×
10.05.2018
218.016.3a54

Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002647632
Дата охранного документа
16.03.2018
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к радиотехнике и может использоваться в радиолокационных станциях в режимах сопровождения целей для обработки полифазных (p-фазных, p≥2) пачечных фазокодоманипулированных сигналов, кодированных ансамблем из p дополнительных последовательностей длины N=p, k∈N, N - множество натуральных чисел, по предварительному целеуказанию в ограниченном доплеровском диапазоне частот. Техническим результатом является уменьшение аппаратурных затрат. Устройство содержит регистр сдвига, процессор быстрого Д-преобразования Фурье, блок перекрестных связей, блок весовых коэффициентов, N блоков формирования автокорреляционной функции, каждый из которых содержит p-1 регистров сдвига и p-1 сумматоров комплексных чисел, N пороговых устройств. 1 з.п. ф-лы, 2 ил., 2 табл.
Реферат Свернуть Развернуть

Изобретение относится к радиотехнике и может использоваться в радиолокационных станциях в режимах сопровождения целей для обработки полифазных (p-фазных, ) пачечных фазокодоманипулированных (ФКМ) сигналов с неизвестной частотой Доплера, кодированных ансамблем дополнительных последовательностей длины , , - множество натуральных чисел, по предварительному целеуказанию в ограниченном доплеровском диапазоне частот.

Известно устройство цифровой обработки полифазных ортогональных ФКМ сигналов [1], содержащее регистр сдвига с числом ячеек N, первый и второй блоки перекрестных связей, процессор быстрого преобразования Виленкина-Крестенсона-Фурье (БПВК-Ф), блок весовых коэффициентов, N одинаковых блоков формирования автокорреляционной функции (АКФ) полифазного ортогонального сигнала, содержащего одинаковых регистров сдвига и одинаковых сумматоров комплексных чисел, N пороговых устройств, причем входом устройства является вход регистра сдвига, а выходом устройства являются выходы N пороговых устройств, при этом регистр сдвига имеет один вход и N выходов, которые соединены с соответствующими входами первого блока перекрестных связей, имеющего N входов и выходов, выходы первого блока перекрестных связей соединены с соответствующими сигнальными входами процессора БПВК-Ф, имеющего сигнальных входов, N входов весовых коэффициентов, соединенных с соответствующими выходами блока весовых коэффициентов, и выходов, которые соединены с соответствующими входами второго блока перекрестных связей, имеющего входов и выходов, выходы второго блока перекрестных связей соединены с входами N одинаковых блоков формирования АКФ полифазного пачечного сигнала по N входов в каждом, при этом каждый блок формирования АКФ полифазного пачечного сигнала имеет N входов и один выход и состоит из одинаковых регистров сдвига, имеющих один вход и один выход, с числом ячеек (Q – скважность сигнала) в каждом и одинаковых сумматоров комплексных чисел, имеющих два входа и один выход, при этом первый вход блока формирования АКФ полифазного пачечного сигнала соединен со входом первого регистра сдвига, первый вход каждого i-го сумматора комплексных чисел соединен с выходом i-го регистра сдвига, а второй вход каждого i-го сумматора комплексных чисел соединен с -м входом блока формирования АКФ полифазного пачечного сигнала, выход -го сумматора комплексных чисел является выходом блока формирования АКФ полифазного пачечного сигнала, выход каждого из N блоков формирования АКФ полифазного пачечного сигнала соединен с одним из входов одного из N пороговых устройств, имеющих по два входа и одному выходу, на вторые входы которых для сравнения подаются пороговые уровни, выходы N пороговых устройств являются выходами устройства.

Однако известное устройство обработки полифазных пачечных ФКМ сигналов, содержащее N одинаковых блоков формирования АКФ, каждый из которых состоит из одинаковых регистров сдвига с числом ячеек и одинаковых сумматоров комплексных чисел, имеет большие аппаратурные затраты.

Целью изобретения является уменьшение аппаратурных затрат путем использования устройства цифровой обработки полифазных пачечных ФКМ сигналов, кодированных ансамблем из p дополнительных последовательностей, называемых полифазными когерентными дополнительными сигналами (КДС) [2] и имеющих, как и у прототипа, АКФ с областью нулевых боковых лепестков. Однако предлагаемое устройство цифровой обработки в каждом из N одинаковых блоков формирования АКФ вместо регистров сдвига и сумматоров комплексных чисел будет иметь по регистров сдвига и сумматоров комплексных чисел, т.е. в раз меньше.

Для сжатия полифазных КДС в состав предлагаемого устройства цифровой обработки входит процессор быстрого Д-преобразования Фурье (БП-Д-Ф), использующий совмещенный алгоритм БПФ в базисах-матрицах дополнительных последовательностей [2] и дискретных экспоненциальных функций (ДЭФ), позволяющий одновременно снимать манипуляцию полифазных импульсных сигналов, кодированных ансамблями дополнительных последовательностей, и определять частоту Доплера в ограниченном доплеровском диапазоне частот по предварительному целеуказанию.

На фиг.1 приведена структурная схема предлагаемого устройства цифровой обработки полифазных КДС, на фиг.2 – сигнальный граф быстрого Д-преобразования Фурье при и .

Устройство содержит (фиг.1): регистр 1 сдвига с числом ячеек, равным количеству элементарных дискрет в импульсе, процессор 2 БП-Д-Ф, блок 3 перекрестных связей, блок 4 весовых коэффициентов, N одинаковых блоков 5 формирования АКФ полифазного КДС, каждый из которых содержит одинаковых регистров 6 сдвига с числом ячеек, равным периоду следования импульсов , и одинаковых сумматоров 7 комплексных чисел, N пороговых устройств 8.

Регистр 1 сдвига имеет один вход и N выходов, причем вход регистра является входом устройства, выходы соединены с соответствующими сигнальными входами процессора 2 БП-Д-Ф.

Алгоритм работы процессора БП-Д-Ф основан на совмещении алгоритмов БПФ в базисах-матрицах дополнительных последовательностей и ДЭФ путем поэлементного перемножения каждой строки матрицы дополнительных последовательностей размером на каждую строку матрицы ДЭФ размером . Полученная при этом матрица размером представляет собой набор матриц импульсных характеристик размером на N различных частотах, т.е. строки матрицы ДЭФ играют роль частотных каналов.

Состав и алгоритм работы процессора БП-Д-Ф описывается следующим набором математических выражений:

где - вектор входного сигнала, состоящий из N дискрет;

- вектор выходного сигнала (спектра), состоящий из дискрет;

- диагональная матрица с элементами из i-й строки матрицы ДЭФ, входящая в состав блочной матрицы размером ;

- матрица дополнительных последовательностей порядка k;

j – номер итерации;

- матрица-сомножитель из алгоритма факторизации матриц методом Гуда [3];

- матрица перестановки;

- номера строк матриц и соответственно;

- число a по модулю p;

- число b в p-ичном виде;

- операция сложения по модулю p.

Первое математическое выражение, входящее в состав алгоритма, называется дискретное Д-преобразование Фурье.

Данный алгоритм определяет порядок соединения N сигнальных входов (вектор входного сигнала) и N входов весовых коэффициентов с выходами (вектор выходного сигнала) процессора БП-Д-Ф.

Выходы процессора 2 БП-Д-Ф соединены с соответствующими входами блока 3 перекрестных связей.

Блок 3 перекрестных связей имеет входов и выходов и предназначен для упорядочивания выходных значений процессора БП-Д-Ф в соответствии с набором матриц импульсных характеристик на N различных частотах Доплера: первые N выходов блока перекрестных связей представляют собой результат перемножения матрицы импульсных характеристик на отсчеты входного сигнала процессора БП-Д-Ф на нулевой частоте, вторые N выходов – на первой частоте и т.д., последние N выходов – на -й частоте. Перекрестные связи входов с выходами блока 3 перекрестных связей определяется выражениями:

где - i-й разряд -го выхода блока перекрестных связей в p-ичном виде ;

- i-й разряд -го входа блока перекрестных связей в p-ичном виде .

Блок 4 весовых коэффициентов имеет N выходов, которые соединены с соответствующими входами весовых коэффициентов процессора БП-Д-Ф.

Матрица дополнительных последовательностей (импульсных характеристик) содержит смежных ансамблей дополнительных последовательностей по p в каждом [2]. Полифазный КДС кодируется одним из смежных ансамблей дополнительных последовательностей, поэтому выходов блока перекрестных связей соединены с входами N одинаковых блоков 5 формирования АКФ полифазного КДС по p входов в каждом.

Порядок соединения выходов блока 3 перекрестных связей с входами N одинаковых блоков 5 формирования АКФ полифазного КДС определяется согласно выражению

,

где - номер блока формирования АКФ полифазного КДС;

- номер входа i-го блока формирования АКФ полифазного КДС;

- номер смежного ансамбля дополнительных последовательностей;

- номер выхода блока перекрестных связей.

Каждый блок 5 формирования АКФ полифазного КДС имеет p входов и один выход и состоит из одинаковых регистров 6 сдвига с числом ячеек , имеющих один вход и один выход, одинаковых сумматоров 7 комплексных чисел, имеющих два входа и один выход, при этом первый вход блока 5 формирования АКФ полифазного пачечного сигнала соединен с входом первого регистра 6 сдвига, первый вход каждого i-го сумматора 7 комплексных чисел соединен с выходом i-го регистра 6 сдвига, а второй вход каждого i-го сумматора 7 комплексных чисел соединен с -м входом блока 5 формирования АКФ полифазного пачечного сигнала, выход -го сумматора 7 комплексных чисел является выходом блока 5 формирования АКФ полифазного КДС.

Выход каждого из N блоков 5 формирования АКФ полифазного КДС соединен со входом одного из N пороговых устройств 8. Выходы N пороговых устройств 8 являются выходами устройства.

По номеру порогового устройства (), в котором превышен порог, определяется доплеровский сдвиг частоты.

Рассмотрим пример работы устройства обработки полифазного когерентного дополнительного сигнала с параметрами: число фаз , число дискрет в импульсе и скважность .

Регистр 1 сдвига имеет один вход, являющийся входом устройства, и 8 выходов, которые соединены с соответствующими сигнальными входами процессора 2 БП-Д-Ф.

Состав и алгоритм работы процессора 2 БП-Д-Ф будет описывается следующим набором математических выражений:

где - вектор входного сигнала;

- вектор выходного сигнала, имеющего 64 отсчета;

- матрица дополнительных последовательностей порядка ;

- номера строк матриц и соответственно;

j – номер итерации.

Блочная матрица, входящая в дискретное Д-преобразование Фурье (первое выражение), состоит из следующих диагональных матриц:

;

;

;

;

;

;

;

где .

Матрицы-сомножители , и определяются с помощью алгоритма Гуда [3]:

где - матрица ДЭФ размером ;

- единичная матрица размером .

После перемножения получим следующие матрицы-сомножители:

;

;

.

Далее получим матрицы перестановки и .

Рассмотрим первую итерацию. При

Тогда при

При

При

При

В таблице представлено полученное соответствие номеров строк матрицы номерам строк матрицы .

Из таблицы следует, что для первой итерации матрица перестановки будет иметь следующий вид:

.

Тогда для первой итерации получим следующую матрицу-сомножитель:

.

Выполняя аналогичные расчеты для второй итерации при , получим следующую матрицу перестановки:

.

Тогда для второй итерации матрица-сомножитель будет иметь следующий вид:

.

В итоге дискретное Д-преобразование Фурье будет иметь вид:

,

в котором были рассчитаны все составляющие матрицы-сомножители.

Выполняя умножение вектора справа налево, получим алгоритм быстрого Д-преобразования Фурье, сигнальный граф которого изображен на фиг.2.

Данный граф определяет алгоритм вычисления спектра и порядок соединения 8 сигнальных входов (вектор ) и 8 входов весовых коэффициентов с 64 выходами (вектор ) процессора 2 БП-Д-Ф.

Выходы процессора 2 БП-Д-Ф соединены с соответствующими входами блока 3 перекрестных связей.

Блок 3 перекрестных связей имеет 64 входа и 64 выхода, которые соединены согласно выражениям

где - i-й разряд -го выхода блока 3 перекрестных связей в двоичном виде;

- i-й разряд -го входа блока 3 перекрестных связей в двоичном виде.

На фиг.2 показан порядок соединения выходов блока 3 перекрестных связей с его входами (нумерация выходов сигнального графа БП-Д-Ф). Например, первый выход блока 3 перекрестных связей соединен с его первым входом, 34-й выход – со 2-м входом, 19-й выход – с 3-м входом, 52-й выход – с 4-м входом и т.д.

Порядок соединения 64 выходов блока 3 перекрестных связей с 16 входами 8 одинаковых блоков 5 формирования АКФ полифазного КДС определяется согласно выражению

,

где - номер блока 5 формирования АКФ полифазного КДС;

- номер входа i-го блока формирования АКФ полифазного КДС;

- номер смежного ансамбля дополнительных последовательностей;

- номер выхода блока перекрестных связей.

Пусть номер смежного ансамбля дополнительных последовательностей , тогда порядок соединения -го выхода блока 3 перекрестных связей с j-м входом i-го блока 5 формирования АКФ полифазного КДС представлен в следующей таблице:

Каждый блок 5 формирования АКФ полифазного КДС имеет 2 входа и один выход и состоит из одного регистра 6 сдвига с числом ячеек 16, имеющего один вход и один выход, и одного сумматора 7 комплексных чисел, имеющего два входа и один выход, при этом первый вход блока 5 формирования АКФ полифазного КДС соединен с входом регистра 6 сдвига, первый вход сумматора 7 комплексных чисел соединен с выходом регистра 6 сдвига, а второй вход сумматора 7 комплексных чисел соединен со 2-м входом блока 5 формирования АКФ полифазного КДС, выход сумматора 7 комплексных чисел является выходом блока 5 формирования АКФ полифазного КДС.

Выход каждого из 8 блоков 5 формирования АКФ полифазного КДС соединен с входом одного из 8 пороговых устройств 8. Выходы 8 пороговых устройств 8 являются выходами устройства.

По номеру порогового устройства (), в котором превышен порог, определяется доплеровский сдвиг частоты.

Литература

1. Устройство цифровой обработки полифазных ортогональных фазокодоманипулированных сигналов. Пат. №2346324 РФ, МПК G06F 17/14. / Емельяненко Н.А., Ипанов Р.Н., Щетинин В.И., Чекмарев М.В. - 2006145187/09; заявл. 20.12.06; опубл. 10.02.09, Бюл. №4.

2. Ипанов Р.Н. Полифазные когерентные дополнительные сигналы. // Журнал радиоэлектроники: Электронный журнал. 2017, №1. URL: http://jre.cplire.ru/jre/jan17/14/text.pdf.

3. Трахтман А.М., Трахтман В.А. Основы теории дискретных сигналов на конечных интервалах. М.: Сов. радио, 1975, 208 с.


Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Устройство цифровой обработки полифазных дополнительных фазокодоманипулированных сигналов
Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
27.10.2018
№218.016.9757

Способ формирования множества ансамблей p-ичных d-кодов

Изобретение относится к области вычислительной техники. Техническим результатом является обеспечение возможности формирования множества ансамблей D-кода порядка k. Раскрыто устройство для формирования 2 матриц p-ичного D-кода размером N×N, где N=p, р - простое число, k≥2 - целое число, при этом...
Тип: Изобретение
Номер охранного документа: 0002670773
Дата охранного документа: 25.10.2018
Показаны записи 1-1 из 1.
27.10.2018
№218.016.9757

Способ формирования множества ансамблей p-ичных d-кодов

Изобретение относится к области вычислительной техники. Техническим результатом является обеспечение возможности формирования множества ансамблей D-кода порядка k. Раскрыто устройство для формирования 2 матриц p-ичного D-кода размером N×N, где N=p, р - простое число, k≥2 - целое число, при этом...
Тип: Изобретение
Номер охранного документа: 0002670773
Дата охранного документа: 25.10.2018
+ добавить свой РИД