×
04.04.2018
218.016.3578

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ

Вид РИД

Изобретение

№ охранного документа
0002645836
Дата охранного документа
28.02.2018
Аннотация: Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором, в первом такте измерений, возбуждают электромагнитные колебания в размещаемом вертикально в емкости с контролируемой жидкостью отрезке длинной линии, измеряют резонансную частоту ƒ его электромагнитных колебаний, дополнительно, во втором такте измерений, возбуждают в отрезке длинной линии электромагнитные волны на фиксированной частоте F, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ и Δϕ, электромагнитные колебания возбуждают в размещаемом вертикально в емкости с контролируемой жидкостью отрезке длинной линии длиной с оконечным горизонтальным участком фиксированной длины z, скачкообразно заполняемым жидкостью и опорожняемым при, соответственно, поступлении жидкости в емкость и ее удалении из емкости, и определяют значение z уровня жидкости в результате совместного функционального преобразования ƒ и Δϕ согласно соотношению. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости.

Известны способы и устройства для измерения уровня жидкостей в емкостях, основанные на применении отрезков длинных линий (коаксиальной линии, двухпроводной линии и др.) в качестве чувствительных элементов (Викторов В.А. Резонансный метод измерения уровня. М.: Энергия. 1969. 192 с.). Такой отрезок длинной линии размещают вертикально в емкости с контролируемыми жидкостью. Измеряя какой-либо его информативный параметр, в частности резонансную частоту электромагнитных колебаний, можно определить уровень жидкости. Недостатком таких способов измерения и реализующих их устройств является невысокая точность измерения, обусловленная зависимостью результатов измерения уровня от электрофизических параметров жидкости.

Известно также техническое решение (SU 460447, 10.04.1973), которое содержит описание способа измерения и двухканального устройства - уровнемера, в котором в двух независимых отрезках длинных линий с разными нагрузками на их на концах, образующих его измерительные каналы, возбуждают электромагнитные колебания типа ТЕМ на основной (1-й) гармонике. Их другие концы подсоединены к входам соответствующих вторичных преобразователей, выходы которых соединены с входом блока обработки информации, выход которого подключен к индикатору. Вдоль данных отрезков длинной линии имеет место разное распределение энергии электромагнитного поля стоячей волны, требуемое для получения информации об уровне жидкости независимо от ее электрофизических параметров. Измеряя их резонансные частоты ƒ1 и ƒ2 электромагнитных колебаний (являющиеся функциями уровня z жидкости и его диэлектрической проницаемости ε), можно найти уровень z из соотношения

где и - начальные (при z=0) значения ƒ1 и ƒ2, соответственно.

Данное соотношение обладает свойством инвариантности к величине ε и ее возможным изменениям.

Недостатком этих способа и устройства является невысокая точность измерения, главным образом, в области малых значений уровня, близких к нулевому значению. В этом случае при нулевом значении уровня (z=0) имеется неопределенность типа "0/0", а вблизи значения z=0 погрешность измерения резко возрастает, поскольку результат совместного преобразования резонансных частот может принимать разные значения из-за возможных, даже малых, девиаций значений резонансных частот (вышеприведенное преобразование неустойчиво относительно возможных флуктуаций значений и ).

Известно также техническое решение (SU 1765712 А1, 10.10.1980), в котором применяют два независимых отрезка длинной линии с оконечными горизонтальными участками разной длины, располагаемый вертикально отрезок длинной линии и заполняемых жидкостью в соответствии с ее уровнем в емкости. Измеряя резонансные частоты этих отрезков длинной линии или фазовые сдвиги волн фиксированной частоты после их распространения вдоль этих отрезков длинной линии и производя их совместную функциональную обработку согласно математическим соотношениям, соответствующим именно этому способу измерения, можно определить значения уровня жидкости независимо от диэлектрической проницаемости жидкости.

Недостатком этого технического решения является невысокая точность измерения, обусловленная расположением двух отрезков длинной линии в разных областях внутри резервуара с контролируемой жидкостью. В этих областях электрофизические параметры (диэлектрическая проницаемость, электропроводность) жидкости могут отличаться. Это приводит к снижению точности измерения, так как величина информативного параметра (резонансной частоты, фазового сдвига) зависит как от уровня жидкости, так и от ее электрофизических параметров.

Известно также техническое решение (RU 2473056 C1, 20.01.2013), в котором применяют отрезок длинной линии с оконечным горизонтальным участком, располагаемый вертикально отрезок длинной линии и заполняемый жидкостью в соответствии с ее уровнем в емкости. Горизонтальный участок отрезка длинной линии скачкообразно заполняется жидкостью и опорожняется при соответственно поступлении жидкости в емкость и ее удалении из нее. Возбуждая в отрезке длинной линии электромагнитные колебания на двух разных резонансных частотах, которым соответствуют разные распределения энергии электромагнитного поля вдоль данного отрезка длинной линии, измеряя эти резонансные частоты и производя их совместную функциональную обработку согласно соотношению, соответствующему именно этому способу измерения, можно определить значения уровня жидкости независимо от диэлектрической проницаемости жидкости.

Недостатком этого способа является наличие определенных трудностей при возбуждении и выделении гармоники отрезка длинной линии более высокого порядка, чем основная гармоника, что усложняет его реализацию.

Известно также техническое решение, по технической сущности наиболее близкое к предлагаемому способу и принятое в качестве прототипа (SU 1744502 А1, 30.06.1992), в котором применяют отрезок длинной линии, располагаемый вертикально отрезок длинной линии и заполняемый жидкостью в соответствии с ее уровнем в емкости. Согласно данному способу в первом такте измерений измеряют резонансную частоту ƒ электромагнитных колебаний отрезка длинной линии, а также, во втором такте измерений, возбуждают в отрезке длинной линии электромагнитные волны на фиксированной частоте, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ и Δϕ.

Недостатком этих способа и устройства является невысокая точность измерения в области малых значений уровня, близких к нулевому значению. В этом случае при нулевом значении уровня (z=0) имеется неопределенность типа "0/0", а вблизи значения z=0 погрешность измерения резко возрастает, поскольку при этом результат совместного преобразования ƒ и Δϕ может принимать разные значения из-за возможных, даже малых, девиаций значений ƒ и Δϕ.

Техническим результатом настоящего изобретения является повышение точности измерений.

Технический результат достигается тем, что в предлагаемом способе определения уровня жидкости в емкости, при котором, в первом такте измерений, возбуждают электромагнитные колебания в размещаемом вертикально в емкости с контролируемой жидкостью отрезке длинной линии, измеряют резонансную частоту ƒ его электромагнитных колебаний, дополнительно, во втором такте измерений, возбуждают в отрезке длинной линии электромагнитные волны на фиксированной частоте F, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ и Δϕ, электромагнитные колебания возбуждают в размещаемом вертикально в емкости с контролируемой жидкостью отрезке длинной линии длиной с оконечным горизонтальным участком фиксированной длины z0, скачкообразно заполняемым жидкостью и опорожняемым при, соответственно, поступлении жидкости в емкость и ее удалении из емкости, и определяют значение z уровня жидкости в результате совместного функционального преобразования ƒ и Δϕ согласно соотношению , где α - функция распределения напряжения вдоль отрезка длинной линии на его резонансной частоте, с - скорость света, Δϕ0 - фазовый сдвиг фиксированной величины, обусловленный отражением от нагрузки отрезка длинной линии на конце его горизонтального участка.

Предлагаемый способ поясняется чертежом на фиг. 1, где приведена схема устройства для его реализации.

На фиг. 1 показаны контролируемая жидкость 1, отрезок длинной линии 2, горизонтальный участок на конце отрезка длинной линии 3, коммутатор 4, электронные блоки 5 и 6, функциональный преобразователь 7, регистратор 8.

Сущность предлагаемого способа состоит в следующем.

В емкости с контролируемой жидкостью 1 размещают вертикально отрезок длинной линии 2 с длиной с оконечным горизонтальным участком 3 фиксированной длины z0, скачкообразно заполняемым жидкостью 1 и опорожняемым при, соответственно, поступлении жидкости в емкость и ее удалении из емкости (фиг. 1). По мере изменения уровня z жидкости в емкости изменяются и характеристики распространения электромагнитных волн в отрезке длинной линии 2 с оконечным горизонтальным участком 3. Как следствие, изменяются также информативные параметры отрезка длинной линии.

Согласно данному способу в данном отрезке длинной линии с оконечным горизонтальным участком в первом такте измерений возбуждают электромагнитные колебания, измеряют резонансную частоту ƒ его электромагнитных колебаний, дополнительно, во втором такте измерений возбуждают в отрезке длинной линии электромагнитные волны на фиксированной частоте F, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн и, по завершении указанных двух тактов измерений, осуществляют совместное функциональное преобразование ƒ и Δϕ. Поскольку информативные параметры ƒ и Δϕ являются функциями как уровня z жидкости, так и ее электрофизических параметров, то, осуществляя совместные преобразования ƒ и Δϕ, можно исключить влияние электрофизических параметров жидкости на результаты определения уровня z жидкости.

Если для фазового сдвига Δϕ падающих и отраженных электромагнитных волн можно записать точное выражение, то для резонансной частоты отрезка длинной линии возможно как точное, так и приближенное соотношение, причем первое (точное) описывается трансцендентным уравнением, содержащим зависимость ƒ(z) в неявном виде (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 280 с. С. 42-50). Приближенное соотношение для ƒ(z) описывает такую зависимость в явном виде и является более подходящим для совместного функционального преобразования ƒ и Δϕ.

Не ограничивая общности для получения искомого соотношения, будем применять следующую формулу для ƒ(z) отрезка длинной линии (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 280 с. С. 50-59):

где ƒ0 - начальное (при отсутствии жидкости в емкости) значение ƒ; α(z) - функция распределения напряжения вдоль отрезка длинной линии на его резонансной частоте:

;

где U(ξ) - напряжение в точке с координатой ξ отрезка линии, возбуждаемого на резонансной частоте ƒ; - длина отрезка длинной линии, z0 - длина оконечного горизонтального участка.

Для фазового сдвига Δϕ(z) возбуждаемой на фиксированной частое F электромагнитной волны и волны, отраженной от противоположного (нижнего) конца отрезка длинной линии и принимаемой на том же конце, где производим возбуждение волны, будем иметь (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 280 с. С. 73-74):

где Δϕ0 - фазовый сдвиг фиксированной величины, обусловленный отражением от нагрузки на конце оконечного горизонтального участка отрезка длинной линии.

Фазовый сдвиг Δϕ0 имеет следующее значение: Δϕ0=π-2arctg(Xн/W). Для короткозамкнутого на конце отрезка длинной линии имеем Δϕ0=π; для разомкнутого на конце отрезка длинной линии имеем Δϕ0=0. Здесь ХН - реактивное нагрузочное сопротивление, W - волновое (характеристическое) сопротивление отрезка длинной линии.

Рассматривая соотношения (1) и (2) как систему уравнений относительно z и ε, получаем в результате решения этой системы соотношение, в котором значение z содержится в неявном виде:

В соотношении (3) отсутствует величина ε, т.е. данное выражение является инвариантным к ε и ее изменениям.

Таким образом, измеряя ƒ и Δϕ и осуществляя их совместное преобразование согласно соотношению (3) в содержащем вычислительное устройство функциональном преобразователе устройства, реализующего данный способ, можно определить текущее значение уровня z независимо от значения ε и его возможных изменений. Нахождение значения z из (3) в вычислительном блоке возможно при решении конкретных задач при известных численных значениях величин, входящих в соотношение (3).

В зависимости от величины и характера нагрузки отрезка длинной линии соотношение (1) принимает тот или иной конкретный вид. Если отрезок длинной линии коротко замкнут на нижнем конце, то в этом случае распределение напряжения вдоль него на основном ТЕМ типе колебаний, возбуждаемых в рассматриваемом отрезке длинной линии, определяется следующим образом: и, соответственно этому, будем иметь: . В данном случае, для короткозамкнутого на конце отрезка длинной линии, имеем Δϕ0=π. Тогда соотношение (3) принимает следующий вид:

При равномерном распределении энергии электромагнитного поля вдоль отрезка длинной линии, возбуждаемого на резонансной частоте ƒ (в первом такте измерений), будем иметь: U(ξ)=const и, соответственно, . В данном случае, для разомкнутого на конце отрезка длинной линии имеем Δϕ0=0. В этом случае соотношение (3) принимает следующий вид:

Обеспечить равномерное распределение энергии электромагнитного поля вдоль отрезка длинной линии можно, подключив на одном из его концов достаточно большое индуктивное сопротивление (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М: Наука. 280 с. С.50-59).

Рассмотрим устройство, реализующее данный способ измерения уровня (фиг.1). В первом такте измерений возбуждение электромагнитных колебаний в отрезке длинной линии 2, расположенном в емкости с жидкостью 1, производят через коммутатор 4 с помощью электронного блока 5. Этот электронный блок 5 предназначен также для измерения резонансной частоты ƒ электромагнитных колебаний отрезка длинной линии. Во втором такте измерений другой электронный блок 6 обеспечивает возбуждение в отрезке длинной линии 2 электромагнитных волн на фиксированной частоте F и измерение фазового сдвига Δϕ возбуждаемой и принимаемой волн (принимаемая волна отражается от нагрузки на конце оконечного горизонтального участка отрезка длинной линии). Через коммутатор 3 осуществляют связь электронных блоков 5 и 6 с отрезком длинной линии 2, обеспечивая попеременное существование в отрезке длинной линии 2 как режима колебаний в первом такте измерений, так и режима распространения и интерференции падающих и отраженных волн во втором такте измерений. Значения резонансной частоты ƒ и фазового сдвига Δϕ, измеряемые с помощью, соответственно, электронных блоков 5 и 6, поступают в функциональный преобразователь 7. В нем осуществляют совместное преобразование параметров ƒ и Δϕ согласно вышеприведенному соотношению (3). Результат совместного преобразования ƒ и Δϕ, несущий информацию об уровне z жидкости в емкости независимо от электрофизических параметров жидкости и получаемый при решении (3) относительно z в вычислительном устройстве, содержащемся в функциональном преобразователе 7, поступает на индикатор 8.

Приведем некоторые данные, характеризующие измерения резонансной (собственной) частоты ƒ и фазового сдвига Δϕ в отрезке длинной линии. Если м, то для короткозамкнутого на конце отрезка длинной линии будем иметь МГц. При контроле уровня жидкости с ε=2 (нефтепродукты) МГц. При измерении фазового сдвига Δϕ на частоте F=100 МГц находим , что при ε=2 дает значение Δϕ=19,2°; данное значение свидетельствует и об однозначности фазовых измерений при реальных значениях конструктивных параметров отрезка длинной линии и значениях ε жидкости. Наличие горизонтального участка на конце отрезка длинной линии существенно не изменяет приведенные выше оценочные данные.

Соотношение (3) позволяет определять уровень z при любом его значении, включая значение z=0. При этом отсутствует присущая способу-прототипу неопределенность типа "0/0", поскольку в данном случае результат совместного преобразования ƒ и Δϕ согласно (3) при z=0 имеет конечное значение, определяемое значениями ƒ(0)/ƒ0 и Δϕ(0). При z=0 имеет место скачкообразное изменение этих значений ƒ и Δϕ вследствие заполнения горизонтального участка отрезка длинной линии. При z=0 имеем (в первом такте измерений):

где - конечная, отличная от нуля величина. Соответственно, ƒ(0)/ƒ0 также является конечной, отличной от единицы величиной.

Так, для отрезка длинной линии с равномерным распределением энергии электромагнитного поля вдоль него, возбуждаемого на резонансной частоте ƒ (в первом такте измерений), будем иметь: . Соответственно этому значению α(0) находим: .

Из соотношения (2) при z=0 находим (во втором такте измерений):

Это означает, что Δϕ(0) так же, как и ƒ(0)/ƒ0, является конечной величиной.

Следовательно, при z=0 соответствующие значения ƒ(0)/ƒ0 и Δϕ(0), входящие в соотношение (3), имеют разные конечные значения, что устраняет получение при z=0 неопределенности типа "0/0". Численное решение уравнения (3) относительно z, возможное при подстановке в (3) конкретных значений входящих в (3) величин, имеет конечное значение при всех значениях уровня z жидкости в емкости, включая его нулевое значение. В любой малой окрестности значения z=0 преобразование (3) устойчиво относительно возможных флуктуаций значений ƒ и Δϕ. Это подтверждает, что предлагаемый способ измерения обеспечивает высокую точность измерения при любых значениях координаты z, включая его малые, вблизи нуля, значения.

В вышеприведенных формулах следует использовать вместо ε значение эффективной диэлектрической проницаемости εэфф при применении отрезка длинной линии, по меньшей мере, один из проводников которой покрыт диэлектрической оболочкой определенной толщины и материала, что позволяет существенно увеличивать добротность колебательной системы и снижать коэффициент затухания электромагнитной волны (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М: Наука. С. 125-131). В этом случае возможно измерение уровня жидкости с произвольными электрофизическими параметрами (диэлектрической проницаемости, электропроводности) независимо от ее значений и возможных изменений в процессе измерения.

Таким образом, данный способ позволяет определять уровень жидкости в емкости независимо от электрофизических параметров жидкости. Этот способ достаточно прост в реализации, которая осуществима на основе одного отрезка длинной линии с горизонтальным оконечным участком.

Способ определения уровня жидкости в емкости, при котором, в первом такте измерений, возбуждают электромагнитные колебания в размещаемом вертикально в емкости с контролируемой жидкостью отрезке длинной линии, измеряют резонансную частоту его электромагнитных колебаний, дополнительно, во втором такте измерений, возбуждают в отрезке длинной линии электромагнитные волны на фиксированной частоте F, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование и Δϕ, отличающийся тем, что электромагнитные колебания возбуждают в размещаемом вертикально в емкости с контролируемой жидкостью отрезке длинной линии длиной l с оконечным горизонтальным участком фиксированной длины z, скачкообразно заполняемым жидкостью и опорожняемым при, соответственно, поступлении жидкости в емкость и ее удалении из емкости, и определяют значение z уровня жидкости в результате совместного функционального преобразования и Δϕ согласно соотношению , где α - функция распределения напряжения вдоль отрезка длинной линии на его резонансной частоте, с - скорость света, Δϕ - фазовый сдвиг фиксированной величины, обусловленный отражением от нагрузки отрезка длинной линии на конце его горизонтального участка.
СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ
Источник поступления информации: Роспатент

Показаны записи 281-290 из 304.
08.02.2020
№220.018.006c

Автономный необитаемый подводный аппарат-амфибия

Изобретение относится к области подводной робототехники, в частности к автономным необитаемым подводным аппаратам (АНПА), и может быть применено в разного рода операциях и исследованиях под водой, на водной поверхности и на суше. Автономный необитаемый подводный аппарат-амфибия содержит корпус...
Тип: Изобретение
Номер охранного документа: 0002713494
Дата охранного документа: 06.02.2020
02.03.2020
№220.018.07b7

Способ непрерывной высотной телекоммутационной связи

Изобретение относится к области передачи информации с помощью высотной телекоммутационной связи. Технический результат состоит в обеспечении непрерывной высотной телекоммутационной связи без ограничения высоты подъема воздушной высотной платформы. Для этого способ формирования беспроводных...
Тип: Изобретение
Номер охранного документа: 0002715420
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.07d1

Свч - мостовой измеритель температуры

Изобретение относится к устройствам для измерения температуры и может применяться в различных областях техники. Заявлен СВЧ - мостовой измеритель температуры, содержащий термопреобразователь, усилитель и первый источник питания, введены первый СВЧ-генератор с варакторной перестройкой частоты,...
Тип: Изобретение
Номер охранного документа: 0002715496
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.0827

Инвертирующий масштабный усилитель с регулируемой степенью

Изобретение относится к области электронных устройств для усиления непрерывных сигналов с заданным масштабным коэффициентом. Технический результат заключается в повышении точности масштабирования инвертирующего усилителя на операционных усилителях с ограниченными частотными свойствами за счет...
Тип: Изобретение
Номер охранного документа: 0002715471
Дата охранного документа: 28.02.2020
04.03.2020
№220.018.085f

Устройство для внутрипластового горения

Изобретение относится к устройствам для извлечения смеси углеводородов, в частности смеси тяжелых углеводородов, из подземного пласта путем внутрипластового горения. Устройство для внутрипластового горения содержит измельчитель алюминиевой стружки, сепаратор и датчик температуры, размещенный в...
Тип: Изобретение
Номер охранного документа: 0002715572
Дата охранного документа: 02.03.2020
14.05.2020
№220.018.1c54

Способ организации системной сети в виде отказоустойчивого неблокируемого трехмерного разреженного р-ичного гиперкуба

Изобретение относится к способу организации системной сети в виде отказоустойчивого неблокируемого трехмерного разреженного p-ичного гиперкуба для многопроцессорных систем с сотнями абонентов-процессоров. Техническим результатом изобретения является повышение отказоустойчивости системной сети,...
Тип: Изобретение
Номер охранного документа: 0002720553
Дата охранного документа: 12.05.2020
15.07.2020
№220.018.3249

Способ определения покомпонентного расхода газожидкостной среды

Изобретение относится к измерительной технике и может использоваться для контроля расхода и определения массы компонента газожидкостной среды (ГЖС), извлекаемой, например, из буровой скважины. Способ определения покомпонентного расхода газожидкостной среды характеризуется тем, что периодически...
Тип: Изобретение
Номер охранного документа: 0002726304
Дата охранного документа: 13.07.2020
15.07.2020
№220.018.3295

Устройство для диагностики состояния высоковольтных изоляторов

Изобретение относится к области электроизмерительной техники и может быть использовано для дистанционного контроля рабочего состояния высоковольтных изоляторов. Технический результат: упрощение процесса диагностики. Сущность: устройство для диагностики состояния высоковольтных изоляторов...
Тип: Изобретение
Номер охранного документа: 0002726305
Дата охранного документа: 13.07.2020
12.04.2023
№223.018.4a44

Устройство для энергоснабжения привязного беспилотного летательного аппарата

Устройство для энергоснабжения привязного беспилотного летательного аппарата содержит наземный источник питания, силовой кабель, два бортовых понижающих преобразователя, управляющий ШИМ-контроллер, два формирователя сигнала ошибки. Обеспечивается повышение эффективности энергоснабжения...
Тип: Изобретение
Номер охранного документа: 0002793830
Дата охранного документа: 06.04.2023
20.04.2023
№223.018.4ac8

Способ и система автономного децентрализованного коллективного определения положения движущихся на трассе объектов автотранспорта

Изобретение относится к области вычислительной техники и направлено на разработку способа и системы определения местоположения движущихся объектов автономно, без привлечения внешних средств, и децентрализованно, без выделения в системе центра управления. Способ автономного децентрализованного...
Тип: Изобретение
Номер охранного документа: 0002778861
Дата охранного документа: 26.08.2022
Показаны записи 221-228 из 228.
21.11.2019
№219.017.e432

Способ измерения положения границы раздела двух веществ в резервуаре

Изобретение может быть использовано для измерения положения границы раздела двух веществ, находящихся в резервуаре одно над другим и образующих плоскую границу раздела, в частности двух несмешивающихся жидкостей с разной плотностью, независимо от электрофизических параметров обоих веществ....
Тип: Изобретение
Номер охранного документа: 0002706455
Дата охранного документа: 19.11.2019
20.04.2023
№223.018.4bcd

Устройство для измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств Устройство для измерения физических свойств жидкости содержит волноводный резонатор в виде отрезка коаксиальной длинной линии с двумя, рабочим и эталонным,...
Тип: Изобретение
Номер охранного документа: 0002760641
Дата охранного документа: 29.11.2021
20.04.2023
№223.018.4c18

Способ измерения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины металлических труб. Техническим результатом изобретения является упрощение процесса измерения. Технический результат достигается тем, что в способе измерения длины металлической трубы, при...
Тип: Изобретение
Номер охранного документа: 0002765897
Дата охранного документа: 04.02.2022
15.05.2023
№223.018.57ec

Способ измерения физических свойств диэлектрической жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.)....
Тип: Изобретение
Номер охранного документа: 0002767585
Дата охранного документа: 17.03.2022
15.05.2023
№223.018.57ee

Устройство для измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике, в частности к устройствам для бесконтактного измерения внутреннего диаметра металлических труб. Техническим результатом является расширение функциональных возможностей устройства. Технический результат достигается тем, что устройство, содержащее...
Тип: Изобретение
Номер охранного документа: 0002767586
Дата охранного документа: 17.03.2022
21.05.2023
№223.018.6913

Устройство для измерения уровня диэлектрической жидкости в емкости

Изобретение относится к измерительной технике и служит для высокоточного определения уровня диэлектрической жидкости, находящейся в какой-либо емкости. Технический результат - повышение точности измерений. Результат достигается тем, что в устройстве для измерения уровня диэлектрической жидкости...
Тип: Изобретение
Номер охранного документа: 0002794447
Дата охранного документа: 18.04.2023
29.05.2023
№223.018.7271

Способ определения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Технический результат – повышение точности определения длины...
Тип: Изобретение
Номер охранного документа: 0002796388
Дата охранного документа: 22.05.2023
05.06.2023
№223.018.76c3

Способ измерения физической величины

Изобретение относится к области электротехники, а именно к волноводному резонатору для измерения диэлектрической проницаемости жидкости. Повышение точности измерений является техническим результатом, который достигается за счет того, что предварительно определяют номинальное значение...
Тип: Изобретение
Номер охранного документа: 0002786526
Дата охранного документа: 21.12.2022
+ добавить свой РИД