.В. Буляк, Н.Н. Моченников. «Способ многооборотной инжекции заряженных частиц», Авторское свидетельство №701493, Бюллетень №33, 07.09.82.


СПОСОБ МНОГООБОРОТНОЙ ИНЖЕКЦИИ ЗАРЯЖЕННЫХ ЧАСТИЦ В ЦИКЛИЧЕСКИЙ УСКОРИТЕЛЬ
СПОСОБ МНОГООБОРОТНОЙ ИНЖЕКЦИИ ЗАРЯЖЕННЫХ ЧАСТИЦ В ЦИКЛИЧЕСКИЙ УСКОРИТЕЛЬ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 42.
10.07.2015
№216.013.5e58

Устройство для изготовления цилиндрических трубок для газонаполненных дрейфовых детекторов ионизирующего излучения

Устройство может быть использовано для изготовления цилиндрических трубок из пластика или металлопластика для газонаполненных дрейфовых детекторов ионизирующего излучения. Рабочий орган для ультразвуковой сварки представляет собой сонотрод со сферической рабочей поверхностью и установлен с...
Тип: Изобретение
Номер охранного документа: 0002555693
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.694c

Способ ускорения тела

Изобретение относится к механике и может быть использовано для придания ускорения телу. Газодинамически ускоряют тело, ускоряют тело взрывной волной, перемещаемой в пространстве со скоростью в зависимости от скорости детонации, радиуса и шага намотки спирали, обеспечивают устойчивость процесса...
Тип: Изобретение
Номер охранного документа: 0002558509
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c91

Способ определения пространственного распределения плотности в нанослое

Изобретение относится к области исследований слоистых наноструктур, в частности методике диагностики структуры наносистем. Способ определения пространственного распределения плотности атомов в нанослое состоит в том, что измеряют интенсивности отражения и пропускания через структуру нейтронов и...
Тип: Изобретение
Номер охранного документа: 0002559351
Дата охранного документа: 10.08.2015
20.12.2015
№216.013.9c3a

Анализатор состава вещества

Изобретение относится к спектральному анализу элементного состава вещества. В устройстве для спектрального анализа состава вещества на платформе на ВЧ генераторе расположены отдельно газовая, жидкостная и твердотельная горелки, которые подключены в порядке использования к штуцеру и к ВЧ...
Тип: Изобретение
Номер охранного документа: 0002571619
Дата охранного документа: 20.12.2015
20.03.2016
№216.014.cc0a

Устройство для измерения угла наклона плоскости

Устройство относится к области измерительной техники и может быть использовано в геодезии; при строительстве протяженных гидротехнических сооружений; при создании приборов и устройств, требующих привязки к уровню горизонта; а также в технике физического эксперимента. Технический результат от...
Тип: Изобретение
Номер охранного документа: 0002577804
Дата охранного документа: 20.03.2016
10.08.2016
№216.015.55be

Способ измерения спектра переданного импульса нейтронов

Изобретение относится к области исследований конденсированных сред нейтронами, в частности методики диагностики неоднородного состояния или низкочастотной динамики среды. Способ измерения спектра переданного импульса нейтронов включает прецессию магнитного момента нейтронов в двух областях...
Тип: Изобретение
Номер охранного документа: 0002593431
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55c5

Способ и устройство для измерения профиля нейтронного пучка (пучков)

Изобретение относится к области радиационных технологий, а также к исследованиям, созданию и эксплуатации ядерных установок и ускорителей. Способ измерения профиля нейтронного пучка (пучков) в плоскости, перпендикулярной выделенному его (их) направлению, заключается в том, что пучок (пучки)...
Тип: Изобретение
Номер охранного документа: 0002593433
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.823b

Способ настройки высокочастотного резонатора на резонансные частоты с заданной кратностью

Изобретение относится к технике высоких и сверхвысоких частот. Особенностью заявленного способа настройки высокочастотного резонатора с заданной кратностью является то, что настройка резонатора на резонансные частоты с заданной кратностью осуществляется в порядке убывания влияния настраиваемой...
Тип: Изобретение
Номер охранного документа: 0002601539
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8925

Устройство для измерения местоположения проволок в газовых проволочных камерах

Изобретение относится к газовым ионизационным многопроволочным камерам, в частности, к дрейфовым камерам с тонкостенными дрейфовыми трубками. Устройство для измерения местоположения проволок в газовых проволочных камерах в системе координат, связанной с несущей конструкцией камеры, включает...
Тип: Изобретение
Номер охранного документа: 0002602492
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.a62a

Индукционный синхротрон с постоянным магнитным полем

Изобретение относится к ускорительной технике и может быть использовано в области физики частиц высоких энергий, промышленности, медицины и научных исследований. Технический результат - ускорение в постоянном магнитном поле с почти постоянным радиусом орбит во всем диапазоне ускорения,...
Тип: Изобретение
Номер охранного документа: 0002608365
Дата охранного документа: 18.01.2017
Показаны записи 11-12 из 12.
20.02.2020
№220.018.040d

Магнитная система индукционного синхротрона с постоянным во времени магнитным полем

Изобретение относится к ускорительной технике и может быть использовано при разработке индукционных циклических ускорителей с практически постоянным радиусом орбиты и постоянным во времени магнитным полем. Индукционный, не резонансный способ ускорения решает задачу синхронизации в широком...
Тип: Изобретение
Номер охранного документа: 0002714505
Дата охранного документа: 18.02.2020
20.02.2020
№220.018.043e

Способ формирования равновесных траекторий частиц в циклическом ускорителе с постоянным радиусом орбиты

Изобретение относится к ускорительной технике и может быть использовано при разработке циклических ускорителей с практически постоянным радиусом орбиты, например индукционных синхротронов с постоянным во времени магнитным полем. Способ формирования равновесных траекторий частиц в циклическом...
Тип: Изобретение
Номер охранного документа: 0002714507
Дата охранного документа: 18.02.2020
+ добавить свой РИД