×
04.04.2018
218.016.33b1

Результат интеллектуальной деятельности: Способ гидравлического разрыва карбонатного пласта

Вид РИД

Изобретение

№ охранного документа
0002645688
Дата охранного документа
27.02.2018
Аннотация: Изобретение относится к нефтяной промышленности и может быть применено при гидравлическом разрыве карбонатного пласта (ГРП). Способ включает перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск колонны насосно-компрессорных труб в зону ГРП с герметизацией межтрубного пространства пакером выше интервала перфорации, циклическую закачку и продавку в скважину гелеобразной жидкости разрыва и кислоты. При этом предварительно определяют проницаемость и толщину пласта. В качестве гелеобразной жидкости разрыва применяют линейный гель с концентрацией 3 кг/м, приготовленный из расчета 1,5 м на 1 м толщины пласта, а в качестве кислоты - смесь соляной и фтороводородной кислот, приготовленную из расчета 1 м на 1 м толщины пласта, дополнительно закачивают смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем, приготовленную из расчета 0,5 м на 1 м толщины пласта. Приготовленные растворы делят на три равные порции и осуществляют последовательную закачку в три цикла. Причем при проницаемости свыше 100 мД закачивают смесь 12%-ного водного раствора соляной и 3%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 9:1, при проницаемости от 20 до 100 мД закачивают смесь 10%-ного водного раствора соляной и 2%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 8:2, при проницаемости ниже 20 мД закачивают смесь 6%-ного водного раствора соляной и 1%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 7:3. По завершении последнего цикла закачки продавку осуществляют пресной водой. Технический результат заключается в сохранении проводимости трещины после проведения ГРП при повышении эффективности проведения ГРП. 3 ил.

Изобретение относится к нефтяной промышленности и может найти применение при гидравлическом разрыве карбонатного пласта.

Известен способ гидравлического разрыва пласта (ГРП) (патент RU №2451174, МПК E21B 43/267, опубл. 20.05.2012 в бюл. №14), включающий спуск в скважину колонны насосно-компрессорных труб (НКТ) в зону ГРП, герметизацию заколонного пространства скважины пакером, закачку газа, жидкости разрыва под давлением по колонне НКТ, осуществление ГРП с образованием трещины, подачу расклинивающего агента и последующее освоение скважины, при этом газ подают вместе с жидкостью разрыва, в качестве которой используют сырую нефть, а расклинивающий агент - после закачки жидкости разрыва, причем газ используют инертный и закачивают в объеме 20-30% при давлении 8 МПа от объема жидкости разрыва, а в качестве расклинивающего агента используют нефтекислотную эмульсию с добавлением инертного газа в объеме 20-30% при давлении 9 МПа от объема расклинивающего агента, после чего цикл закачки жидкости разрыва с газом и расклинивающего агента повторяют 3-6 раз, а перед освоением в колонну НКТ закачивают технологическую жидкость с инертным газом в объеме 20-30% при давлении 10 МПа суммарным объемом, равным полуторакратному внутреннему объему колонны НКТ, с последующей технологической выдержкой на 2-3 ч, причем в каждом цикле жидкость разрыва и расклинивающий агент закачивают равными долями от общего объема.

Недостатками данного способа являются:

- во-первых, низкая эффективность ГРП, связанная с ограничением развития трещины в длину, так как ГРП проводится циклической закачкой жидкости разрыва и расклинивающего агента, поэтому при расклинивании трещины происходит вступление нефтекислотной эмульсии в реакцию с породой в приствольной зоне скважины. По этой причине невозможна доставка нефтекислотной эмульсии вглубь пласта, поэтому трещина не развивается в длину и при циклической закачке жидкости разрыва и расклинивающего агента равными долями от общего объема трещина лишь частично увеличивается в объеме;

- во-вторых, низкое качество раскрытия трещины, так как образовавшаяся трещина имеет низкую фильтрационную способность вследствие образования фильтрационной корки на стенках трещины из-за оседания в порах трещины, не разрушенной нефтекислотной эмульсией;

- в-третьих, низкое качество очистки призабойной зоны пласта от продуктов реакции. В итоге закольматированные поры пласта снижают нефтеотдачу после проведения ГРП;

- в-четвертых, применение сырой нефти создает высокую пожароопасность и требует большего технического и качественного контроля.

Наиболее близким по технической сущности и достигаемому результату является способ гидравлического разрыва карбонатного пласта в скважине (патент RU 2455478, МПК Е21B 43/26, опубл. в бюл. №19 от 10.07.2012 г.), включающий перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск колонны труб в зону ГРП с герметизацией межтрубного пространства пакером выше интервала перфорации и циклическую закачку в скважину гелеобразной жидкости разрыва, при этом перед проведением ГРП скважину заполняют технологической жидкостью на 0,2-0,4 объема ствола скважины, рассчитывают суммарный объем закачиваемой гелеобразной жидкости разрыва, причем гелеобразную жидкость разрыва закачивают равными порциями в 3-5 циклов с закачкой после них порций кислоты объемом 0,7-0,75 объема гелеобразной жидкости разрыва, по завершении последнего цикла закачки осуществляют продавку химических реагентов в трещину закачкой товарной нефти в полуторакратном объеме колонны труб с последующей выдержкой 1-2 ч, после чего удаляют продукты реакции кислоты с породой, снимают пакер и извлекают его с колонной труб из скважины.

Недостатками данного способа являются:

- во-первых, низкая проводимость трещины, обусловленная тем, что внутри трещины гелеобразная жидкость разрыва вступает в реакцию с кислотой, в результате чего выпадает в осадок полимер, который закупоривает поры пласта;

- во-вторых, низкая эффективность ГРП, связанная с тем, что состав кислоты и ее концентрация, применяемые при реализации способа с целью протравливания трещины, не учитывают величину проницаемости пласта. Это снижает качество протравливания трещины разрыва и величину ее раскрытия;

- в-третьих, низкая продуктивность скважины после проведения ГРП, так как невозможно произвести отклонения кислоты в менее проницаемые прослои пласта с целью образования сети разветвленных микротрещин;

- в-четвертых, при проведении ГРП используют товарную нефть, что создает высокую пожароопасность и оказывает негативное воздействие на экологию окружающей среды при разливе нефти на устье скважины.

Техническими задачами изобретения являются сохранение проводимости трещины и повышение эффективности ГРП, увеличение продуктивности скважины после проведения ГРП и исключение пожароопасности при проведении ГРП и отрицательного воздействия на экологию окружающей среды.

Поставленные задачи решаются способом гидравлического разрыва карбонатного пласта - ГРП в скважине, включающим перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск колонны насосно-компрессорных труб - НКТ в зону ГРП с герметизацией межтрубного пространства пакером выше интервала перфорации, циклическую закачку и продавку в скважину гелеобразной жидкости разрыва и кислоты.

Новым является то, что предварительно определяют проницаемость и толщину пласта, в качестве гелеобразной жидкости разрыва применяют линейный гель с концентрацией 3 кг/м3, приготовленный из расчета 1,5 м3 на 1 м толщины пласта, а в качестве кислоты - смесь соляной и фтороводородной кислот, приготовленную из расчета 1 м3 на 1 м толщины пласта, дополнительно закачивают смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем, приготовленную из расчета 0,5 м3 на 1 м толщины пласта, приготовленные растворы делят на три равные порции и осуществляют последовательную закачку в три цикла, причем при проницаемости свыше 100 мД закачивают смесь 12%-ного водного раствора соляной и 3%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 9:1, при проницаемости от 20 до 100 мД закачивают смесь 10%-ного водного раствора соляной и 2%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 8:2, при проницаемости ниже 20 мД закачивают смесь 6%-ного водного раствора соляной и 1%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 7:3, по завершении последнего цикла закачки продавку осуществляют пресной водой.

На фиг. 1, 2 и 3 схематично и последовательно изображен предлагаемый способ.

Предлагаемый способ гидравлического разрыва карбонатного пласта осуществляется следующим образом.

Способ ГРП в скважине 1 (см. фиг. 1) включает перфорацию стенок скважины каналами 2 глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины 1. Далее в скважину 1 в зону гидроразрыва производят спуск колонны НКТ 3 с пакером 4 так, чтобы пакер 4 находился на 5-10 м выше кровли 5 пласта 6, подлежащего ГРП, после чего осуществляют герметизацию заколонного пространства, т.е. производят посадку проходного пакера любой известной конструкции. Перед проведением ГРП (см. фиг. 1) на устье скважины верхний конец колонны труб 3 обвязывают через насосные агрегаты 7, 8, 9 с соответствующими емкостями для гелеобразной жидкости 10, смеси кислот 11, кислотной эмульсии 12. На нагнетательных линиях насосных агрегатов 7, 8 и 9 установлены соответствующие задвижки 13, 14, 15.

В процессе проведения ГРП трещину разрыва формируют и развивают трехкратной циклической закачкой химических реагентов в пласт 6 (см фиг. 1, 2 и 3) по колонне НКТ 3.

Каждый цикл состоит из последовательной закачки гелеобразной жидкости разрыва, смеси кислот и кислотной эмульсии.

В качестве гелеобразной жидкости разрыва применяют линейный гель с концентрацией 3,0 кг/м3. Это означает, что 1,0 м3 пресной воды плотностью 1000 кг/м3 содержит 3,0 кг гелеобразователя любого известного производителя.

Перед проведением ГРП готовят в емкости необходимое количество химических реагентов из расчета, что в каждом цикле линейный гель закачивают порциями 1,5 м3 на 1 м толщины пласта 6, разделенное на количество циклов, смесь кислот - 1 м3 на 1 м толщины пласта 6, разделенное на количество циклов, а кислотную эмульсию - 0,5 м3 на 1 м толщины пласта 6, разделенное на количество циклов. Например, толщина пласта 6, подлежащего проведению ГРП, составляет 6 м, учитывая вышеизложенное, предлагаемый процесс ГРП реализуют в три цикла, получают расчет необходимого количества химических реагентов для каждого цикла:

- линейный гель с концентрацией 3 кг/м3 закачивают порциями по

1,5 м3/м⋅6 м/3 = 9,0 м3/3 = 3,0 м3;

- смесь кислот закачивают порциями по 1,0 м3/м⋅6,0 м/3 = 6,0 м3/3 = 2,0 м3;

- кислотную эмульсию закачивают порциями по 0,5 м3/м⋅6,0 м/3 = 3,0 м3/3=1,0 м3.

Далее подбирают концентрацию смеси кислот и кислотной эмульсии в зависимости от проницаемости пород пласта 6, которая была подобрана опытным путем.

Смесь кислот состоит из смеси соляной кислоты - HCI и фтороводородной кислоты - HF. Эффективность протравливания трещины ГРП и увеличения величины ее раскрытия зависит от концентрации смеси кислот, которая, в свою очередь, зависит от проницаемости пород пласта 6.

При проницаемости пород пласта свыше 100 мД концентрации:

- смеси кислот: 12%-ного водного раствора HCl и 3%-ного водного раствора HF. Смесь кислот готовят на устье скважины в емкости 11 для смеси кислот. Для приготовления 1,0 м3 смеси кислот с концентрацией (12%-ного водного раствора HCl, 3%-ного водного раствора HF) смешивают HCl - 0,12 м3; HF - 0,03 м3; вода - остальное;

- кислотной эмульсии: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 9:1. Кислотную эмульсию готовят на устье скважины в емкости 12 для кислотной эмульсии. Для приготовления 1,0 м3 кислотной эмульсии при соотношении 9:1 (15%-ного водного раствора HCl: углеводородный растворитель) смешивают HCl - 0,9 м3; углеводородный растворитель - 0,1 м3.

Могут применять кислоты любого производителя.

В качестве углеводородного растворителя применяют, например, дистиллят любого известного производителя.

При проницаемости пород пласта от 20 до 100 мД концентрации:

- смеси кислот: 10%-ного водного раствора HCl и 2%-ного водного раствора HF. Смесь кислот готовят на устье скважины в емкости 11 для смеси кислот. Для приготовления 1,0 м3 смеси кислоты с концентрацией (10%-ного водного раствора HCl, 2%-ного водного раствора HF) смешивают HCl - 0,10 м3; HF - 0,02 м3; вода - остальное;

- кислотной эмульсии: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 8:2. Кислотную эмульсию готовят на устье скважины в емкости 12 для кислотной эмульсии. Для приготовления 1,0 м3 кислотной эмульсии при соотношении 8:2 (15%-ного водного раствора HCl: углеводородный растворитель) смешивают HCl - 0,8 м3; углеводородный растворитель - 0,2 м3.

При проницаемости пород пласта ниже 20 мД концентрации:

- смеси кислот: 6%-ного водного раствора HCl и 1,0%-ного водного раствора HF. Смесь кислот готовят на устье скважины в емкости 11 для кислоты. Для приготовления 1,0 м3 смеси кислот с концентрацией (6%-ного водного раствора HCl, 1%-ного водного раствора HF) смешивают HCl - 0,06 м3; HF - 0,01 м3; вода - остальное;

- кислотной эмульсии: смесь 15%-ного водного раствора HCl с углеводородным растворителем при соотношении 7:3. Кислотную эмульсию готовят на устье скважины в емкости 12 для кислотной эмульсии. Для приготовления 1 м3 кислотной эмульсии при соотношении 8:2 (смесь 15%-ного водного раствора HCl: углеводородный растворитель) смешивают HCl - 0,7 м3; углеводородный растворитель - 0,3 м3.

Повышается эффективность ГРП, так как состав кислоты и концентрации смеси кислот и кислотной эмульсии, применяемые для протравливания сформированной трещины при реализации способа, подбираются в зависимости от величины проницаемости породы пласта, что повышает качество протравливания трещины разрыва и увеличивает величину ее раскрытия. Например, проницаемость пород пласта составляет 120 мД при толщине пласта 6, равной 2 м, состоит из трех циклов закачки. Тогда концентрация химических реагентов:

- смеси кислот: 12%-ного водного раствора HCl и 3%-ного водного раствора HF;

- кислотной эмульсии: смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 9:1.

Таким образом, в емкости для гелеобразной жидкости 10 готовят: 1,5 м3/м⋅2 м (толщина пласта)⋅3 (количество циклов) = 9,0 м3 линейного геля с концентрацией 3,0 кг/м3.

В емкости для смеси кислот 11 готовят: 1,0 м3/м⋅2 м (толщина пласта)⋅3 (количество циклов) = 6,0 м3 смеси кислот следующей концентрации: 12%-ного водного раствора HCl и 3%-ного водного раствора HF.

В емкости для кислотной эмульсии готовят 0,5 м3/м⋅2 м (толщина пласта)⋅3 (количество циклов) = 3,0 м3 кислотной эмульсии при соотношении 9:1 (смесь 15%-ного водного раствора HCl: углеводородный растворитель), т.е. смешивают HCl - 0,9 м3⋅3 = 2,7 м3; углеводородный растворитель - 0,1⋅3 = 0,3 м3.

Начинают процесс ГРП.

Первый цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 3,0 м3 линейного геля с концентрацией 3 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16' (см. фиг. 1). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 2,0 м3 смеси кислот в концентрации 12%-ного водного раствора HCl и 3%-ного водного раствора HF, протравливают и раскрывают трещину 16'. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 1,0 м3 кислотной эмульсии при соотношении 9:1 смеси 15%-ного раствора HCl с углеводородным растворителем.

В результате воздействия кислотной эмульсии из трещины 16' образуются новые разветвленные трещины 17', направленные в менее проницаемые прослои пласта 6.

Второй цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 3,0 м3 линейного геля с концентрацией 3 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16'' (см. фиг. 2). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 2,0 м3 смеси кислот с концентрацией 12%-ного водного раствора HCl и 3%-ного водного раствора HF, протравливают и раскрывают трещину 16''. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 1,0 м3 кислотной эмульсии смеси 15%-ного водного раствора HCl:углеводородный растворитель при соотношении 9:1. В результате воздействия кислотной эмульсии из трещины 16'' образуются новые разветвленные трещины 17'', направленные в менее проницаемые прослои пласта 6.

Третий цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 3,0 м3 линейного геля с концентрацией 3 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16''' (см. фиг. 3). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 2,0 м3 смеси кислот с концентрацией 12%-ного водного раствора HCl и 3%-ного водного раствора HF, протравливают и раскрывают трещину 16'''. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 6 1,0 м3 кислотной эмульсии смеси 15%-ного водного раствора HCl:углеводородный растворитель при соотношении 9:1. В результате воздействия кислотной эмульсии из трещины 16''' образуются новые разветвленные трещины 17''', направленные в менее проницаемые прослои пласта 6.

Повышается продуктивность скважины за счет формирования первоначальной трещины с последующим ее развитием, протравливанием и созданием сети разветвленных трещин в менее проницаемых прослоях пласта, а именно:

- первый цикл состоит из формирования первоначальной трещины разрыва, протравливания первоначальной трещины разрыва и образования новых путем отклонения кислоты в менее проницаемые прослои пласта;

- второй и последующие циклы состоят из последовательного развития первоначальной трещины и их протравливания и образования новых путем отклонения кислоты в менее проницаемые прослои пласта.

По окончании третьего цикла производят продавку закачанных химических реагентов из колонны НКТ 3 в пласт 6 пресной водой, например, плотностью 1000 кг/м3 в полуторакратном объеме колонны НКТ 3, например в объеме 6,0 м3, из автоемкости 18 с помощью насосного агрегата 7 (см. фиг. 3) через открытую задвижку 13, при закрытых задвижках 14 и 15. После чего скважина 1 остается на реагирование с породой пласта на 1-2 ч.

Применение вместо сырой нефти пресной воды для продавки химических реагентов из колонны НКТ 3 в пласт после завершения последнего цикла закачки исключает пожароопасность проведения ГРП и не оказывает отрицательное воздействие на экологию окружающей среды.

Далее удаляют продукты реакции кислоты с породой любым известным способом, например свабированием (на фиг. 1, 2 и 3 не показано), по колонне НКТ 3 (см. фиг. 3) в двукратном объеме ствола скважины 1, например в объеме 30,0 м3. После чего срывают пакер 4 и извлекают его с колонной НКТ 3 из скважины 1. Процесс ГРП окончен.

В результате проведения ГРП сохраняется проводимость трещины, так как в качестве гелеобразной жидкости применяется линейный гель с концентрацией 3,0 кг/м3, что исключает химическую реакцию с кислотой и не закупоривает поры пласта, так как линейный гель не выпадает в осадок.

Выше приведен пример при проницаемости пород пласта свыше 100 мД.

Ниже рассмотрим два примера реализации способа при проницаемости пород пласта от 20 до 100 мД и ниже 20 мД.

1. Пример конкретного применения при проницаемости пород пласта 6 от 20 до 100 мД.

Проницаемость пород пласта составляет 70 мД, толщина пласта 6 равна 9 м.

Предлагаемый процесс ГРП реализуют в три цикла.

Тогда в каждом цикле:

- линейный гель с концентрацией 3 кг/м3 закачивают порциями:

1,5 м3/м⋅9,0 м/3 = 13,5 м3/3 = 4,5 м3;

- смесь кислот закачивают порциями:

1,0 м3/м⋅9,0 м/3 = 9 м3/3 = 3 м3;

- кислотную эмульсию закачивают порциями:

0,5 м3/м⋅9,0 м/3 = 4,5 м3/3 = 1,5 м3.

Далее для проницаемости пород пласта 6, равной 70 мД, подбирают концентрации:

- смеси кислот: 10%-ного водного раствора HCl и 2%-ного водного раствора HF;

- кислотной эмульсии: смесь 15%-ного водного раствора HCl с углеводородным растворителем при соотношении 8:2.

Таким образом, в емкости для гелеобразной жидкости 10 готовят 13,5 м3 линейного геля с концентрацией 3,0 кг/м3.

В емкости для смеси кислот 11 готовят 9 м3 смесь кислот с концентрацией: 10%-ного водного раствора HCl и 2%-ного водного раствора HF.

В емкости для кислотной эмульсии 12 готовят 4,5 м3 кислотной эмульсии с концентрацией: 15%-ного водного раствора HCl с углеводородным растворителем при соотношении 8:2.

Начинают процесс ГРП.

Первый цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 4,5 м3 линейного геля с концентрацией 3,0 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16' (см. фиг. 1). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 3,0 м3 смеси кислот с концентрацией 10%-ного водного раствора HCl и 2%-ного водного раствора HF, протравливают и раскрывают трещину 16'. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 1,5 м3 кислотной эмульсии с концентрацией: смесь 15%-ного водного раствора HCl с углеводородным растворителем при соотношении 8:2. В результате воздействия кислотной эмульсии из трещины 16' образуются новые разветвленные трещины 17', направленные в менее проницаемые прослои пласта 6.

Второй цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 4,5 м3 линейного геля с концентрацией 3,0 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16'' (см. фиг. 2). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 3,0 м3 смеси кислот с концентрацией 10%-ного водного раствора и HCl и 2%-ного водного раствора HF, протравливают и раскрывают трещину 16''. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 6 1,5 м3 кислотной эмульсии с концентрацией: смесь 15%-ного водного раствора HCl с углеводородным растворителем при соотношении 8:2. В результате воздействия кислотной эмульсии из трещины 16'' образуются новые разветвленные трещины 17'', направленные в менее проницаемые прослои пласта 6.

Третий цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 4,5 м3 линейного геля с концентрацией 3,0 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16''' (см. фиг. 3). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 3,0 м3 смеси кислот с концентрацией 10%-ного водного раствора HCl и 2%-ного водного раствора HF, протравливают и раскрывают трещину 16'''. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 6 1,5 м3 кислотной эмульсии с концентрацией: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 8:2. В результате воздействия кислотной эмульсии из трещины 16''' образуются новые разветвленные трещины 17''', направленные в менее проницаемые прослои пласта 6.

По окончании третьего цикла производят продавку закачанных в колонну НТК 3 химических реагентов по колонне НКТ 3 в пласт 6 пресной водой, например, плотностью 1000 кг/м3 в полуторакратном объеме колонны НКТ 3, например в объеме 6 м3, из автоемкости 18 с помощью насосного агрегата 7 (см. фиг. 3) через открытую задвижку 13 при закрытых задвижках 14 и 15. После чего скважина 1 остается на реагирование кислоты с породой пласта на 1-2 ч. Далее удаляют продукты реакции кислоты с породой любым известным способом, например свабированием (на фиг. 1, 2 и 3 не показано), по колонне НКТ 3 (см. фиг .3) в двукратном объеме ствола скважины 1, например в объеме 30,0 м3. После чего срывают пакер 4 и извлекают его с колонной НКТ 3 из скважины 1. Процесс ГРП окончен.

2. Пример конкретного применения при проницаемости пород пласта ниже 20 мД.

Проницаемость пород пласта составляет 10 мД, толщина пласта 6 равна 4 м.

Предлагаемый процесс ГРП реализуют в три цикла.

Тогда в каждом цикле:

- линейный гель с концентрацией 3,0 кг/м3 закачивают порциями: 1,5 м3⋅4/3 = 6 м3/3 = 2,0 м3;

- смесь кислот закачивают порциями: 1,0 м3⋅4/3 =4 м3/3 = 1,33 м3;

- кислотную эмульсию закачивают порциями: 0,5 м3⋅4/3 = 2,0 м3/3 = 0,67 м3.

Далее для проницаемости пород пласта 6, равной 10 мД, подбирают концентрацию:

- смеси кислот: 6%-ного водного раствора HCl и 1,0%-ного водного раствора HF;

- кислотной эмульсии: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 7:3.

Таким образом, в емкости для гелеобразной жидкости 10 готовят 6 м3 линейного геля с концентрацией 3,0 кг/м3.

В емкости для смеси кислот 11 готовят 4 м3 смеси кислот с концентрацией: 6%-ного водного раствора HCl и 1%-ного водного раствора HF.

В емкости для кислотной эмульсии готовят 2 м3 кислотной эмульсии с концентрацией: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 7:3.

Начинают процесс ГРП.

Первый цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 2,0 м3 линейного геля с концентрацией 3,0 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16' (см. фиг. 1). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 1,33 м3 смеси кислот с концентрацией 6%-ного водного раствора HCl и 1,0%-ного водного раствора HF, протравливают и раскрывают трещину 16'. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 0,67 м3 кислотной эмульсии с концентрацией: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 7:3. В результате воздействия кислотной эмульсии трещины 16' образуются новые разветвленные трещины 17', направленные в менее проницаемые прослои пласта 6.

Второй цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 2,0 м3 линейного геля с концентрацией 3,0 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16'' (см. фиг. 2). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 1,33 м3 смеси кислот с концентрацией 6%-ного водного раствора HCl и 1%-ного водного раствора HF, протравливают и раскрывают трещину 16''. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 6 0,67 м3 кислотной эмульсии с концентрацией: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 7:3. В результате воздействия кислотной эмульсии из трещины 16'' образуются новые разветвленные трещины 17'', направленные в менее проницаемые прослои пласта 6.

Третий цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 2,0 м3 линейного геля с концентрацией 3,0 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16''' (см. фиг. 3). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 1,33 м3 смеси кислот с концентрацией 6%-ного водного раствора HCl и 1%-ного водного раствора HF, протравливают и раскрывают трещину 16'''. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 6 0,67 м3 кислотной эмульсии с концентрацией: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 7:3. В результате воздействия кислотной эмульсии из трещины 16''' образуются новые разветвленные трещины 17''', направленные в менее проницаемые прослои пласта 6.

По окончании третьего цикла производят продавку химических реагентов из колонны НКТ 3 в пласт 6 пресной водой, например, плотностью 1000 кг/м3 в полуторакратном объеме колонны НКТ 3, например в объеме 6 м, из автоемкости 18 с помощью насосного агрегата 7 (см. фиг. 3) через открытую задвижку 13 при закрытых задвижках 14 и 15. После чего скважина 1 остается на реагирование кислоты с породой пласта 6 на 1-2 ч. Далее удаляют продукты реакции кислоты с породой любым известным способом, например свабированием (на фиг. 1, 2 и 3 не показано), по колонне НКТ 3 (см. фиг. 3) в двукратном объеме ствола скважины 1, например в объеме 30,0 м3. После чего срывают пакер 4 и извлекают его с колонной НКТ 3 из скважины 1. Процесс ГРП окончен.

Предлагаемый способ ГРП в скважине позволяет:

- сохранить проводимость трещин после проведения ГРП;

- повысить эффективность проведения ГРП;

- увеличить продуктивность скважины после проведения ГРП;

- исключить пожароопасность при проведения ГРП и негативное воздействие на экологию окружающей среды.

Способ гидравлического разрыва карбонатного пласта - ГРП в скважине, включающий перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск колонны насосно-компрессорных труб - НКТ в зону ГРП с герметизацией межтрубного пространства пакером выше интервала перфорации, циклическую закачку и продавку в скважину гелеобразной жидкости разрыва и кислоты, отличающийся тем, что предварительно определяют проницаемость и толщину пласта, в качестве гелеобразной жидкости разрыва применяют линейный гель с концентрацией 3 кг/м, приготовленный из расчета 1,5 м на 1 м толщины пласта, а в качестве кислоты - смесь соляной и фтороводородной кислот, приготовленную из расчета 1 м на 1 м толщины пласта, дополнительно закачивают смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем, приготовленную из расчета 0,5 м на 1 м толщины пласта, приготовленные растворы делят на три равные порции и осуществляют последовательную закачку в три цикла, причем при проницаемости свыше 100 мД закачивают смесь 12%-ного водного раствора соляной и 3%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 9:1, при проницаемости от 20 до 100 мД закачивают смесь 10%-ного водного раствора соляной и 2%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 8:2, при проницаемости ниже 20 мД закачивают смесь 6%-ного водного раствора соляной и 1%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 7:3, по завершении последнего цикла закачки продавку осуществляют пресной водой.
Способ гидравлического разрыва карбонатного пласта
Способ гидравлического разрыва карбонатного пласта
Способ гидравлического разрыва карбонатного пласта
Способ гидравлического разрыва карбонатного пласта
Источник поступления информации: Роспатент

Показаны записи 341-350 из 584.
22.09.2018
№218.016.8969

Состав для изоляции водопритока в скважину с низкой пластовой температурой (варианты)

Группа изобретений относится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающих скважинах и обработки нагнетательных скважин с целью выравнивания профиля приемистости и увеличения охвата пластов заводнением. По первому варианту состав содержит...
Тип: Изобретение
Номер охранного документа: 0002667254
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.8983

Способ перфорации скважины и обработки призабойной зоны карбонатного пласта

Изобретение относится к нефтегазодобывающей промышленности, к области эксплуатации скважин, а именно к способам для вторичного вскрытия и обработки призабойной зоны карбонатного пласта. Способ включает спуск в эксплуатационную колонну (ЭК) закрепленных на колонне насосно-компрессорных труб...
Тип: Изобретение
Номер охранного документа: 0002667239
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.8990

Способ определения пространственной ориентации трещины гидроразрыва в горизонтальном стволе скважины

Изобретение относится к проведению гидравлического разрыва пласта (ГРП) и может быть применено для определения ориентации трещины в горизонтальном стволе скважины, полученной в результате ГРП. Способ включает проведение ГРП с образованием трещины разрыва и определение пространственной...
Тип: Изобретение
Номер охранного документа: 0002667248
Дата охранного документа: 18.09.2018
23.09.2018
№218.016.8a86

Способ многократного гидравлического разрыва пласта в открытом стволе наклонной скважины

Изобретение относится к способам гидравлического разрыва в открытых стволах горизонтальных скважин, вскрывших многопластовую продуктивную залежь нефти с низкими фильтрационно-емкостными свойствами с подошвенной водой в карбонатных породах. Способ включает бурение скважины в продуктивном пласте,...
Тип: Изобретение
Номер охранного документа: 0002667561
Дата охранного документа: 21.09.2018
15.10.2018
№218.016.9207

Состав для изоляции водопритока в скважину

Изобретение оотносится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающих и нагнетательных скважинах, и предназначено для проведения водоизоляционных работ в скважинах. Состав для изоляции водопритока в скважину содержит 2,8-13,5 мас. % силиката...
Тип: Изобретение
Номер охранного документа: 0002669648
Дата охранного документа: 12.10.2018
15.10.2018
№218.016.9214

Способ герметизации эксплуатационной колонны

Изобретение относится к cпособу герметизации эксплуатационной колонны. Техническим результатом является обеспечение герметичной посадки пакера за одну спускоподъемную операцию. Способ герметизации эксплуатационной колонны включает спуск в эксплуатационную колонну скважины пакера на посадочном...
Тип: Изобретение
Номер охранного документа: 0002669646
Дата охранного документа: 12.10.2018
15.10.2018
№218.016.9240

Способ герметизации эксплуатационной колонны скважины

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам герметизации эксплуатационной колонны скважины. Способ включает определение интервала нарушения эксплуатационной колонны, спуск насосно-компрессорных труб (НКТ) в интервал нарушения или ниже. При этом перед...
Тип: Изобретение
Номер охранного документа: 0002669650
Дата охранного документа: 12.10.2018
15.10.2018
№218.016.9266

Способ разработки залежи высоковязкой и сверхвязкой нефти тепловыми методами на поздней стадии разработки

Изобретение относится к нефтедобывающей промышленности. Технический результат - заканчивание скважин при тепловом воздействии без разрушения структуры пласта с одновременным снижением затрат. Способ разработки залежи высоковязкой и сверхвязкой нефти тепловыми методами на поздней стадии...
Тип: Изобретение
Номер охранного документа: 0002669647
Дата охранного документа: 12.10.2018
19.10.2018
№218.016.939d

Оборудование для свабирования скважин по эксплуатационной колонне

Изобретение относится к нефтедобывающей промышленности и может быть использовано для свабирования по эксплуатационной колонне скважин с вязкой продукцией, на которых исключена возможность газонефтепроявлений. Оборудование для свабирования скважин по эксплуатационной колонне включает тройник с...
Тип: Изобретение
Номер охранного документа: 0002669966
Дата охранного документа: 17.10.2018
19.10.2018
№218.016.93be

Гелеобразующий состав

Изобретение относится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающих скважинах и регулирования охвата пласта и профиля приемистости нагнетательных скважин. Гелеобразующий состав содержит 13-19,5 мас.% силиката натрия, 1,6-2,2 мас.% сульфата...
Тип: Изобретение
Номер охранного документа: 0002669970
Дата охранного документа: 17.10.2018
Показаны записи 341-350 из 400.
19.06.2019
№219.017.8782

Устьевое устройство для освобождения колонны труб из скважины

Изобретение относится к нефтегазодобывающей промышленности, в частности к устьевым устройствам для освобождения аварийной колонны труб, прихваченной в скважине. Устройство включает демпфер, установленный между подъемником и генератором вертикальных импульсов, соединенным с колонной труб....
Тип: Изобретение
Номер охранного документа: 0002373373
Дата охранного документа: 20.11.2009
19.06.2019
№219.017.87ae

Газожидкостный смеситель

Изобретение относится к сбору и транспорту газожидкостных смесей и может быть использовано при совместном сборе и транспорте продукции нефтяных газоконденсатных месторождений. Диспергирующее устройство для смешивания газа и жидкости содержит корпус с поперечными диафрагмами, трубопровод для...
Тип: Изобретение
Номер охранного документа: 0002336940
Дата охранного документа: 27.10.2008
29.06.2019
№219.017.9c0c

Устройство для промывки скважин с низким пластовым давлением от песчаной пробки

Изобретение относится к нефтедобывающей промышленности и может быть использовано в текущем и капитальном ремонтах скважин, связанных с промывкой скважин с поглощающими пластами от песчаных пробок, осадков грязи, окалины и т.д. Устройство содержит колонну труб, заглушенный сверху патрубок,...
Тип: Изобретение
Номер охранного документа: 0002346145
Дата охранного документа: 10.02.2009
29.06.2019
№219.017.9c21

Способ разработки неоднородного нефтяного месторождения

Изобретение относится к нефтедобывающей промышленности, а именно к области разработки нефтяных месторождений, и может быть использовано для повышения нефтеотдачи пластов неоднородных нефтяных месторождений. Задачей изобретения является исключение ошибочного расчета количества подвижной нефти и...
Тип: Изобретение
Номер охранного документа: 0002347893
Дата охранного документа: 27.02.2009
10.07.2019
№219.017.ab01

Устройство для восстановления и сохранения коллекторских свойств пласта

Изобретение относится к нефтедобывающей промышленности и может быть использовано в качестве оборудования для очистки призабойной зоны пласта и забоя скважины от шлама, песка, парафина, смол и других трудноизвлекаемых промывкой отложений. Обеспечивает восстановление и сохранение коллекторских...
Тип: Изобретение
Номер охранного документа: 0002291950
Дата охранного документа: 20.01.2007
10.07.2019
№219.017.ac0c

Перфоратор для скважины

Изобретение относится к нефтедобывающей промышленности, в частности к строительству и ремонту скважин, и может быть использовано для создания перфорационных каналов в обсадной колонне труб. Технический результат - надежность за счет защиты от несанкционированного перехода в рабочее положение,...
Тип: Изобретение
Номер охранного документа: 0002348796
Дата охранного документа: 10.03.2009
10.07.2019
№219.017.ac2b

Пакер-пробка

Изобретение относится к нефтедобывающей промышленности и предназначено для временного перекрытия ствола скважины. Пакер-пробка состоит из ствола с внутренней цилиндрической выборкой, с наружной стороны которого установлены уплотнительный элемент с упором. Выше последнего находится упорная...
Тип: Изобретение
Номер охранного документа: 0002346142
Дата охранного документа: 10.02.2009
10.07.2019
№219.017.ac5f

Пакер-пробка

Изобретение относится к нефтедобывающей промышленности для временного перекрытия ствола скважины, обеспечивает простоту конструкции, гарантированное и безопасное извлечение пакера-пробки без заклинивания. Пакер-пробка включает ствол, уплотнительный элемент, фиксатор положения уплотнительного...
Тип: Изобретение
Номер охранного документа: 0002391488
Дата охранного документа: 10.06.2010
10.07.2019
№219.017.ad46

Способ эксплуатации двухустьевой скважины

Изобретение относится к области разработки месторождений углеводородов двухустьевыми горизонтальными скважинами и может быть использовано для добычи высоковязких нефтей и битума. Обеспечивает упрощение монтажа пакера в скважине, а также возможность с помощью пакера проведения изоляции...
Тип: Изобретение
Номер охранного документа: 0002351753
Дата охранного документа: 10.04.2009
10.07.2019
№219.017.ae9d

Способ добычи из подземной залежи тяжелых и высоковязких углеводородов

Изобретение относится к способу добычи углеводородов из подземной залежи гудронового песка или залежи тяжелой нефти, имеющих высокую вязкость. Для получения углеводородов из таких залежей необходимо их нагревание. Обеспечивает упрощение способа, увеличение точности ориентации горизонтальных...
Тип: Изобретение
Номер охранного документа: 0002322574
Дата охранного документа: 20.04.2008
+ добавить свой РИД