×
04.04.2018
218.016.36bd

Результат интеллектуальной деятельности: Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа

Вид РИД

Изобретение

Аннотация: Изобретение относится к области промышленной безопасности опасных производственных объектов и может быть использовано для определения зон возможных разрушений и поражений человека осколками при авариях на объектах с обращением сжатого газа. Изобретение позволяет определять максимальную дальность разлета осколков при разгерметизации цилиндрического сосуда с газом и зону безопасного пребывания человека. Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа, заключается в том, что определяют принадлежность аварийного объекта газотранспортной системы к подземному трубопроводу или наземному сосуду со сжатым газом; для наземного сосуда со сжатым газом определяют его М - массу оболочки сосуда (кг), ρ - плотность материала (кг/м) оболочки сосуда и V - объем (м) сосуда; для подземного трубопровода определяют D - диаметр (м) трубопровода; h - заглубление (м) трубопровода (по нижней образующей); 2ψ - ожидаемый угол (град) раствора котлована; определяют начальную скорость первичных осколков U=U(t=0) (м/с) при авариях на объектах газотранспортной системы; определяют безразмерный коэффициент W, являющийся параметром инварианта движения и описывающий разлет осколков при аварии в предположении равновероятной их ориентации по направлению вектора скорости: где S - площадь миделя (м); m - масса осколка (кг); С - коэффициент сопротивления осколка; ρ - плотность воздуха (кг/м);g - ускорение силы тяжести (м/с); по полученному значению безразмерного коэффициента W определяют максимальную дальность полета осколков (м):определяют вероятность поражения человека (Р) отдельным осколком, учитывая, что человека моделируют цилиндром с радиусом r (м) и высотой l (м), который находится на максимальном расстоянии ΔR (м) от аварийного объекта, с учетом того, что попадание любого осколка - смертельно; строят график зависимости вероятности поражения человека (Р) осколком или осколками аварийного объекта от расстояния ΔR, на котором находится человек, по указанному графику определяют зону безопасного пребывания человека. Технический результат - расширение функциональных возможностей, позволяющих установить пространственное распределение параметров осколочного поражения, образующегося при взрывной разгерметизации трубопроводов и сосудов, содержащих природный газ под высоким начальным давлением, и обеспечить возможность предупреждения поражения человека осколочным воздействием. 2 ил.

Изобретение относится к области промышленной безопасности опасных производственных объектов и может быть использовано для определения зон возможных разрушений и поражений человека осколками при авариях на объектах с обращением сжатого газа.

Из уровня техники известен способ определения параметров воздушной ударной волны (ВУВ) при разгерметизации сосудов со сжатым газом (патент РФ №2541696 С1 на изобретение, кл. G01M 7/08, 20.02.2015). В известном способе предварительно определяют атмосферное давление и характеристики сосуда со сжатым газом, такие как исходное давление в сосуде, объем сосуда, определяют значение тротилового эквивалента взрыва, пространственное распределение барических параметров адиабатического взрыва, полученные значения избыточного давления и импульса во фронте ВУВ наносят на диаграмму «давление-импульс» поражения людей, составляют заключение о степенях поражения людей, а по параметрам сосуда и окружающей среды, а именно по значениям исходного давления в сосуде, атмосферного давления и объема сосуда, определяют радиус круговой зоны разрушения промышленного здания. Известный способ позволяет установить пространственную картину распределения параметров ВУВ, образующейся при аварийной разгерметизации сосудов, содержащих природный газ, метан, под высоким начальным давлением, и обеспечить защиту материальных ценностей и здоровья человека от воздействия ударной волны. Однако известный способ не позволяет при разгерметизации оборудования со сжатым газом, например при разгерметизации наземного сосуда или подземного трубопровода, спрогнозировать возможные разрушения и поражения человека осколками аварийного объекта.

Наиболее близким техническим решением к предлагаемому способу является способ определения параметров воздушной ударной волны при разгерметизации трубопроводов со сжатым газом (патент РФ №2551262, кл. G01M 7/08 (2006.01), опубл. 20.05.2015). В известном способе предварительно определяют атмосферное давление, характеристики трубопровода со сжатым газом и расстояние от места разрыва до ближайшего места завершения трубопровода. Затем определяют коэффициент эффективности ВУВ, определяют значение тротилового эквивалента взрыва, пространственное распределение барических параметров адиабатического взрыва. Полученные значения избыточного давления и импульса во фронте ВУВ наносят на диаграмму «давление-импульс» поражения людей, составляют заключение о степенях поражения людей. По параметрам трубопровода и окружающей среды определяют радиус круговой зоны разрушения (м) промышленного здания. Известный способ позволяет устанавливать пространственные картины распределения параметров ВУВ, образующейся при аварийной разгерметизации трубопроводов, содержащих природный газ, метан, под высоким начальным давлением, и обеспечить возможности защиты материальных ценностей и здоровья человека от воздействия ударной волны. Известный способ не позволяет спрогнозировать возможные разрушения и поражения человека осколками аварийного объекта.

Задача, на решение которой направлено предлагаемое изобретение, заключается в создании способа определения параметров осколочного поражения (дальности разлета фрагментов разрушаемого оборудования и их поражающей возможности) при разгерметизации объектов со сжатым газом, позволяющего установить пространственное распределение параметров осколочного воздействия от разгерметизации трубопроводов и сосудов со сжатым газом.

Технический результат изобретения, достигаемый предлагаемым изобретением, заключается в расширении функциональных возможностей, позволяющих установить пространственное распределение параметров осколочного поражения, образующегося при взрывной разгерметизации трубопроводов и сосудов, содержащих природный газ под высоким начальным давлением, и обеспечить возможность предупреждения поражения человека осколочным воздействием.

Сущность предлагаемого способа определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа, заключается в следующем:

- определяют принадлежность аварийного объекта газотранспортной системы к подземному трубопроводу или наземному сосуду со сжатым газом;

- для наземного сосуда со сжатым газом определяют его Mоб - массу оболочки сосуда (кг), ρоб - плотность материала (кг/м3) оболочки сосуда и V0 - объем (м3) сосуда;

- для подземного трубопровода определяют D - диаметр (м) трубопровода; h - заглубление (м) трубопровода (по нижней образующей); 2ψ - ожидаемый угол (град) раствора котлована;

- определяют начальную скорость первичных осколков U0=U(t=0) (м/с) при авариях на объектах газотранспортной системы;

- определяют безразмерный коэффициент W, являющийся параметром инварианта движения и описывающий разлет осколков при аварии в предположении равновероятной их ориентации по направлению вектора скорости:

,

где Sср - площадь миделя (м2);

m - масса осколка (кг);

Сх - коэффициент сопротивления осколка;

ρ0 - плотность воздуха (кг/м3);

g - ускорение силы тяжести (м/с2);

- по полученному значению безразмерного коэффициента W определяют максимальную дальность полета осколков (м):

,

- определяют вероятность поражения человека (Pчел) отдельным осколком, учитывая, что человека моделируют цилиндром с радиусом r (м) и высотой l (м), который находится на максимальном расстоянии ΔRmax (м) от аварийного объекта, с учетом того, что попадание любого осколка - смертельно;

- строят график зависимости вероятности поражения человека (Pчел) осколком или осколками аварийного объекта от расстояния ΔR, на котором находится человек, по указанному графику определяют зону безопасного пребывания человека.

Взрывная разгерметизация объектов газотранспортной системы (ГТС) сопровождается образованием и разлетом фрагментов аварийного оборудования с дальнейшим поражением реципиентов (людей, зданий, сооружений, оборудования) осколочным воздействием. Предлагаемый способ позволяет определять параметры поражения от осколочного воздействия при взрывной разгерметизации трубопроводов, сферических и цилиндрических сосудов с обращением сжатого газа.

Основными определяемыми параметрами осколочного поражения являются: дальность разлета фрагментов разрушаемого объекта со сжатым газом и их поражающая возможность. Данные параметры определяют зоны возможных разрушений оборудования, зданий и сооружений и поражений человека осколками при авариях.

Согласно предлагаемому способу определения параметров осколочного поражения при взрывной разгерметизации сначала определяют тип аварийного объекта, является ли аварийный объект подземным трубопроводом или надземным сферическим или цилиндрическим сосудом со сжатым газом. Также определяют P0 - избыточное давление в аварийном объекте до аварии (атм).

В зависимости от типа аварийного объекта со сжатым газом определяют следующие характеристики аварийного объекта:

- для наземного аварийного сосуда (Моб - массу оболочки сосуда (кг), ρоб - плотность материала (кг/м3) оболочки сосуда, V0 - объем (м3) сосуда);

- для подземного трубопровода (D - диаметр (м) трубопровода; h - заглубление (м) трубопровода (по нижней образующей); 2ψ - ожидаемый угол (град) раствора котлована).

По перечисленным характеристикам определяют значение начальной скорости первичных осколков U0=U(t=0)(м/с).

В зависимости от аварийного элемента: трубопровода, цилиндрического сосуда или сферического сосуда скорость первичных осколков определяют следующим образом:

- для наземного цилиндрического сосуда:

- для наземного сферического сосуда:

- для подземного трубопровода:

Решая аналитическими методами систему уравнений, описывающих движение осколка, определяют безразмерный коэффициент W, являющийся параметром инварианта движения, который позволяет описать разлет осколков при аварии в предположении равновероятной ориентации осколка по направлению вектора скорости:

где Sср - площадь миделя (м);

m - масса осколка (кг);

Сх - коэффициент сопротивления осколка;

ρ0 - плотность воздуха (кг/м3);

g - ускорение силы тяжести (м/с2).

При известном значении безразмерного коэффициента W пространственное распределение параметров осколочного воздействия, таких как максимальная дальность полета осколков (м) и вероятность поражения человека (Pчел) отдельным осколком, описывается соотношениями (5), (6).

Максимальную дальность полета осколков предлагается определять по формуле:

Предлагаемое изобретение поясняется графическими материалами, представленными на фиг. 1 и 2. На фиг. 1 представлен график, отражающий зависимость вероятности осколочного поражения человека от расстояния ΔR аварийного объекта - подземного трубопровода. На фиг. 2 представлен график, отражающий зависимость вероятности осколочного поражения человека от расстояния ΔR аварийного объекта - наземного цилиндрического сосуда.

Вероятность поражения человека отдельным осколком, движение которого описывается безразмерным коэффициентом W, в предположении, что человек моделируется цилиндром с радиусом r (м) и высотой l (м), находящимся на расстоянии ΔR (м) от аварийного объекта, с учетом того, что попадание любого осколка - смертельно, предлагается определять следующим образом:

где введены следующие обозначения:

,

,

,

при этом посредством вычислительного эксперимента определено, что распределение дальности полета осколков аппроксимируется с достаточной точностью бета-распределением, где плотность распределения задается соотношением:

,

где , Г(a), Г(b), Г(a+b) - гамма-функции, a=1,5, b=0,6 - параметры бета-распределения.

Вероятность поражения человека при образовании n осколков, каждый из которых характеризуется коэффициентом Wi, определяется на основании законов теории вероятности и может быть выражена следующим образом:

Осуществление изобретения может быть подтверждено проведенными экспериментальными исследованиями.

В качестве примера осуществления изобретения рассмотрим сценарий аварии - «Взрывная разгерметизация подземного газопровода с образованием воздушной ударной волны, разлетом осколков трубы и фрагментов грунта, последующим истечением газа из газопровода в виде колонного низкоскоростного шлейфа и рассеиванием истекающего газа без воспламенения».

При определении параметров учитываем, что газопровод находится под землей. Исходные параметры газопровода преобразуем к виду, удобному для расчета:

P0=60 атм - избыточное давление в аварийном объекте до аварии;

D=0,325 м - диаметр трубопровода;

h=0,8 м - заглубление трубопровода (по нижней образующей);

ψ=22° - половина ожидаемого угла раствора котлована;

m=8 кг - масса одного осколка;

g=9.81 м/с2; ρ0=1.225 кг/м3; ρоб=7800 кг/м3; r=0.15 м и l=1.8 м, n=1.

Значение начальной скорости осколка определяем по формуле (3):

Далее определяют безразмерный коэффициент W:

Для определения безразмерного коэффициента W принимается коэффициент сопротивления осколка Cx=2; площадь миделя осколка (м2) Sср=(m/ρоб)2/3 - учитывается как среднее геометрическое значение.

Максимальная дальность полета осколков (м) составляет:

Значение параметра максимальная дальность полета осколков разрушенного объекта, содержащего сжатый газ, используется для определения зон потенциального поражения оборудования, зданий, объектов инфраструктуры, находящихся вблизи разрушенного объекта.

Для определения вероятности поражения осколком человека воспользуемся поясняющим графиком (фиг. 1) зависимости вероятности осколочного поражения человека от расстояния ΔR от аварийного объекта - подземного газопровода.

Результаты проведенного эксперимента, взятые для сравнения, показали, что максимальная дальность полета фрагментов оболочки составила ΔRmax=84 метра (масса фрагмента 8 кг); скорость первичных осколков U0 не превышала 31 м/с.

В качестве другого примера рассмотрим сценарий аварии - «Разгерметизация газового баллона объемом 50 л с образованием воздушной ударной волны, разлетом фрагментов баллона» при следующих условиях.

P0=16 атм - избыточное давление в аварийном объекте до аварии;

V0=0.05 м3 - объем сосуда;

ρоб=7800 кг/м3 - плотность материала оболочки;

M0=22 кг - масса оболочки;

m=11 кг - масса одного осколка;

g=9.81 м/с2; ρ0=1.225 кг/м3; количество осколков n=2.

Значение начальной скорости осколка в соответствии с (1) составляет:

Для определения безразмерного коэффициента W:

принимается коэффициент сопротивления осколка Сx=2; площадь миделя осколка (м2) Sср=(m/ρоб)2/3 - учитывается как среднее геометрическое значение.

Максимальная дальность полета осколков (м):

Для определения вероятности поражения человека воспользуемся графиком, отражающим зависимость вероятности осколочного поражения человека от расстояния ΔR аварийного объекта, газового баллона, представленным на фиг. 2.

Результаты проведенного эксперимента, взятые для сравнения, показали, что максимальная дальность полета фрагментов баллона может составлять до 300 м.

Таким образом, предложенное изобретение позволяет определять вероятность поражения человека (Pчел) при образовании по меньшей мере одного осколка аварийного объекта, при нахождении человека на расстоянии ΔR, обеспечивая тем самым возможность предупреждения поражения человека.


Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа
Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа
Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа
Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа
Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа
Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа
Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа
Источник поступления информации: Роспатент

Показаны записи 31-40 из 163.
10.11.2015
№216.013.8de7

Способ добычи и транспортировки углеводородного сырья на морском газовом или газоконденсатном месторождении

Изобретение относится к области освоения морских газовых и газоконденсатных месторождений и может быть использовано для добычи углеводородного сырья (УС). Технический результат заключается в обеспечении повышения экономической эффективности транспортировки добываемого УС за счет обеспечения...
Тип: Изобретение
Номер охранного документа: 0002567934
Дата охранного документа: 10.11.2015
20.12.2015
№216.013.9ba8

Устройство для проведения исследований газожидкостного потока

Изобретение относится к технике для исследования движения жидкостных потоков и газожидкостных потоков, например процессов добычи газа в нефтегазовой отрасли, связанной с изучением процессов движения газожидкостных потоков в вертикальных трубопроводах и отдельных устройствах. Технический...
Тип: Изобретение
Номер охранного документа: 0002571473
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a23a

Способ определения этиленгликоля в водных растворах

Изобретение относится к способам исследования материалов с использованием инфракрасной спектрометрии и может быть использовано в промышленных, экологических и научно-исследовательских лабораториях при исследовании состава и качества любых (сточной, попутной, поверхностной, питьевой) проб воды....
Тип: Изобретение
Номер охранного документа: 0002573172
Дата охранного документа: 20.01.2016
20.06.2016
№217.015.034e

Способ закрепления подводного трубопровода в проектном положении

Изобретение относится к строительству подводных переходов трубопроводов. В предлагаемом способе закрепления подводного трубопровода в проектном положении в качестве системы для закрепления трубопровода используют металлическую сетку. Предварительно на одном из концов полотна сетки формируют...
Тип: Изобретение
Номер охранного документа: 0002587730
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2e8c

Устройство для испытаний сепарационного оборудования

Изобретение относится к технике для изучения процессов добычи и подготовки газа в нефтегазовой отрасли. Технический результат изобретения заключается в повышении точности результатов проводимых газогидродинамических экспериментов и уменьшении времени их анализа, повышении наглядности проведения...
Тип: Изобретение
Номер охранного документа: 0002580546
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30d7

Способ определения давления начала конденсации в пористой среде

Изобретение относится к газовой промышленности и предназначено для исследования газоконденсатных смесей в пористой среде, а именно для определения давления начала конденсации в пористой среде. Техническим результатом является повышение точности, а также снижение трудоёмкости измерения давления...
Тип: Изобретение
Номер охранного документа: 0002580858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31f3

Способ определения тяжелых металлов в техническом углероде

Использование: для определения содержания тяжелых металлов в техническом углероде. Сущность изобретения заключается в том, что выполняют градуировку прибора рентгенофлуоресцентной спектрометрии для каждого элемента, регистрируют интенсивность аналитической линии элемента на соответствующей ему...
Тип: Изобретение
Номер охранного документа: 0002580334
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.3a26

Способ захоронения co (варианты)

Группа изобретений предназначена для использования в области подземного хранения CO и других вредных газов, а также защиты окружающей среды. Технический результат - повышение надежности хранилища и снижение затрат на его создание. В первом варианте реализации способа для закачки CO выбирают...
Тип: Изобретение
Номер охранного документа: 0002583029
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3b58

Установка для исследования и способ исследования влияния пористых сред на фазовое поведение жидких и газообразных флюидов

Группа изобретений относится к термодинамике и может использоваться для проведения калориметрических измерений. Установка для исследования влияния пористых сред на фазовое поведение жидких и газообразных флюидов содержит две калориметрические ячейки, каждая из которых окружена двумя...
Тип: Изобретение
Номер охранного документа: 0002583061
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.446a

Абсорбент для очистки газов от сероводорода и диоксида углерода

Изобретение относится к области очистки газов от сероводорода и/или диоксида углерода и может быть использовано в газовой, нефтяной и нефтеперерабатывающей отраслях промышленности. Абсорбент для очистки газа от HS и СО содержит метилдиэтаноламин, аминоэтилпиперазин, метиловый или этиловый эфир...
Тип: Изобретение
Номер охранного документа: 0002586159
Дата охранного документа: 10.06.2016
Показаны записи 31-40 из 88.
10.11.2015
№216.013.8de7

Способ добычи и транспортировки углеводородного сырья на морском газовом или газоконденсатном месторождении

Изобретение относится к области освоения морских газовых и газоконденсатных месторождений и может быть использовано для добычи углеводородного сырья (УС). Технический результат заключается в обеспечении повышения экономической эффективности транспортировки добываемого УС за счет обеспечения...
Тип: Изобретение
Номер охранного документа: 0002567934
Дата охранного документа: 10.11.2015
20.12.2015
№216.013.9ba8

Устройство для проведения исследований газожидкостного потока

Изобретение относится к технике для исследования движения жидкостных потоков и газожидкостных потоков, например процессов добычи газа в нефтегазовой отрасли, связанной с изучением процессов движения газожидкостных потоков в вертикальных трубопроводах и отдельных устройствах. Технический...
Тип: Изобретение
Номер охранного документа: 0002571473
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a23a

Способ определения этиленгликоля в водных растворах

Изобретение относится к способам исследования материалов с использованием инфракрасной спектрометрии и может быть использовано в промышленных, экологических и научно-исследовательских лабораториях при исследовании состава и качества любых (сточной, попутной, поверхностной, питьевой) проб воды....
Тип: Изобретение
Номер охранного документа: 0002573172
Дата охранного документа: 20.01.2016
20.06.2016
№217.015.034e

Способ закрепления подводного трубопровода в проектном положении

Изобретение относится к строительству подводных переходов трубопроводов. В предлагаемом способе закрепления подводного трубопровода в проектном положении в качестве системы для закрепления трубопровода используют металлическую сетку. Предварительно на одном из концов полотна сетки формируют...
Тип: Изобретение
Номер охранного документа: 0002587730
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2e8c

Устройство для испытаний сепарационного оборудования

Изобретение относится к технике для изучения процессов добычи и подготовки газа в нефтегазовой отрасли. Технический результат изобретения заключается в повышении точности результатов проводимых газогидродинамических экспериментов и уменьшении времени их анализа, повышении наглядности проведения...
Тип: Изобретение
Номер охранного документа: 0002580546
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30d7

Способ определения давления начала конденсации в пористой среде

Изобретение относится к газовой промышленности и предназначено для исследования газоконденсатных смесей в пористой среде, а именно для определения давления начала конденсации в пористой среде. Техническим результатом является повышение точности, а также снижение трудоёмкости измерения давления...
Тип: Изобретение
Номер охранного документа: 0002580858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31f3

Способ определения тяжелых металлов в техническом углероде

Использование: для определения содержания тяжелых металлов в техническом углероде. Сущность изобретения заключается в том, что выполняют градуировку прибора рентгенофлуоресцентной спектрометрии для каждого элемента, регистрируют интенсивность аналитической линии элемента на соответствующей ему...
Тип: Изобретение
Номер охранного документа: 0002580334
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.3a26

Способ захоронения co (варианты)

Группа изобретений предназначена для использования в области подземного хранения CO и других вредных газов, а также защиты окружающей среды. Технический результат - повышение надежности хранилища и снижение затрат на его создание. В первом варианте реализации способа для закачки CO выбирают...
Тип: Изобретение
Номер охранного документа: 0002583029
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3b58

Установка для исследования и способ исследования влияния пористых сред на фазовое поведение жидких и газообразных флюидов

Группа изобретений относится к термодинамике и может использоваться для проведения калориметрических измерений. Установка для исследования влияния пористых сред на фазовое поведение жидких и газообразных флюидов содержит две калориметрические ячейки, каждая из которых окружена двумя...
Тип: Изобретение
Номер охранного документа: 0002583061
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.446a

Абсорбент для очистки газов от сероводорода и диоксида углерода

Изобретение относится к области очистки газов от сероводорода и/или диоксида углерода и может быть использовано в газовой, нефтяной и нефтеперерабатывающей отраслях промышленности. Абсорбент для очистки газа от HS и СО содержит метилдиэтаноламин, аминоэтилпиперазин, метиловый или этиловый эфир...
Тип: Изобретение
Номер охранного документа: 0002586159
Дата охранного документа: 10.06.2016
+ добавить свой РИД