×
10.05.2018
218.016.3871

Результат интеллектуальной деятельности: СПОСОБ КОНЦЕНТРИРОВАНИЯ И РАЗДЕЛЕНИЯ ФЛАВОНОИДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области аналитической химии и может быть использовано для концентрирования и разделения флавоноидов (ФЛ), таких как кверцетин, (+)-катехин, нарингин, для последующего определения в растительных образцах, фармацевтических препаратах. Способ концентрирования и разделения флавоноидов, включающий сорбционно-хроматографическое извлечение флавоноидов пропусканием раствора кверцетина, (+)-катехина или нарингина через мезопористый сорбент типа МСМ-41, полученный из реакционной смеси цетилтриметиламмоний бромида (CTABr), источника кремния и дистиллированной воды и прошедший гидротермальную обработку, фильтрование полученной смеси, экстракцию темплата, высушивание и кальцинирование, при этом используются ацетонитрильные растворы флавонидов, при этом в качестве источника кремния использован тетраэтоксисилан (TEOS), реакционная смесь дополнительно содержит аммиак и этиловый спирт, обработку сорбента производят при определенных условиях, полученный сорбент предварительно фракционируют до размера частиц 0,1-0,25 мм и дополнительно модифицируют триметилхлорсиланом, при этом в качестве растворителя при модификации используется трихлорметан. Вышеописанный способ повышает степень извлечения и разделения флавоноидов- кверцетина, нарингина, катехина. 6 ил., 13 пр. .

Изобретение относится к области аналитической химии и может быть использовано для концентрирования и разделения флавоноидов (ФЛ), таких как кверцетин, (+)-катехин, нарингин, для последующего определения в растительных образцах, фармацевтических препаратах.

Концентрирование и разделение флавоноидов осуществляют сорбционно-хроматографическим методом с использованием в качестве сорбентов мезопористых материалов типа МСМ-41. По своей химической природе мезопористый материал типа МСМ-41 идентичен силикагелю, но имеет большие значения удельной площади поверхности (более 1000 м2/г), узкое распределение пор по размерам (2-10 нм) гексагональной структуры, что позволяет использовать данный материал в качестве сорбента. МСМ-41, а также модифицированные органосиланами композиты на его основе могут быть использованы в качестве альтернативы силикагелю и другим сорбентам в хроматографических процессах и для сорбционного концентрирования и выделения полифенольных веществ.

Для выделения аналита из смеси с помощью мезопористых сорбентов используют колонки, которые предварительно заполняют материалом типа МСМ-41 или модифицированным триметилхлорсиланом композитом на его основе. Высота слоя сорбента 1,5-2,0 см. Диаметр колонки 1,2 см.

Согласно литературным данным для идентификации, разделения и определения флавоноидов применяют, в основном, обращенно-фазовый вариант высокоэффективной жидкостной хроматографии.

Для выделения и концентрирования на стадии пробоподготовки используют силикагели, модифицированные гидрофобными алкильными группами (например, C18) и полимерные сорбенты [Дмитриенко С.Г., Кудринская В.А., Апяри В.В. Методы выделения и концентрирования и определения кверцетина / Журнал аналитической химии. 2012. Т. 67, №64. с. 340-353, Карцова Л.А. Алексеева А.В. Хроматографические и электрофоретические методы определения полифенольных соединений / Журнал аналитической химии. - 2008. - №11. - С. 1126-1136, Шафигулин Р.В., Комиссарова Н.В., Родина Т.А., Буланова А.В. Хроматографическое и препаративное разделение флавоноидов, содержащихся в чае // Сборник статей «Хроматография на благо России». - М.: «Граница». 2007. С. 348-356, Темердардашев З.А., Фролова Н.А., Колычев И.А. Определение фенольных соединений в лекарственных растениях методом обращенно-фазовой ВЭЖХ / Журнал аналитической химии. 2011. Т. 66, №4. С.417-424]. Степень извлечения кверцетина с использованием сорбента С18 достигает более 90%. Однако в литературе отсутствуют данные по изучению возможностей выделения флавоноидов из неводных растворов при комнатной температуре, а также не приведены количественные характеристики процесса разделения и концентрирования.

Известен способ, в котором для группового динамического сорбционного концентрирования флавоноидов (рутин, морин, нарингенин, хризин) использовали концентрирующую микроколонку (30×4 мм), заполненную 0,055 г сверхсшитого полистирола (ССПС, патроны Диапак П-3, ЗАО «БиоХимМак», Россия). Сорбцию проводили из водных растворов ФЛ. Перед использованием колонку промывали 0,1 М раствором соляной кислоты (cHCl=0,1 М). Определение флавоноидов проводили методом ВЭЖХ [С.Г. Дмитриенко, А.В. Степанова, В.А. Кудринская, В.В. Апяри. Особенности разделения флавоноидов методом обращенно-фазовой высокоэффективной хроматографии на колонке Luna 5u С18(2)/ ВЕСТН. МОСК. УН-ТА. СЕР. 2. ХИМИЯ. 2012. Т. 53. №6. С. 369-373]. Установлено, что в выбранных условиях рутин сорбируется на 90±4%, а остальные ФЛ - на 95-99%.

Известен способ, в котором разделение флавоноидов осуществляли на сорбентах с молекулярными отпечатками кверцетина на основе полимера, содержащего акриламид и ЭГДМА. Полимеризацию смеси, содержащей ацетон в качестве растворителя, проводили в течение 24 ч при 60°С. Сорбцию проводили в течение 1 ч. При этом был получен полимер, характеризующийся следующими факторами разделения: кверцетин/рутин (30), кверцетин/нарингенин (1), кверцетин/нарингин (18), кверцетин/морин (7), кверцетин/хризин (0,8). Импринтинг-фактор был равен 6 [Кудринская В.А., Дмитриенко С.Г., Золотов Ю.А. Синтез и исследование сорбционных свойств полимеров с молекулярными отпечатками кверцетина// Вестник МГУ. Сер. 2. Химия. 2009. Т. 50. №3. С. 156-163].

Из патента РФ 2491989 [МПК B01J 20/282, С07В 39/04, опубл. 29.03.2012], взятого за прототип, известен способ получения мезопористого сорбента для сорбционного концентрирования кверцитина и (+)-кахетина, включающий приготовление реакционной смеси на основе Ludox-HS-40, CTABr, NaOH, H2O дистиллированной, кверцетина (или (+)-катехина), дальнейшую гидротермальную обработку, промывание водой дистиллированной и смесью 96%-ного этанола с нитратом аммония, высушивание и кальцинирование при 550°С в течение 2 ч.

Изобретение обеспечивает получение мезопористых материалов типа МСМ-41, которые могут быть использованы как носители в хроматографии, а также для сорбционного концентрирования витаминов, относящихся к группе флавоноидов. Однако способ является достаточно длительным (гидротермальная обработка происходит в течение 144 ч).

Задачей данного изобретения является разработка нового эффективного способа извлечения и концентрирования кверцетина, (+)-катехина, нарингина из растворов сорбционно-хроматографическим.

Технический результат заключается в повышении степени извлечения, концентрирования, разделения флавоноидов на мезопористом сорбенте.

Технический результат достигается тем, что в способе концентрирования и разделения флавоноидов, включающем сорбционно-хроматографическое извлечение пропусканием раствора флавоноидов через мезопористый сорбент типа МСМ-41, полученный из реакционной смеси источника кремния, цетилтриметиламмоний бромида (CTABr) и дистиллированной воды и прошедший гидротермальную обработку, фильтрование полученной смеси, экстракцию темплата, высушивание и кальцинирование, отличающийся тем, что используются ацетонитрильные растворы флавонидов: кверцетин с концентрацией с=1⋅10-4 моль/дм3, нарингин - с=1⋅10-4 моль/дм3, (+)-катехин - с=1⋅10-4 моль/дм3, при этом в качестве источника кремния использован тетраэтоксисилан (TEOS), реакционная смесь дополнительно содержит аммиак и этиловый спирт при мольном соотношении 1 TEOS:0,2 CTABr:22 NH3:50 С2Н5ОН:475 H2O, обработку сорбента производят при температуре 130°С в течение 2 ч, полученный сорбент дополнительно модифицируют триметилхлорсиланом при комнатной температуре в течение десяти часов при постоянном перемешивании, в качестве растворителя используют трихлорметан.

Решение задачи достигается тем, что концентрирование и разделение флавоноидов происходит из ацетонитрильных растворов на предварительно модифицированном триметилхлорсиланом наностркуктурированном мезопористом материале МСМ-41.

На фиг. 1 приведена Таблица 1 коэффициентов концентрирования флавоноидов кремнийсодержащими материалами.

На фиг. 2 приведены выходные кривые сорбции нарингина (1) и кверцетина (2) на МСМ-41 из ацетонитрильных растворов их смеси (U=0.2 см3/мин, m=0.35 г).

На фиг. 3 приведены выходные кривые сорбции (+)-катехина (1) и кверцетина (2) на МСМ-41 из ацетонитрильных растворов их смеси (U=0.2 см3/мин, m=0.35 г).

На фиг. 4 приведены выходные кривые сорбции нарингина (1) и кверцетина (2) на MMet из ацетонитрильных растворов их смеси (U=0.2 см3/мин, m=0.35 г).

На фиг. 5 приведены выходные кривые сорбции (+)-катехина (1) и кверцетина (2) на MMet из ацетонитрильных растворов их смеси (U=0.2 см3/мин, m=0.35 г).

На фиг. 6 приведена Таблица 2 значений разрешения хроматографических зон (Rs) бинарных смесей флавоноидов при их сорбции различными сорбентами.

Сорбенты типа МСМ-41 предварительно получают методом жидкокристаллического темплатирования. Мольное соотношение компонентов для синтеза 1.0TEOS:0.2CTABr:21.0NH3:50.0C2H5OH:475.0H2O. Модифицирование производят триметилхлорсиланом. Для осуществления модификации сорбент был предварительно фракционирован (0.1÷0.25 мм) и активирован при 130°С в течение двух часов. Далее МСМ-41 помещали в колбу, куда приливали триметилхлорсилан (модификатор). В качестве растворителя использовался трихлорметан. Модификацию осуществляли при комнатной температуре в течение десяти часов при постоянном перемешивании.

Применение мезопористых наноструктурированных материалов типа МСМ-41 в качестве сорбентов позволяет добиться увеличения коэффициентов концентрирования веществ по сравнению с силикагелем. Модификация триметилхлорсиланом мезопористого материала типа МСМ-41 в свою очередь способствует увеличению коэффициентов концентрирования. В таблице 1 приведены данные о коэффициентах концентрирования кверцетина, нарингина и (+)-катехина.

Пример 1

Силикагель (ООО «ИМИД» г. Краснодар) помещают в хроматографическую колонку. Диаметр колонки 1.2 см. Высота слоя сорбента 1.5-2.0 см. Через колонку пропускают ацетонитрильный раствор кверцетина (c=1⋅10-4 моль/дм3). Исходные растворы с концентрацией 1⋅10-4 моль/дм3 готовили по навескам.

Пример 2

Сорбент типа МСМ-41 получают по методике, описанной выше. Сорбентом заполняются колонки. Высота слоя сорбента 1.5-2.0 см. Диаметр колонки 1.2 см. Через колонку пропускают кверцетина (с=1⋅10-4 моль/дм3).

Пример 3

Сорбент типа МСМ-41 модифицируют триметилхлорсиланом по методике, описанной выше. Сорбентом заполняются колонки. Высота слоя сорбента 1.5-2.0 см. Диаметр колонки 1.2 см. Через колонку пропускают ацетонитрильный раствор кверцетина (с=1⋅10-4 моль/дм3).

Пример 4

Силикагель (ООО «ИМИД» г. Краснодар) помещают в хроматографическую колонку. Диаметр колонки 1.2 см. Высота слоя сорбента 1.5-2.0 см. Через колонку пропускают ацетонитрильный раствор нарингина (с=1⋅10-4 моль/дм3).

Пример 5

Сорбент типа МСМ-41 получают по методике, описанной выше. Сорбентом заполняются колонки. Высота слоя сорбента 1.5-2.0 см. Диаметр колонки 1.2 см. Через колонку пропускают нарингина (с=1⋅10-4 моль/дм3).

Пример 6

Сорбент типа МСМ-41 модифицируют триметилхлорсиланом по методике, описанной выше. Сорбентом заполняются колонки. Высота слоя сорбента 1.5-2.0 см. Диаметр колонки 1.2 см. Через колонку пропускают ацетонитрильный раствор нарингина (с=1⋅10-4 моль/дм3).

Пример 7

Силикагель (ООО «ИМИД», г. Краснодар) помещают в хроматографическую колонку. Диаметр колонки 1.2 см. Высота слоя сорбента 1.5-2.0 см. Через колонку пропускают ацетонитрильный раствор (+)-катехина (с=1⋅10-4 моль/дм3).

Пример 8

Сорбент типа МСМ-41 получают по методике, описанной выше. Сорбентом заполняются колонки. Высота слоя сорбента 1.5-2.0 см. Диаметр колонки 1.2 см. Через колонку пропускают (+)-катехина (с=1⋅10-4 моль/дм3).

Пример 9

Сорбент типа МСМ-41 модифицируют триметилхлорсиланом по методике, описанной выше. Сорбентом заполняются колонки. Высота слоя сорбента 1.5-2.0 см. Диаметр колонки 1.2 см. Через колонку пропускают ацетонитрильный раствор (+)-катехина (с=1⋅10-4 моль/дм3).

Пример 10

Сорбент типа МСМ-41 получают по методике, описанной выше. Сорбентом заполняются колонки. Высота слоя сорбента 1.5-2.0 см. Диаметр колонки 1.2 см. Через колонку пропускают ацетонитрильный бинарный раствор кверцетина (с=1⋅10-4 моль/дм3) и нарингина (с=1⋅10-4 моль/дм3). Выходные кривые сорбции представлены на фиг. 3.

Пример 11

Сорбент типа МСМ-41 получают по методике, описанной выше. Сорбентом заполняются колонки. Высота слоя сорбента 1.5-2.0 см. Диаметр колонки 1.2 см. Через колонку пропускают ацетонитрильный бинарный раствор кверцетина (с=1⋅10-4 моль/дм3) и (+)-катехина (с=4⋅10-4 моль/дм3). Выходные кривые сорбции представлены на фиг. 4.

Пример 12

Сорбент типа МСМ-41 модифицируют триметилхлорсиланом по методике, описанной выше. Сорбентом заполняются колонки. Высота слоя сорбента 1.5-2.0 см. Диаметр колонки 1.2 см. Через колонку пропускают ацетонитрильный бинарный раствор кверцетина (с=1⋅10-4 моль/дм3) и нарингина (с=1⋅10-4 моль/дм3). Выходные кривые сорбции представлены на фиг. 5.

Пример 13

Сорбент типа МСМ-41 модифицируют триметилхлорсиланом по методике, описанной выше. Сорбентом заполняются колонки. Высота слоя сорбента 1.5-2.0 см. Диаметр колонки 1.2 см. Через колонку пропускают ацетонитрильный бинарный раствор кверцетина (с=1⋅10-4 моль/дм3) и и (+)-катехина (с=4⋅10-4 моль/дм3). Выходные кривые сорбции представлены на фиг. 6.

Для количественного описания разделения компонентов рассчитано разрешение хроматографических зон (таблица 2) с применением выражения, характеризующего разрешение двух хроматографических зон:

где и - объем раствора, пропущенного до с/с0=0.5 наиболее и наименее сорбируемого компонента, соответственно, дм3; W1 и W2 - ширина хроматографической зоны (ширина пика у основания при переходе к дифференциальной зависимости), дм3.

При использовании исследуемых сорбентов при разделении агликонов - кверцетина и (+)-катехина наблюдается увеличение разрешения при использовании модифицированного материала (МСМ-41<MMet), что свидетельствует о перспективности применения высокоупорядоченных мезопористых материалов не только для извлечения и концентрирования агликонов флавоноидов, но и их эффективного разделения.

Способ концентрирования и разделения флавоноидов, включающий сорбционно-хроматографическое извлечение флавоноидов пропусканием раствора кверцетина, (+)-катехина или нарингина через мезопористый сорбент типа МСМ-41, полученный из реакционной смеси цетилтриметиламмоний бромида (CTABr), источника кремния и дистиллированной воды и прошедший гидротермальную обработку, фильтрование полученной смеси, экстракцию темплата, высушивание и кальцинирование, отличающийся тем, что используются ацетонитрильные растворы флавонидов с концентрацией кверцетина с=1⋅10-4 моль/дм, нарингина с=1⋅10-4 моль/дм, (+)-катехина с=1⋅10-4 моль /дм, при этом в качестве источника кремния использован тетраэтоксисилан (TEOS), реакционная смесь дополнительно содержит аммиак и этиловый спирт при мольном соотношении 1 TEOS:0,2 CTABr:22 NH 3:50 CHOH:475 HO, обработку сорбента производят при температуре 130°C в течение 2 ч, полученный сорбент предварительно фракционируют до размера частиц 0,1-0,25 мм и дополнительно модифицируют триметилхлорсиланом при комнатной температуре в течение десяти часов при постоянном перемешивании, при этом в качестве растворителя при модификации используется трихлорметан.
СПОСОБ КОНЦЕНТРИРОВАНИЯ И РАЗДЕЛЕНИЯ ФЛАВОНОИДОВ
СПОСОБ КОНЦЕНТРИРОВАНИЯ И РАЗДЕЛЕНИЯ ФЛАВОНОИДОВ
Источник поступления информации: Роспатент

Показаны записи 1-2 из 2.
25.08.2017
№217.015.a443

Способ использования соединений хинолинового ряда в качестве стимуляторов роста и урожайности баклажана обыкновенного

Изобретение относится к сельскому хозяйству. Используют одно из соединений хинолинового ряда в качестве стимуляторов роста, вегетативной массы и урожайности баклажана обыкновенного: 1,2,2,4-тетраметил-6-(1-пиперидинилкарботиоил)-1,2,3,4-тетрагидрохинолин гидрохлорид;...
Тип: Изобретение
Номер охранного документа: 0002607460
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a444

Способ использования соединений хинолинового ряда в качестве стимуляторов ростовых процессов для видов рода rhododendron l.

Изобретение относится к сельскому хозяйству. В качестве стимуляторов роста используют одно из соединений хинолинового ряда: 1,2,2,4-тетраметил-6-(1-пиперидинилкарботиоил)-1,2-дигидрохинолин гидрохлорид и 4-[(1,2,2,4-тетраметил-1,2-дигидро-6-хинолинил)карботиоил]-1-пиперазинилкарбальдегид...
Тип: Изобретение
Номер охранного документа: 0002607459
Дата охранного документа: 10.01.2017
Показаны записи 21-30 из 31.
19.04.2019
№219.017.2f0b

Клапан топливного бака летательного аппарата

Изобретение относится к устройствам, связанным с подачей топлива к силовой установке, более конкретно - к клапанам топливного бака. Клапан топливного бака состоит из корпуса, содержащего канал сообщения топливного бака с атмосферой, в котором соосно и последовательно размещены нижний и верхний...
Тип: Изобретение
Номер охранного документа: 0002385271
Дата охранного документа: 27.03.2010
29.04.2019
№219.017.4262

Устройство для восстановления функции суставов механотерапией

Изобретение относится к механотерапевтическим аппаратам пассивного действия и может быть использовано для восстановления функции суставов. Устройство содержит платформу-основание и подвижную платформу, которые предназначены для фиксации сегментов конечностей и связаны между собой шарнирно....
Тип: Изобретение
Номер охранного документа: 0002337662
Дата охранного документа: 10.11.2008
09.06.2019
№219.017.768f

Повязка тензоизмерительная

Изобретение относится к медицинской технике, к травматологии и ортопедии, а в частности к перевязочным материалам, используемым при наложении шин или полужестких повязок преимущественно при восстановлении функций суставов после суставных или околосуставных переломов. Тензоизмерительная повязка...
Тип: Изобретение
Номер охранного документа: 0002271185
Дата охранного документа: 10.03.2006
29.06.2019
№219.017.99ce

Пастеризатор текучих продуктов

Изобретение относится к устройствам для пастеризации, преимущественно пищевых текучих продуктов, и может быть использована для пастеризации молока, соков, пива, желе и паст. Пастеризатор текучих продуктов содержит цилиндрическую рабочую камеру, расположенную вертикально. Электрический...
Тип: Изобретение
Номер охранного документа: 0002273141
Дата охранного документа: 10.04.2006
29.06.2019
№219.017.9ac4

Распылитель вращающийся мелкокапельный

Изобретение относится к области использования авиации в сельском и лесном хозяйстве для обработки ядохимикатами и другими жидкими средами и характеризуется простотой изготовления, сборки и очистки с одновременным устранением условий для быстрого загрязнения деталей распылителя и снижением...
Тип: Изобретение
Номер охранного документа: 0002290261
Дата охранного документа: 27.12.2006
10.07.2019
№219.017.ad9a

Беспилотный летательный аппарат

Изобретение относится к устройствам, связанным с подачей топлива к силовой установке беспилотных летательных аппаратов, конкретно к размещению топливной системы силовой установки и конструктивной модификации топливных баков. Беспилотный летательный аппарат содержит топливный бак и эластичную...
Тип: Изобретение
Номер охранного документа: 0002375254
Дата охранного документа: 10.12.2009
25.07.2019
№219.017.b86c

Устройство снижения светопрозрачности решётчатого заграждения

Изобретение относится к средствам для снижения светопрозрачности заграждений решетчатого типа. Технический результат – снижение светопрозрачности готовых решетчатых заграждений. Устройство выполнено в виде корпуса, внутри которого размещена катушка с полотном, оснащенная механизмом...
Тип: Изобретение
Номер охранного документа: 0002695441
Дата охранного документа: 23.07.2019
29.02.2020
№220.018.07a4

Способ получения влагопоглощающего композиционного полимерного материала с микробиологическими добавками

Изобретение относится к химии высокомолекулярных соединений, в частности к способу получения композиционного полимерного материала, обогащенного микроорганизмами. Описан способ получения влагопоглощающего композиционного полимерного материала. Инициирующую смесь добавляют в раствор полисахарида...
Тип: Изобретение
Номер охранного документа: 0002715380
Дата охранного документа: 27.02.2020
22.04.2020
№220.018.1732

Способ получения периклазошпинельной керамики

Изобретение относится к огнеупорной промышленности и может быть использовано для получения обожженных термостойких периклазошпинельных огнеупорных изделий. Способ получения периклазошпинельной керамики включает обжиг керамообразующей смеси карбоната магния (MgCO) и оксида алюминия (γ-AlO)....
Тип: Изобретение
Номер охранного документа: 0002719291
Дата охранного документа: 17.04.2020
05.06.2020
№220.018.2466

Способ определения тритерпеновых сапонинов группы β-амирина в растительном сырье и лекарственных препаратах на их основе

Изобретение относится к медицине, а именно к фармакологии, и может быть использовано для определения тритерпеновых сапонинов группы β-амирина в растительном сырье и лекарственных препаратах на их основе. Для этого по УФ-спектрам водных растворов сапонинов определяют оптическую плотность...
Тип: Изобретение
Номер охранного документа: 0002722746
Дата охранного документа: 03.06.2020
+ добавить свой РИД