×
04.04.2018
218.016.36c1

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к материаловедению, а именно к способам исследования образцов металлических материалов путем приложения к ним динамической (ударной) кратковременной нагрузки, и может быть использовано для определения вязкости металлических материалов. Сущность: осуществляют испытания на ударный изгиб призматических образцов с надрезом с записью кривой разрушения путем идентификации на ней характерных точек. На кривой разрушения в координатах «энергоемкость Е - смещение бойка S» выделяют участок между точкой отрыва от прямолинейного хода кривой и точкой разрушения образца, а для аттестации металлических материалов на выделенном участке определяют параметры вязкости К и n, при этом параметр вязкости К находят исходя из уравнения где Е и Е - энергоемкость разрушения в точках, соответствующих началу и концу выделенного участка кривой , F - площадь первоначального поперечного сечения в месте надреза, а параметр вязкости n - исходя из уравнения, описывающего ход зависимости на выделенном участке Е=A⋅S, где А - коэффициент, зависящий от условий испытаний. Технический результат: возможность выделить участок, соответствующий стадии распространения магистральной трещины, определить на нем параметры вязкости (K, n), а затем использовать их для аттестации любых металлических материалов при наличии возможности инструментальной записи кривой разрушения. 5 ил.

Изобретение относится к материаловедению, а именно к способам исследования образцов металлических материалов путем приложения к ним динамической (ударной) кратковременной нагрузки, и может быть использовано для определения вязкости металлических материалов.

При работе деталей машин и конструкций возможны динамические нагрузки, при которых многие даже высокопластичные металлы проявляют склонность к хрупкому разрушению. Опасность разрушения усиливают надрезы - концентраторы напряжений. Для оценки склонности металла к хрупкому разрушению под влиянием этих факторов проводят динамические испытания на ударный изгиб на маятниковых копрах (ГОСТ 9454-78. Металлы. Метод испытания на ударный изгиб при пониженных, комнатной и повышенных температурах. М.: Изд-во стандартов, 19 с.).

При этом стандартный призматический образец с надрезом испытывают путем приложения к нему динамической нагрузки по схеме трехточечного изгиба, а по показаниям копра измеряют работу удара А, Дж, которая при делении на площадь образца в месте надреза дает значение ударной вязкости KCV, МДж/м2 (здесь для образца с V-образным типом надреза). Ударная вязкость из всех характеристик механических свойств наиболее чувствительна к снижению температуры, поэтому испытания на ударную вязкость при пониженных температурах используют для определения порога хладноломкости tXP - температуры или интервала температур, в котором происходит снижение ударной вязкости.

Общим требованием к испытаниям на ударную вязкость является осуществление перехода металла в хрупкое состояние при температурах, легко достижимых в лабораторных условиях (tисп=+100…-100°C). Однако в случае отсутствия явного вязкохрупкого перехода в этом диапазоне температур, например, в случае высоковязких материалов, определить tXP затруднительно.

Высоковязкими материалами считаются те, которые разрушаются вязко и с высокой энергоемкостью в широком диапазоне отрицательных температур испытаний tисп≅-40…-100°C. Примером таких высоковязких материалов являются сверхнизкоуглеродистые стали типа 05Г2МФ, используемые для нефте- и газопроводов нового поколения, высокоэтажном строительстве, судостроении и т.д. Главным требованием к металлу таких конструкций является то, что он должен работать в условиях, далеких от появления хрупкого механизма разрушения, и иметь уровень ударной вязкости KCV≥2,5 МДж/м2 при tисп=-40°C.

Результаты испытаний на ударный изгиб свидетельствуют об очень высоком уровне ударной вязкости таких сталей (KCV≥1,5 МДж/м2 при tисп=-80°C). На сериальных кривых не наблюдается явного вязкохрупкого перехода, полностью хрупкое разрушение наступает только при tисп<-100°C, а образцы полностью не разрушаются вплоть до tисп=-40°C. Согласно приведенному выше стандарту, если в результате испытания образец не разрушился, то показатель качества материала (ударная вязкость) считается не установленным. Таким образом, необходим другой подход для определения уровня вязкости металлических материалов при испытаниях на ударный изгиб.

Известен способ определения вязкости металлических материалов при испытании на ударный изгиб образцов с V-образным надрезом с записью осциллограмм разрушения (ASTM Е2298. Standard test method for instrumented impact testing of metallic materials, 2013. 9 p.).

Согласно этому способу на осциллографической кривой в координатах нагрузка F - смещение S выделяются характерные точки, соответствующие разным стадиям разрушения образца, а затем определяются параметры вязкости для каждой стадии (энергоемкость, напряжение, смещение, доля вязкой составляющей в изломе). Недостатком данного способа определения вязкости является то, что в случае высоковязких материалов недолом образцов приводит к недействительности результатов испытания, а на поверхности излома образцов невозможно выделить область «хрупкого квадрата», соответствующую хрупкому механизму разрушения.

Наиболее близким по технической сущности к предлагаемому методу является способ определения вязкости металлических материалов (патент №2570237. Российская Федерация, МПК G01N3. Способ определения вязкости металлических материалов / Хотинов В.А., Фарбер В.М., Морозова А.Н. Уральский федеральный университет, опубл. 10.12.15).

Способ заключается в выполнении следующих операций:

- нанесение V-образного надреза на боковую поверхность призматического образца;

- ударный изгиб образца с надрезом (приложение динамической нагрузки) с одновременной записью кривой в координатах «нагрузка F - смещение S»;

- определение (выделение) на полученной кривой ниспадающего линейного участка;

- определение характеристик вязкости на выделенной стадии разрушения (напряжения и смещения);

- определение уровня вязкости материала.

Принципиальным моментом известного способа является то, что для интерпретации полученной информации необходим совместный анализ осциллографических кривых с результатами фрактографических исследований, то есть идентификация на поверхности разрушения области, соответствующей ниспадающему линейному участку. Кроме того, для высоковязкого состояния образца такой участок на осциллографической кривой разрушения может полностью отсутствовать, что не дает возможность оценить запас вязкости материала.

В настоящее время использование для ударных испытаний копров, оснащенных осциллографической записью диаграммы ударного разрушения в координатах «энергоемкость E - прогиб S», дает возможность провести оценку различных стадий разрушения. При этом регистрируемый на всех стадиях прогиб образца S связан с наложением двух одновременно протекающих процессов - изгибом образца при его макропластической деформации и раскрытием магистральной трещины. В зависимости от ряда факторов вклад каждого из этих процессов может быть разным и определяется, в частности, механизмом разрушения: в случае хрупкого разрушения доля первого процесса мала, тогда как при вязком - существенна и должна учитываться.

Техническая задача, решаемая данным изобретением, заключается в определении вязкости металлических материалов при испытании на ударный изгиб образца с надрезом путем выделения на кривой разрушения в координатах «энергоемкость E - смещение S» участка, соответствующего распространению магистральной трещины, и определения на этом участке характеристик вязкости для аттестации вязкости любых, в том числе недоломанных, образцов металлических материалов.

Поставленная задача решается способом, при котором после охлаждения образца с надрезом до температуры испытания и приложения к образцу ударной изгибающей нагрузки с одновременной записью кривой разрушения в координатах «энергоемкость E - смещение S» на полученной кривой участок, соответствующий стадии распространения магистральной трещины в образце, выделяют следующим образом: начало участка соответствует отклонению кривой от линейного хода изменения энергоемкости при смещении (или максимуму на кривой в координатах «нагрузка F - смещение S»), конец участка соответствует энергоемкости при разрушении (неполном разрушении в случае высоковязкого материала).

На выделенном участке определяют следующие параметры вязкости исследуемого материала:

1. Энергоемкость начала (ЕН, Дж) и окончания (ЕК, Дж) данной стадии разрушения, а параметр вязкости KM, МДж/м2, рассчитывают по формуле:

где F0 - площадь первоначального поперечного сечения образца в месте надреза, мм2.

2. Параметр вязкости n находят исходя из уравнения, описывающего ход зависимости на выделенном участке

где A - коэффициент, зависящий от условий испытаний (температуры испытания, вида надреза, энергоемкости бойка и др.).

Изобретение иллюстрируется следующими чертежами.

На фиг. 1 приведены сглаженные кривые ударного нагружения высоковязкого материала - стали 05Г2СФ, в координатах «нагрузка F - смещение S» (а) и в координатах «энергоемкость E - смещение S» при разных температурах испытания.

Испытание на ударный изгиб стандартных образцов Шарпи размером 10×10×55 мм как с V-образным надрезом, так и без него, проводилось на копре с падающим грузом INSTRON CEAST 9350 в диапазоне температур испытаний tисп=+20…-100°C с записью кривых ударного нагружения. Частота съема измерений с датчиков по нагрузке и смещению составляла 0,001 мс на точку. Обработка кривой в координатах «нагрузка F - смещение S» заключалась в ее сглаживании путем инструментальной фильтрации массива измеренных данных с целью уменьшения влияния факторов, вносимых упругим взаимодействием системы «опоры-образец-молот», а также в последующем инструментальном интегрировании для ее перестройки в координаты «энергоемкость E - смещение S».

На фиг. 2 показаны сглаженная кривая ударного нагружения образца стали 05Г2СФ при температуре испытания -60°C в координатах «нагрузка F - смещение S» и «энергоемкость E - смещение S» с графическим выделением на приведенной кривой участка, соответствующего стадии распространения магистральной трещины, и определением на выделенном участке энергоемкости начала (ЕН) и окончания (ЕК) данной стадии разрушения.

На фиг. 3 показаны выделенные по описанному способу участки на кривых ударного нагружения образца стали 05Г2СФ в координатах «энергоемкость E - смещение S» с результатами регрессионного анализа для определения параметра вязкости n.

На фиг. 4 представлены зависимости ударной вязкости KCV и KM, определенных для различных групп конструкционных сталей (32Г2Р, 20X13, 09Г2С, 05Г2СФ и др.), в том числе высоковязких, по кривым ударного нагружения при различных температурах испытаний. Прямая корреляция значений KCV и KM хорошо описывается линейной функцией с доверительной вероятностью R2=0,97.

На фиг. 5 представлены зависимость ударной вязкости KCV и параметра вязкости n на примере стали 05Г2СФ при различных температурах испытаний. Прямая корреляция значений KCV и n хорошо описывается линейной функцией с доверительной вероятностью R2=0,97.

Полученные результаты свидетельствуют о том, что на кривой разрушения образца с надрезом в координатах «энергоемкость E - смещение S» всегда можно по предлагаемому способу выделить участок, соответствующий стадии распространения магистральной трещины, определить на нем параметры вязкости (KM, n), а затем использовать их для аттестации любых металлических материалов при наличии возможности инструментальной записи кривой разрушения.


СПОСОБ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Показаны записи 111-120 из 210.
01.05.2019
№219.017.47eb

Решётчатая аэродинамическая поверхность

Решетчатая аэродинамическая поверхность содержит силовую раму, состоящую из двух боковин, корневого и концевого планов в виде металлических пластин, и опоры крепления силовой рамы к механизму управления решетчатой аэродинамической поверхностью. Внутри силовой рамы, выполненной с пазами,...
Тип: Изобретение
Номер охранного документа: 0002686593
Дата охранного документа: 29.04.2019
01.05.2019
№219.017.481d

Комплекс для испытания алгоритмов управления электроэнергетической системой

Изобретение относится к области вычислительной техники. Технический результат заключается в повышении надежности электроэнергетической системы. Комплекс для испытания алгоритмов управления ЭЭС содержит: блок моделирования, аналоговый усилитель и блок управления, при этом блок моделирования...
Тип: Изобретение
Номер охранного документа: 0002686641
Дата охранного документа: 29.04.2019
02.05.2019
№219.017.48b8

Способ определения уравновешенности и оптимального положения противовеса штанговой глубинно-насосной установки

Изобретение относится к нефтедобывающей промышленности и может быть использовано в станциях управления штанговыми глубинно-насосными установками - ШГНУ - для определения степени уравновешенности механизма и оптимального положения противовеса на кривошипе станка-качалки. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002686787
Дата охранного документа: 30.04.2019
24.05.2019
№219.017.5ef8

Способ выплавки многокомпонентной латуни

Изобретение относится к области металлургии, в частности к выплавке многокомпонентных деформируемых латуней, предназначенных для получения литых заготовок, подвергающихся пластической обработке для изготовления деталей, работающих в условиях повышенного триботехнического износа. Способ выплавки...
Тип: Изобретение
Номер охранного документа: 0002688799
Дата охранного документа: 22.05.2019
31.05.2019
№219.017.7195

Устройство для производства воды из воздуха

Устройство предназначено для получения пресной воды из атмосферного воздуха. Устройство для производства воды из воздуха содержит источник сжатого воздуха, подключенный через регулирующий вентиль к входу вихревой трубы Ранка-Хирша. С «горячего» и «холодного» выходов вихревой трубы потоки...
Тип: Изобретение
Номер охранного документа: 0002689592
Дата охранного документа: 28.05.2019
07.06.2019
№219.017.753b

Способ токарной обработки

Способ включает придание заготовке вращательного движения с частотой вращения Гц, смещенной от частоты собственных колебаний Гц технологической системы станка. Предварительно измеряют волнистость поверхности заготовки в её поперечном сечении, частоту вынужденных колебаний выбирают как взаимно...
Тип: Изобретение
Номер охранного документа: 0002690771
Дата охранного документа: 05.06.2019
22.06.2019
№219.017.8e50

Проволока для сварки среднеуглеродистых среднелегированных броневых сталей

Изобретение может быть использовано для получения сварных соединений из среднеуглеродистых среднелегированных броневых сталей. Сварочная проволока содержит компоненты в следующем соотношении, мас. %: хром 18,5-22,0, углерод 0,3-0,4, азот 0,1-0,2, алюминий 0,05-0,1, титан 0,08-0,2, железо –...
Тип: Изобретение
Номер охранного документа: 0002692145
Дата охранного документа: 21.06.2019
17.07.2019
№219.017.b528

Инструментальный материал на основе карбидов

Изобретение относится к твердым и износостойким металлокерамическим инструментальным материалам на основе карбидов вольфрама, титана, тантала с цементирующей карбиды кобальтовой связкой. Зерна карбидов имеют сферическую форму размером от 0,1 до 1 мкм. Каждое зерно карбида окружено прослойкой...
Тип: Изобретение
Номер охранного документа: 0002694444
Дата охранного документа: 15.07.2019
23.07.2019
№219.017.b7ff

Способ контроля температуры монолитного бетона в перекрытии при его выдерживании и устройство для его осуществления

Способ и устройство для его осуществления относятся к области строительства и могут быть использованы для контроля температуры монолитного бетона в монолитных и сборно-монолитных перекрытиях зданий при его выдерживании. Технический результат - повышение точности измерений температуры наружной...
Тип: Изобретение
Номер охранного документа: 0002695177
Дата охранного документа: 22.07.2019
26.07.2019
№219.017.b937

Способ контроля геометрических параметров резьбы

Настоящее изобретение относится к средствам контрольно-измерительной техники, а именно к способам контроля геометрических параметров профиля поверхности, в частности резьбы труб, замковых муфт и подобных изделий, включающих резьбу. Способ контроля геометрических параметров резьбы предполагает...
Тип: Изобретение
Номер охранного документа: 0002695599
Дата охранного документа: 24.07.2019
Показаны записи 71-71 из 71.
24.11.2018
№218.016.a09b

Амортизирующий элемент обуви

Изобретение относится к амортизирующему элементу для обуви, который состоит из одинаковых по форме, но разных по размеру соединительных втулок, расположенных соосно на верхней и нижней поверхностях амортизирующего элемента, при этом верхние соединительные втулки имеют меньший размер по...
Тип: Изобретение
Номер охранного документа: 0002673310
Дата охранного документа: 23.11.2018
+ добавить свой РИД