×
04.04.2018
218.016.36e8

Результат интеллектуальной деятельности: ФОТОПРЕОБРАЗОВАТЕЛЬ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к полупроводниковой электронике. Фотопреобразователь лазерного излучения включает подложку (1) из n-GaAs, на которую последовательно нанесены слой (2) тыльного барьера из n-AlGaAs, базовый слой (3) из n-GaAs, эмиттерный слой (4) из p-GaAs, слой (5) широкозонного окна из n-AlGaAs, широкозонный стоп-слой (6) из n-AlGaAs и контактный подслой (7) из p-GaAs. Толщина слоя (5) широкозонного окна из n-AlGaAs, где 0,15

Изобретение относится к полупроводниковой электронике и может быть использовано для создания фотопреобразователей (ФП) лазерного излучения.

Как показывают теоретические данные, эффективность преобразования монохроматического (в частности, лазерного) излучения в диапазоне длин волн 0,8-86 мкм для фотопреобразователей на основе GaAs может достигать 85-87% при мощности падающего излучения 100 Вт/см2. Таким образом, задача улучшения характеристик ФП лазерного излучения, таких как квантовый выход и КПД, является весьма актуальной для современной электроники и фотоники.

Известен фотопреобразователь лазерного излучения на основе GaAs (см. Tiqiang Shan, Xinglin Qi, Design and optimization of GaAs photovoltaic converter for laser power beaming, 2015, м. 71, p. 144-150), включающий подложку из n-GaAs толщиной 350 мкм (концентрация электронов Nn=5⋅1018 см-3), буферный слой из n-GaAs толщиной 1 мкм (Nn=5⋅1018 см-3), слой тыльного потенциального барьера из n-AlGaAs толщиной 0,05 мкм (Nn=5⋅1018 см-3), базовый слой из n-GaAs толщиной 3,5 мкм (Nn=1⋅1017 см-3), эмиттерный слой из p-GaAs толщиной 0,5 мкм (концентрация дырок Np=2⋅1018 см-3), слой широкозонного окна из p-GaInP толщиной 0,05 мкм (Np=5⋅1018 см-3), контактный слой из p+-GaAs толщиной 0,5 мкм (Np=5⋅1019 см-3), который впоследствии вытравливают на фоточувствительной области ФП, тыльный и лицевой омические контакты, двухслойное антиотражающее покрытие из TiO2/SiO2 для спектрального диапазона 810-840 нм. Эффективность таких элементов составила 53,2% при мощности падающего излучения 5 Вт/см2 для длины волны 808 нм.

Недостатком известного фотопреобразователя является высокое последовательное сопротивление растекания, связанное с малой толщиной слоя широкозонного окна, что обеспечивает его работоспособность только до мощности 5 Вт/см2.

Известен фотопреобразователь лазерного излучения на основе GaAs (см. E. Oliva, F. Dimroth and A.W. Bett. Converters for High Power Densities of Laser Illumination. - Prog. Photovolt: Res. Appl., 2008, 16:289-295), содержащий подложку из n-GaAs, слой тыльного потенциального барьера из n+-GaInP (Nn=8⋅1018 см-3), базовый слой из n-GaAs, эмиттерный слой из p-GaAs, слой широкозонного окна из p+-GaInP и контактный слой из p+-Al0,5GaAs (Np=1,5⋅1019 см-3) или из p++-Al0,5GaInAs (Np=1⋅1020 см-3), который впоследствии вытравливают на фоточувствительной области ФП, тыльный контакт из Pd/Ge к n-GaAs, лицевой контакт из слоев Ti/Pd/Ag и антиотражающее покрытие из двух слоев: TaOx и MgF2. Эффективность таких фотопреобразователей варьируется от 52% до 54,9% при интенсивности падающего излучения 10-20 Вт/см2 для длины волны 810 нм.

К недостатку известного фотопреобразователя относится усложненная технология его изготовления (использование большого количества разных газов для выращивания слоев разного элементного состава, а следовательно, повышенные требования к очистке реактора от нежелательных примесей). Кроме того, в случае использования широкозонного контактного слоя p+-Al0,5GaAs может увеличиваться последовательное сопротивление структуры из-за большого переходного сопротивления металл-полупроводник.

Наиболее близким к настоящему техническому решению по совокупности существенных признаков является фотопреобразователь лазерного излучения (см. патент RU 2547004, МПК H01L 31/18, опубл. 10.04.2015), принятый за прототип и включающий подложку из n-GaAs, легированную оловом, буферный слой из n-GaAs толщиной не менее 10 мкм, легированный оловом или теллуром, базовый слой из n-GaAs толщиной 3-5 мкм, легированный оловом или теллуром, эмиттерный слой из p-GaAs толщиной 1,5-2,0 мкм, легированный магнием, слой из p-AlxGa1-xAs толщиной 3-30 мкм, легированный магнием или германием, при x=0,3-0,4 в начале роста слоя и при x=0,10-0,15 в приповерхностной области слоя, тыльный омический контакт из Au(Ge)/Au, лицевой омический контакт из Cr/Au и двухслойное антиотражающее покрытие (ZnS/MgF2).

Недостатками известного фотодетектора лазерного излучения является неполное собирание фотогенерированных носителей из базового слоя и высокое последовательное сопротивление, связанное с необходимостью нанесения верхнего металлического контакта непосредственно на слой широкозонного окна, содержащего алюминий.

Задачей настоящего решения является создание такого фотодетектора лазерного излучения, который обладал бы высоким уровнем квантовой эффективности в диапазоне 800-860 нм, а также пониженным последовательным сопротивлением, что обеспечит повышение его КПД, а также возможность увеличения преобразуемой мощности лазерного излучения.

Поставленная задача достигается тем, что фотодетектор лазерного излучения включает полупроводниковую подложку из n-GaAs, на которую последовательно нанесены слой тыльного барьера из n-AlGaAs, базовый слой из n-GaAs, эмиттерный слой из p-GaAs, слой широкозонного окна из p-AlxGa1-xAs толщиной не менее 1 мкм, где 0,15<х<0,25, широкозонный стоп-слой из p-AlyGa1-yAs, где 0,6<y<0,7, и контактный подслой из p-GaAs.

Новым в настоящем фотопреобразователе является введение в структуру слоя тыльного потенциального барьера из n-AlxGa1-xAs, а также введение широкозонного стоп-слоя из p-AlyGa1-yAs, где 0,6<y<0,7, для травления контактного подслоя. Наличие тыльного барьера позволяет обеспечить полное собирание носителей, генерируемых в базовом слое. Наличие широкозонного стоп-слоя из p-AlyGa1-yAs, где 0,6<у<0,7, позволяет выполнить слой широкозонного окна из AlGaAs с малым содержанием алюминия, характеризующегося большей подвижностью носителей заряда и большей удельной проводимостью, что снижает сопротивление растекания фотодетектора. Кроме того, наличие широкозонного стоп-слоя из p-AlyGa1-yAs, позволяет использовать контактный подслой из GaAs, который обладаем очень малым переходным сопротивлением с металлическими контактами, что также понижает последовательное сопротивление структуры. Это условие не выполняется в фотодетекторе-прототипе, где отсутствие селективности для травления контактного подслоя приводит к необходимости осаждать металлический контакт непосредственно на слой широкозонного окна, обладающего большим переходным сопротивлением с металлическим контактом.

Концентрация алюминия в слое широкозонного окна 0,15<x<0,25 обусловлена тем, что при меньшей концентрации возможен заброс фотогенерированных носителей заряда в слой широкозонного окна, где они могут рекомбинировать, не давая вклад в фототок. При концентрации алюминия более 0,25 уменьшение подвижности носителей заряда будет приводить к заметному росту его удельного сопротивления. Толщина слоя широкозонного окна обусловлена тем, что при толщине слоя менее 1 мкм его сопротивление будет больше, чем сопротивление эмиттера, и слой широкозонного окна не будет эффективно способствовать растеканию носителей заряда, так как растекание будет в основном проходить через слой эмиттера. При содержании в стоп-слое Al менее 0,6 не будет обеспечиваться эффективная селективность для травления контактного подслоя, а в случае увеличения концентрации y>0,7, стоп-слой будет иметь тенденцию к деградации вследствие окисления из-за большого содержания алюминия.

В фотодетекторе лазерного излучения слой тыльного барьера может быть выполнен из n-AlzGa1-zAs толщиной 100 нм, где z=0,3, базовый слой из n-GaAs может быть выполнен толщиной 3200 нм, эмиттерный слой из p-GaAs может быть выполнен толщиной 400 нм, слой широкозонного окна из p-AlxGa1-xAs может быть выполнен толщиной 1000 нм, где x=0,20, широкозонный стоп-слой из p-AlyGa1-yAs может быть выполнен толщиной 50 нм, где y=0,65, а контактный подслой из p-GaAs может быть выполнен толщиной 300 нм.

В фотодетекторе лазерного излучения слой тыльного барьера из n-AlzGa1-zAs может быть легирован, например, атомами кремния на уровне (1-2)⋅1018 см-3, базовый слой из n-GaAs может быть легирован, например, атомами кремния на уровне (1-2)⋅1017 см-3, эмиттерный слой из p-GaAs может быть легирован, например, атомами цинка на уровне (1-2)⋅1018 см-3, слой широкозонного окна из p-AlxGa1-xAs может быть легирован, например, атомами цинка на уровне (1-2)⋅1019 см-3, широкозонный стоп-слой из p-AlyGa1-yAs может быть легирован, например, атомами кремния на уровне (1-2)⋅1018 см-3, а контактный подслой p-GaAs может быть легирован, например, атомами цинка на уровне (1-2)⋅1019 см-3.

Настоящее техническое решение поясняется чертежом, где:

на фиг. 1 представлено схематичное изображение поперечного сечения настоящего фотодетектора лазерного излучения;

на фиг. 2 приведен спектр квантовой эффективности фотодетектора лазерного излучения (кривая 8);

на фиг. 3 приведены напряжение холостого хода (кривая 9), фактор заполнения вольтамперной характеристики (кривая 10) и КПД преобразования лазерного излучения (кривая 11) в зависимости от энергетической освещенности и фототока.

Настоящий фотодетектор лазерного излучения показан на фиг. 1. Он включает подложку 1, выполненную из n-GaAs, и последовательно осажденные слои: слой 2 тыльного барьера, выполненный из n-AlGaAs с толщиной, например, 100 нм, базовый слой 3, выполненный из n-GaAs с толщиной, например, 3200 нм, эмиттерный слой 4, выполненный из p-GaAs с толщиной, например, 400 нм, слой 5 широкозонного окна из p-AlxGa1-xAs с толщиной, например, 1000 нм, широкозонный стоп-слой 6, выполненный из p-AlyGa1-yAs с толщиной, например, 50 нм, и контактный подслой 7, выполненный из p-GaAs с толщиной, например, 300 нм, при этом толщина широкозонного слоя 5 из p-AlxGa1-xAs составляет не менее 1 мкм при концентрации алюминия 0,15<х<0,25, а концентрация алюминия в широкозонном стоп-слое 6 находится в диапазоне 0,6<y<0,7.

Структура настоящего ФД представляет собой полупроводниковый p-n переход, разделяющий фотогенерированные носители за счет тянущего поля. При этом фотогенерированные носители диффундируют в сторону p-n перехода из глубины базового слоя 3 и эмиттерного слоя 4.

Выбранная конструкция ФД позволяет сократить потери на неполное поглощение фотонов в диапазоне 800-860 нм, для чего общая толщина фотопоглощающих слоев (эмиттерный и базовый) должна составлять не менее 3,5 мкм.

Наличие в структуре настоящего ФД слоя 2 тыльного барьера наряду с уровнем легирования базового слоя 3 порядка (1-2)⋅1017 см-3 позволяет обеспечить полное собирание фотогенерированных носителей из базового слоя 3. Увеличение уровня легирования будет приводить к снижению диффузионной длины таких носителей, что не позволит им достигнуть области р-n перехода для разделения. Отсутствие слоя 2 тыльного барьера приведет к диффузии части носителей в подложку 1 с их последующей потерей. Малая толщина эмиттерного слоя 4 настоящего ФД лазерного излучения позволяет также обеспечить полное собирание фотогенерированных носителей.

Важной особенностью ФД лазерного излучения является большая падающая световая мощность, что приводит к генерации значительной плотности фототока. В этом случае резистивные потери могут играть значительную роль, ограничивая КПД ФД. Последовательное сопротивление складывается из последовательного сопротивления слоев и подложки, сопротивления растекания между контактными шинками в верхних p-слоях, а также из переходного сопротивления между полупроводником и металлическими контактами. Сопротивление растекания, как правило, на несколько порядков выше, поэтому оно является основным фактором, лимитирующим КПД, однако в случае нанесения металлических контактов на широкозонные слои, в особенности слои, содержащие алюминий, переходное сопротивление может также стать ограничивающим КПД фактором.

Для минимизации резистивных потерь в настоящем ФД лазерного излучения включен слой 5 широкозонного окна из p-AlxGa1-xAs, с малым содержанием алюминия, высоким уровнем легирования и большой толщиной. При этом при концентрации алюминия более 10% он также исполняет роль лицевого барьера для эмиттерного слоя 4, препятствующего выходу фотогенерированных носителей. Это связано с тем, что при поглощении фотонов в диапазоне 800-860 нм не возникает «горячих» носителей с энергией, достаточной для выхода из эмиттерного слоя 4 в слой 5 широкозонного окна. Малая концентрация алюминия (менее 20%) в слое 5 широкозонного окна обеспечивает высокую удельную проводимость, которая, как известно, для слоев из AlGaAs уменьшается с увеличением концентрации алюминия из-за падения подвижности носителей заряда. Увеличение толщины контактного подслоя 7 приводит к пропорциональному уменьшению сопротивления растекания, так как ток при растекании между шинками течет вдоль слоя.

При изготовлении ФД лазерного излучения необходимо удаление контактного подслоя 7 между шинками, чтобы минимизировать поглощение лазерного излучения в нем. Это обычно достигается химическим жидкостным травлением GaAs. Для обеспечения возможности изготовления структуры ФД лазерного излучения стандартными пост-ростовыми методами в настоящий ФД лазерного излучения введен широкозонный стоп-слой 6, с концентрацией алюминия 60-70%, являющийся стоп-слоем для травления контактного подслоя 7.

Пример

Методом МОС-гидридной эпитаксии был изготовлен фотодетектор лазерного излучения на подложке из n-GaAs, включающий последовательно осажденные слои: слой тыльного барьера из n-AlGaAs толщиной 100 нм и уровнем легирования атомами кремния 1⋅1018 см-3, базовый слой из n-GaAs толщиной 3200 нм и уровнем легирования атомами кремния 1⋅1017 см-3, эмиттерный слой из p-GaAs толщиной 400 нм и уровнем легирования атомами цинка 1⋅1018 см-3, слой широкозонного окна из p-Al0,2Ga0,8As толщиной 1000 нм и уровнем легирования атомами цинка 1⋅1019 см-3, широкозонный стоп-слой из p-Al0.65Ga0.35As толщиной 50 нм и уровнем легирования атомами цинка 1⋅1018 см-3 и контактный подслой из p-GaAs толщиной 300 нм и уровнем легирования атомами цинка 1⋅1019 см-3.

Полученный ФД продемонстрировал высокий уровень квантового выхода в диапазоне 800-860 нм (фиг. 2), соответствующий практически полному поглощению фотонов и собиранию фотогенерированных носителей. При этом благодаря сниженному последовательному сопротивлению структуры ФД продемонстрировал КПД на уровне 59-60% вплоть до подводимой мощности лазерного излучения порядка 10 Вт/см2 и КПД более 54% вплоть до подводимой мощности лазерного излучения порядка 40 Вт/см2 (фиг. 3).


ФОТОПРЕОБРАЗОВАТЕЛЬ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
ФОТОПРЕОБРАЗОВАТЕЛЬ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 121.
12.01.2017
№217.015.5b6b

Способ определения тока в канале электрического пробоя диэлектрика

Изобретение относится к области физики электрического пробоя и может быть использовано для определения амплитуды и длительности импульса тока электрического пробоя в диэлектриках. Технический результат: повышение точности определения тока в канале электрического пробоя диэлектриков. Сущность:...
Тип: Изобретение
Номер охранного документа: 0002589509
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.648e

Способ изготовления многопереходного солнечного элемента

Изобретение относится к солнечной энергетике и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую. Способ изготовления многопереходного солнечного элемента согласно изобретению включает последовательное формирование субэлемента из Ge с p-n...
Тип: Изобретение
Номер охранного документа: 0002589464
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6721

Устройство для определения положения объекта

Использование: для определения положения объекта с помощью источника модулированного оптического сигнала. Сущность изобретения заключается в том, что устройство содержит источник модулированного оптического сигнала, фотодетектор, оптически связанный с ним через устройство формирования сигнала,...
Тип: Изобретение
Номер охранного документа: 0002591302
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6cbe

Суперконденсатор

Изобретение относится к области микро- и наноэлектроники и может найти применение в приборостроении, энергетике, электронике, в приборах мобильной связи в качестве слаботочного источника питания. Предложенный суперконденсатор включает отрицательный электрод (4) и положительный электрод (5),...
Тип: Изобретение
Номер охранного документа: 0002597224
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7a01

Четырехпереходный солнечный элемент

Четырехпереходный солнечный элемент включает последовательно выращенные на подложке (1) из p-Ge четыре субэлемента (2, 3, 4, 5), согласованные по постоянной решетки с подложкой (1) из p-Ge и соединенные между собой туннельными р-n-переходами (6, 7, 8), и контактный слой (9), при этом первый...
Тип: Изобретение
Номер охранного документа: 0002599064
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7ab0

Способ получения светопоглощающей кремниевой структуры

Изобретение относится к области солнечных фотоэлектрических преобразователей на основе монокристаллического кремния. Способ получения светопоглощающей кремниевой структуры включает нанесение на поверхность образца из монокристаллического кремния слоя ванадия толщиной от 50 нм до 80 нм,...
Тип: Изобретение
Номер охранного документа: 0002600076
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.81e0

Способ измерения магнитного поля

Изобретение относится к способам измерения магнитного поля и включает воздействие на кристалл карбида кремния гексагонального или ромбического политипа, содержащего спиновые центры с основным квадруплетным спиновым состоянием, вдоль его кристаллографической оси с симметрии сфокусированным...
Тип: Изобретение
Номер охранного документа: 0002601734
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.83bb

Способ оценки качества гетероструктуры полупроводникового лазера

Изобретение относится к области контроля полупроводниковых устройств. Способ оценки качества гетероструктуры полупроводникового лазера включает воздействие на волноводный слой гетероструктуры полупроводникового лазера световым излучением, не испытывающим межзонное поглощение в его активной...
Тип: Изобретение
Номер охранного документа: 0002601537
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.919e

Фотоэлектрический преобразователь

Изобретение относится к электронной технике, а именно к фотоэлектрическим преобразователям солнечной энергии. Фотоэлектрический преобразователь на основе изотипной варизонной гетероструктуры из полупроводниковых соединений A3B5 и/или A2B6 содержит полупроводниковую подложку и изотипный с...
Тип: Изобретение
Номер охранного документа: 0002605839
Дата охранного документа: 27.12.2016
13.01.2017
№217.015.91ea

Оксидный материал ловушки расплава активной зоны ядерного реактора

Группа изобретений относится к составам материалов для атомной энергетики, в частности к жертвенным материалам. Оксидный материал ловушки расплава активной зоны ядерного реактора, включающий AlO, FeO и/или FeO, первую целевую добавку в виде GdO или EuO, или SmO и вторую целевую добавку в виде...
Тип: Изобретение
Номер охранного документа: 0002605693
Дата охранного документа: 27.12.2016
Показаны записи 41-50 из 107.
12.01.2017
№217.015.648e

Способ изготовления многопереходного солнечного элемента

Изобретение относится к солнечной энергетике и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую. Способ изготовления многопереходного солнечного элемента согласно изобретению включает последовательное формирование субэлемента из Ge с p-n...
Тип: Изобретение
Номер охранного документа: 0002589464
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6721

Устройство для определения положения объекта

Использование: для определения положения объекта с помощью источника модулированного оптического сигнала. Сущность изобретения заключается в том, что устройство содержит источник модулированного оптического сигнала, фотодетектор, оптически связанный с ним через устройство формирования сигнала,...
Тип: Изобретение
Номер охранного документа: 0002591302
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6cbe

Суперконденсатор

Изобретение относится к области микро- и наноэлектроники и может найти применение в приборостроении, энергетике, электронике, в приборах мобильной связи в качестве слаботочного источника питания. Предложенный суперконденсатор включает отрицательный электрод (4) и положительный электрод (5),...
Тип: Изобретение
Номер охранного документа: 0002597224
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7a01

Четырехпереходный солнечный элемент

Четырехпереходный солнечный элемент включает последовательно выращенные на подложке (1) из p-Ge четыре субэлемента (2, 3, 4, 5), согласованные по постоянной решетки с подложкой (1) из p-Ge и соединенные между собой туннельными р-n-переходами (6, 7, 8), и контактный слой (9), при этом первый...
Тип: Изобретение
Номер охранного документа: 0002599064
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7ab0

Способ получения светопоглощающей кремниевой структуры

Изобретение относится к области солнечных фотоэлектрических преобразователей на основе монокристаллического кремния. Способ получения светопоглощающей кремниевой структуры включает нанесение на поверхность образца из монокристаллического кремния слоя ванадия толщиной от 50 нм до 80 нм,...
Тип: Изобретение
Номер охранного документа: 0002600076
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.81e0

Способ измерения магнитного поля

Изобретение относится к способам измерения магнитного поля и включает воздействие на кристалл карбида кремния гексагонального или ромбического политипа, содержащего спиновые центры с основным квадруплетным спиновым состоянием, вдоль его кристаллографической оси с симметрии сфокусированным...
Тип: Изобретение
Номер охранного документа: 0002601734
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.83bb

Способ оценки качества гетероструктуры полупроводникового лазера

Изобретение относится к области контроля полупроводниковых устройств. Способ оценки качества гетероструктуры полупроводникового лазера включает воздействие на волноводный слой гетероструктуры полупроводникового лазера световым излучением, не испытывающим межзонное поглощение в его активной...
Тип: Изобретение
Номер охранного документа: 0002601537
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.919e

Фотоэлектрический преобразователь

Изобретение относится к электронной технике, а именно к фотоэлектрическим преобразователям солнечной энергии. Фотоэлектрический преобразователь на основе изотипной варизонной гетероструктуры из полупроводниковых соединений A3B5 и/или A2B6 содержит полупроводниковую подложку и изотипный с...
Тип: Изобретение
Номер охранного документа: 0002605839
Дата охранного документа: 27.12.2016
13.01.2017
№217.015.91ea

Оксидный материал ловушки расплава активной зоны ядерного реактора

Группа изобретений относится к составам материалов для атомной энергетики, в частности к жертвенным материалам. Оксидный материал ловушки расплава активной зоны ядерного реактора, включающий AlO, FeO и/или FeO, первую целевую добавку в виде GdO или EuO, или SmO и вторую целевую добавку в виде...
Тип: Изобретение
Номер охранного документа: 0002605693
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.9b70

Четырехпереходный солнечный элемент

Четырехпереходный солнечный элемент включает последовательно выращенные на подложке (1) из p-Ge четыре субэлемента (2), (3), (4), (5), соединенные между собой туннельными p-n переходами (6, 7, 8), метаморфный градиентный буферный слой (9) между первым (2) и вторым (3) субэлементами и контактный...
Тип: Изобретение
Номер охранного документа: 0002610225
Дата охранного документа: 08.02.2017
+ добавить свой РИД