×
04.04.2018
218.016.36bd

Результат интеллектуальной деятельности: Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа

Вид РИД

Изобретение

Аннотация: Изобретение относится к области промышленной безопасности опасных производственных объектов и может быть использовано для определения зон возможных разрушений и поражений человека осколками при авариях на объектах с обращением сжатого газа. Изобретение позволяет определять максимальную дальность разлета осколков при разгерметизации цилиндрического сосуда с газом и зону безопасного пребывания человека. Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа, заключается в том, что определяют принадлежность аварийного объекта газотранспортной системы к подземному трубопроводу или наземному сосуду со сжатым газом; для наземного сосуда со сжатым газом определяют его М - массу оболочки сосуда (кг), ρ - плотность материала (кг/м) оболочки сосуда и V - объем (м) сосуда; для подземного трубопровода определяют D - диаметр (м) трубопровода; h - заглубление (м) трубопровода (по нижней образующей); 2ψ - ожидаемый угол (град) раствора котлована; определяют начальную скорость первичных осколков U=U(t=0) (м/с) при авариях на объектах газотранспортной системы; определяют безразмерный коэффициент W, являющийся параметром инварианта движения и описывающий разлет осколков при аварии в предположении равновероятной их ориентации по направлению вектора скорости: где S - площадь миделя (м); m - масса осколка (кг); С - коэффициент сопротивления осколка; ρ - плотность воздуха (кг/м);g - ускорение силы тяжести (м/с); по полученному значению безразмерного коэффициента W определяют максимальную дальность полета осколков (м):определяют вероятность поражения человека (Р) отдельным осколком, учитывая, что человека моделируют цилиндром с радиусом r (м) и высотой l (м), который находится на максимальном расстоянии ΔR (м) от аварийного объекта, с учетом того, что попадание любого осколка - смертельно; строят график зависимости вероятности поражения человека (Р) осколком или осколками аварийного объекта от расстояния ΔR, на котором находится человек, по указанному графику определяют зону безопасного пребывания человека. Технический результат - расширение функциональных возможностей, позволяющих установить пространственное распределение параметров осколочного поражения, образующегося при взрывной разгерметизации трубопроводов и сосудов, содержащих природный газ под высоким начальным давлением, и обеспечить возможность предупреждения поражения человека осколочным воздействием. 2 ил.

Изобретение относится к области промышленной безопасности опасных производственных объектов и может быть использовано для определения зон возможных разрушений и поражений человека осколками при авариях на объектах с обращением сжатого газа.

Из уровня техники известен способ определения параметров воздушной ударной волны (ВУВ) при разгерметизации сосудов со сжатым газом (патент РФ №2541696 С1 на изобретение, кл. G01M 7/08, 20.02.2015). В известном способе предварительно определяют атмосферное давление и характеристики сосуда со сжатым газом, такие как исходное давление в сосуде, объем сосуда, определяют значение тротилового эквивалента взрыва, пространственное распределение барических параметров адиабатического взрыва, полученные значения избыточного давления и импульса во фронте ВУВ наносят на диаграмму «давление-импульс» поражения людей, составляют заключение о степенях поражения людей, а по параметрам сосуда и окружающей среды, а именно по значениям исходного давления в сосуде, атмосферного давления и объема сосуда, определяют радиус круговой зоны разрушения промышленного здания. Известный способ позволяет установить пространственную картину распределения параметров ВУВ, образующейся при аварийной разгерметизации сосудов, содержащих природный газ, метан, под высоким начальным давлением, и обеспечить защиту материальных ценностей и здоровья человека от воздействия ударной волны. Однако известный способ не позволяет при разгерметизации оборудования со сжатым газом, например при разгерметизации наземного сосуда или подземного трубопровода, спрогнозировать возможные разрушения и поражения человека осколками аварийного объекта.

Наиболее близким техническим решением к предлагаемому способу является способ определения параметров воздушной ударной волны при разгерметизации трубопроводов со сжатым газом (патент РФ №2551262, кл. G01M 7/08 (2006.01), опубл. 20.05.2015). В известном способе предварительно определяют атмосферное давление, характеристики трубопровода со сжатым газом и расстояние от места разрыва до ближайшего места завершения трубопровода. Затем определяют коэффициент эффективности ВУВ, определяют значение тротилового эквивалента взрыва, пространственное распределение барических параметров адиабатического взрыва. Полученные значения избыточного давления и импульса во фронте ВУВ наносят на диаграмму «давление-импульс» поражения людей, составляют заключение о степенях поражения людей. По параметрам трубопровода и окружающей среды определяют радиус круговой зоны разрушения (м) промышленного здания. Известный способ позволяет устанавливать пространственные картины распределения параметров ВУВ, образующейся при аварийной разгерметизации трубопроводов, содержащих природный газ, метан, под высоким начальным давлением, и обеспечить возможности защиты материальных ценностей и здоровья человека от воздействия ударной волны. Известный способ не позволяет спрогнозировать возможные разрушения и поражения человека осколками аварийного объекта.

Задача, на решение которой направлено предлагаемое изобретение, заключается в создании способа определения параметров осколочного поражения (дальности разлета фрагментов разрушаемого оборудования и их поражающей возможности) при разгерметизации объектов со сжатым газом, позволяющего установить пространственное распределение параметров осколочного воздействия от разгерметизации трубопроводов и сосудов со сжатым газом.

Технический результат изобретения, достигаемый предлагаемым изобретением, заключается в расширении функциональных возможностей, позволяющих установить пространственное распределение параметров осколочного поражения, образующегося при взрывной разгерметизации трубопроводов и сосудов, содержащих природный газ под высоким начальным давлением, и обеспечить возможность предупреждения поражения человека осколочным воздействием.

Сущность предлагаемого способа определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа, заключается в следующем:

- определяют принадлежность аварийного объекта газотранспортной системы к подземному трубопроводу или наземному сосуду со сжатым газом;

- для наземного сосуда со сжатым газом определяют его Mоб - массу оболочки сосуда (кг), ρоб - плотность материала (кг/м3) оболочки сосуда и V0 - объем (м3) сосуда;

- для подземного трубопровода определяют D - диаметр (м) трубопровода; h - заглубление (м) трубопровода (по нижней образующей); 2ψ - ожидаемый угол (град) раствора котлована;

- определяют начальную скорость первичных осколков U0=U(t=0) (м/с) при авариях на объектах газотранспортной системы;

- определяют безразмерный коэффициент W, являющийся параметром инварианта движения и описывающий разлет осколков при аварии в предположении равновероятной их ориентации по направлению вектора скорости:

,

где Sср - площадь миделя (м2);

m - масса осколка (кг);

Сх - коэффициент сопротивления осколка;

ρ0 - плотность воздуха (кг/м3);

g - ускорение силы тяжести (м/с2);

- по полученному значению безразмерного коэффициента W определяют максимальную дальность полета осколков (м):

,

- определяют вероятность поражения человека (Pчел) отдельным осколком, учитывая, что человека моделируют цилиндром с радиусом r (м) и высотой l (м), который находится на максимальном расстоянии ΔRmax (м) от аварийного объекта, с учетом того, что попадание любого осколка - смертельно;

- строят график зависимости вероятности поражения человека (Pчел) осколком или осколками аварийного объекта от расстояния ΔR, на котором находится человек, по указанному графику определяют зону безопасного пребывания человека.

Взрывная разгерметизация объектов газотранспортной системы (ГТС) сопровождается образованием и разлетом фрагментов аварийного оборудования с дальнейшим поражением реципиентов (людей, зданий, сооружений, оборудования) осколочным воздействием. Предлагаемый способ позволяет определять параметры поражения от осколочного воздействия при взрывной разгерметизации трубопроводов, сферических и цилиндрических сосудов с обращением сжатого газа.

Основными определяемыми параметрами осколочного поражения являются: дальность разлета фрагментов разрушаемого объекта со сжатым газом и их поражающая возможность. Данные параметры определяют зоны возможных разрушений оборудования, зданий и сооружений и поражений человека осколками при авариях.

Согласно предлагаемому способу определения параметров осколочного поражения при взрывной разгерметизации сначала определяют тип аварийного объекта, является ли аварийный объект подземным трубопроводом или надземным сферическим или цилиндрическим сосудом со сжатым газом. Также определяют P0 - избыточное давление в аварийном объекте до аварии (атм).

В зависимости от типа аварийного объекта со сжатым газом определяют следующие характеристики аварийного объекта:

- для наземного аварийного сосуда (Моб - массу оболочки сосуда (кг), ρоб - плотность материала (кг/м3) оболочки сосуда, V0 - объем (м3) сосуда);

- для подземного трубопровода (D - диаметр (м) трубопровода; h - заглубление (м) трубопровода (по нижней образующей); 2ψ - ожидаемый угол (град) раствора котлована).

По перечисленным характеристикам определяют значение начальной скорости первичных осколков U0=U(t=0)(м/с).

В зависимости от аварийного элемента: трубопровода, цилиндрического сосуда или сферического сосуда скорость первичных осколков определяют следующим образом:

- для наземного цилиндрического сосуда:

- для наземного сферического сосуда:

- для подземного трубопровода:

Решая аналитическими методами систему уравнений, описывающих движение осколка, определяют безразмерный коэффициент W, являющийся параметром инварианта движения, который позволяет описать разлет осколков при аварии в предположении равновероятной ориентации осколка по направлению вектора скорости:

где Sср - площадь миделя (м);

m - масса осколка (кг);

Сх - коэффициент сопротивления осколка;

ρ0 - плотность воздуха (кг/м3);

g - ускорение силы тяжести (м/с2).

При известном значении безразмерного коэффициента W пространственное распределение параметров осколочного воздействия, таких как максимальная дальность полета осколков (м) и вероятность поражения человека (Pчел) отдельным осколком, описывается соотношениями (5), (6).

Максимальную дальность полета осколков предлагается определять по формуле:

Предлагаемое изобретение поясняется графическими материалами, представленными на фиг. 1 и 2. На фиг. 1 представлен график, отражающий зависимость вероятности осколочного поражения человека от расстояния ΔR аварийного объекта - подземного трубопровода. На фиг. 2 представлен график, отражающий зависимость вероятности осколочного поражения человека от расстояния ΔR аварийного объекта - наземного цилиндрического сосуда.

Вероятность поражения человека отдельным осколком, движение которого описывается безразмерным коэффициентом W, в предположении, что человек моделируется цилиндром с радиусом r (м) и высотой l (м), находящимся на расстоянии ΔR (м) от аварийного объекта, с учетом того, что попадание любого осколка - смертельно, предлагается определять следующим образом:

где введены следующие обозначения:

,

,

,

при этом посредством вычислительного эксперимента определено, что распределение дальности полета осколков аппроксимируется с достаточной точностью бета-распределением, где плотность распределения задается соотношением:

,

где , Г(a), Г(b), Г(a+b) - гамма-функции, a=1,5, b=0,6 - параметры бета-распределения.

Вероятность поражения человека при образовании n осколков, каждый из которых характеризуется коэффициентом Wi, определяется на основании законов теории вероятности и может быть выражена следующим образом:

Осуществление изобретения может быть подтверждено проведенными экспериментальными исследованиями.

В качестве примера осуществления изобретения рассмотрим сценарий аварии - «Взрывная разгерметизация подземного газопровода с образованием воздушной ударной волны, разлетом осколков трубы и фрагментов грунта, последующим истечением газа из газопровода в виде колонного низкоскоростного шлейфа и рассеиванием истекающего газа без воспламенения».

При определении параметров учитываем, что газопровод находится под землей. Исходные параметры газопровода преобразуем к виду, удобному для расчета:

P0=60 атм - избыточное давление в аварийном объекте до аварии;

D=0,325 м - диаметр трубопровода;

h=0,8 м - заглубление трубопровода (по нижней образующей);

ψ=22° - половина ожидаемого угла раствора котлована;

m=8 кг - масса одного осколка;

g=9.81 м/с2; ρ0=1.225 кг/м3; ρоб=7800 кг/м3; r=0.15 м и l=1.8 м, n=1.

Значение начальной скорости осколка определяем по формуле (3):

Далее определяют безразмерный коэффициент W:

Для определения безразмерного коэффициента W принимается коэффициент сопротивления осколка Cx=2; площадь миделя осколка (м2) Sср=(m/ρоб)2/3 - учитывается как среднее геометрическое значение.

Максимальная дальность полета осколков (м) составляет:

Значение параметра максимальная дальность полета осколков разрушенного объекта, содержащего сжатый газ, используется для определения зон потенциального поражения оборудования, зданий, объектов инфраструктуры, находящихся вблизи разрушенного объекта.

Для определения вероятности поражения осколком человека воспользуемся поясняющим графиком (фиг. 1) зависимости вероятности осколочного поражения человека от расстояния ΔR от аварийного объекта - подземного газопровода.

Результаты проведенного эксперимента, взятые для сравнения, показали, что максимальная дальность полета фрагментов оболочки составила ΔRmax=84 метра (масса фрагмента 8 кг); скорость первичных осколков U0 не превышала 31 м/с.

В качестве другого примера рассмотрим сценарий аварии - «Разгерметизация газового баллона объемом 50 л с образованием воздушной ударной волны, разлетом фрагментов баллона» при следующих условиях.

P0=16 атм - избыточное давление в аварийном объекте до аварии;

V0=0.05 м3 - объем сосуда;

ρоб=7800 кг/м3 - плотность материала оболочки;

M0=22 кг - масса оболочки;

m=11 кг - масса одного осколка;

g=9.81 м/с2; ρ0=1.225 кг/м3; количество осколков n=2.

Значение начальной скорости осколка в соответствии с (1) составляет:

Для определения безразмерного коэффициента W:

принимается коэффициент сопротивления осколка Сx=2; площадь миделя осколка (м2) Sср=(m/ρоб)2/3 - учитывается как среднее геометрическое значение.

Максимальная дальность полета осколков (м):

Для определения вероятности поражения человека воспользуемся графиком, отражающим зависимость вероятности осколочного поражения человека от расстояния ΔR аварийного объекта, газового баллона, представленным на фиг. 2.

Результаты проведенного эксперимента, взятые для сравнения, показали, что максимальная дальность полета фрагментов баллона может составлять до 300 м.

Таким образом, предложенное изобретение позволяет определять вероятность поражения человека (Pчел) при образовании по меньшей мере одного осколка аварийного объекта, при нахождении человека на расстоянии ΔR, обеспечивая тем самым возможность предупреждения поражения человека.


Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа
Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа
Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа
Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа
Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа
Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа
Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа
Источник поступления информации: Роспатент

Показаны записи 151-160 из 163.
20.04.2023
№223.018.4abe

Способ цементирования обсадной колонны скважины

Изобретение относится к области бурения нефтяных и газовых скважин и может быть использовано при цементировании обсадных колонн в установившемся режиме. Техническим результатом является повышение качества цементирования и повышение его эффективности за счет сокращения затрат на строительство...
Тип: Изобретение
Номер охранного документа: 0002778361
Дата охранного документа: 17.08.2022
20.04.2023
№223.018.4af2

Ингибирующий буровой раствор

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении неустойчивых глинистых пород и вскрытии продуктивных пластов. Технический результат - понижение показателя пластической вязкости рабочей жидкости и снижение расхода глинопорошка, а также возможность...
Тип: Изобретение
Номер охранного документа: 0002776818
Дата охранного документа: 27.07.2022
20.04.2023
№223.018.4b18

Стенд для исследования гидромеханических характеристик скважинных фильтров

Изобретение относится к испытательной технике, в частности к устройствам для испытаний скважинных фильтров различных типов конструкции, используемых для процессов добычи и хранения углеводородов в нефтегазовой отрасли. Устройство включает испытательную камеру с верхней и нижней крышками на...
Тип: Изобретение
Номер охранного документа: 0002775583
Дата охранного документа: 05.07.2022
20.04.2023
№223.018.4b1f

Катионный ингибирующий буровой раствор

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении солевых и неустойчивых глинистых пород. Технический результат - повышение ингибирующих свойств бурового раствора и улучшение его...
Тип: Изобретение
Номер охранного документа: 0002775214
Дата охранного документа: 28.06.2022
21.04.2023
№223.018.4f10

Модульная система протекторной защиты для морских сооружений

Изобретение относится к системе электрохимической защиты от коррозии морских сооружений методом наложенного тока и может быть использовано для долговременной защиты подводных морских сооружений. Модульная система содержит ячейки с протекторами, балансировочную плату и кабели между ячейками и...
Тип: Изобретение
Номер охранного документа: 0002791558
Дата охранного документа: 10.03.2023
21.04.2023
№223.018.4f3d

Способ эксплуатации скважин

Изобретение относится к нефтегазодобывающей промышленности и может быть применено при эксплуатации газовых, газоконденсатных и нефтяных скважин. Способ эксплуатации скважин, в том числе обводненных, заключается в том, что на фонтанной арматуре над крестовиной дополнительно устанавливают...
Тип: Изобретение
Номер охранного документа: 0002792861
Дата охранного документа: 28.03.2023
21.04.2023
№223.018.4f4d

Буровой раствор

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении глинистых и солевых пород, а также при вскрытии продуктивных пластов. Технический результат - повышение ингибирующей и крепящей способности по отношению к глинистым породам. Буровой раствор включает,...
Тип: Изобретение
Номер охранного документа: 0002792860
Дата охранного документа: 28.03.2023
21.04.2023
№223.018.4f5d

Способ герметизации заколонных пространств обсадных колонн скважин в условиях распространения низкотемпературных пород

Изобретение относится к области проведения геологоразведочных работ и последующей разработки месторождений полезных ископаемых, в частности месторождений нефти и газа в условиях распространения низкотемпературных пород. Для осуществления способа герметизации заколонных пространств обсадных...
Тип: Изобретение
Номер охранного документа: 0002792859
Дата охранного документа: 28.03.2023
21.04.2023
№223.018.4f85

Способ эксплуатации газовых и газоконденсатных скважин

Изобретение относится к нефтегазодобывающей промышленности и может быть применено при эксплуатации газовых, газоконденсатных и нефтяных скважин. Способ эксплуатации газовых и газоконденсатных скважин, в том числе обводненных, заключается в том, что на фонтанной арматуре над крестовиной...
Тип: Изобретение
Номер охранного документа: 0002792961
Дата охранного документа: 28.03.2023
12.05.2023
№223.018.546a

Установка для повышения эффективности добычи газа

Изобретение относится к нефтегазовой промышленности. Техническим результатом является повышение эффективности технологических процессов добычи газа в результате комплексного использования энергии давления пластового газа в продолжение всего периода разработки месторождения за счет применения...
Тип: Изобретение
Номер охранного документа: 0002795489
Дата охранного документа: 04.05.2023
Показаны записи 81-88 из 88.
17.02.2018
№218.016.2aba

Стенд для испытания обетонированных труб

Изобретение относится к испытательной технике и может быть использовано для испытаний стальных обетонированных труб больших диаметров для магистральных газо- и нефтепроводов. Стенд содержит опоры и гидравлическую систему для нагружения испытуемой трубы изгибом. Стенд снабжен измерительной...
Тип: Изобретение
Номер охранного документа: 0002642881
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.3017

Способ подготовки природного газа

Изобретение относится к газовой промышленности, в частности к подготовке природного газа и извлечению нестабильного углеводородного конденсата из пластового газа, и может быть использовано на газоконденсатных месторождениях, расположенных в зоне многолетнемерзлых грунтов. В способе...
Тип: Изобретение
Номер охранного документа: 0002645102
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3022

Способ абсорбционной подготовки природного газа

Изобретение относится к газовой промышленности, в частности к подготовке природного газа и извлечению нестабильного углеводородного конденсата из пластового газа, и может быть использовано на газоконденсатных месторождениях, расположенных в зоне многолетнемерзлых грунтов. В способе...
Тип: Изобретение
Номер охранного документа: 0002645124
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.30d4

Способ исследования скважин при кустовом размещении

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при проведении газогидродинамических исследований и эксплуатации газовых, газоконденсатных и нефтяных скважин. Технический результат изобретения - расширение функциональных возможностей, заключающихся в...
Тип: Изобретение
Номер охранного документа: 0002644997
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3179

Способ частичного сжижения природного газа

Изобретение относится к области сжижения газов и их смесей и может быть применено для частичного сжижения в каскадных установках на газораспределительных станциях (ГРС) магистральных газопроводов. Отбирают поток природного газа из магистрального газопровода на ГРС, предварительно осушают,...
Тип: Изобретение
Номер охранного документа: 0002645095
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.31dc

Способ крепления продуктивного пласта-коллектора газовой скважины

Изобретение относится к газовой промышленности, в частности к способам повышения продуктивности эксплуатационных скважин подземных хранилищ газа и снижения водонасыщенности призабойной зоны пласта с использованием физико-химических методов воздействия на пласт-коллектор. В способе крепления...
Тип: Изобретение
Номер охранного документа: 0002645233
Дата охранного документа: 19.02.2018
23.08.2018
№218.016.7e91

Способ определения параметров поражения от напорного воздействия струи газа при авариях на газопроводах высокого давления

Изобретение относится к области промышленной безопасности опасных производственных объектов и может быть использовано для определения зон поражения человека и повреждения объектов инфраструктуры от напорного воздействия струи газа при авариях с гильотинным разрывом газопроводов высокого...
Тип: Изобретение
Номер охранного документа: 0002664589
Дата охранного документа: 21.08.2018
26.10.2018
№218.016.9683

Способ определения параметров теплового воздействия при факельном горении сверхзвуковой струи газа

Изобретение относится к области промышленной безопасности опасных производственных объектов применительно к определению дальности распространения тепловой радиации при авариях на трубопроводах с обращением сжатого газа. При осуществлении способа определяют тип флюида и начальные параметры газа...
Тип: Изобретение
Номер охранного документа: 0002670620
Дата охранного документа: 24.10.2018
+ добавить свой РИД