×
04.04.2018
218.016.33b1

Результат интеллектуальной деятельности: Способ гидравлического разрыва карбонатного пласта

Вид РИД

Изобретение

№ охранного документа
0002645688
Дата охранного документа
27.02.2018
Аннотация: Изобретение относится к нефтяной промышленности и может быть применено при гидравлическом разрыве карбонатного пласта (ГРП). Способ включает перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск колонны насосно-компрессорных труб в зону ГРП с герметизацией межтрубного пространства пакером выше интервала перфорации, циклическую закачку и продавку в скважину гелеобразной жидкости разрыва и кислоты. При этом предварительно определяют проницаемость и толщину пласта. В качестве гелеобразной жидкости разрыва применяют линейный гель с концентрацией 3 кг/м, приготовленный из расчета 1,5 м на 1 м толщины пласта, а в качестве кислоты - смесь соляной и фтороводородной кислот, приготовленную из расчета 1 м на 1 м толщины пласта, дополнительно закачивают смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем, приготовленную из расчета 0,5 м на 1 м толщины пласта. Приготовленные растворы делят на три равные порции и осуществляют последовательную закачку в три цикла. Причем при проницаемости свыше 100 мД закачивают смесь 12%-ного водного раствора соляной и 3%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 9:1, при проницаемости от 20 до 100 мД закачивают смесь 10%-ного водного раствора соляной и 2%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 8:2, при проницаемости ниже 20 мД закачивают смесь 6%-ного водного раствора соляной и 1%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 7:3. По завершении последнего цикла закачки продавку осуществляют пресной водой. Технический результат заключается в сохранении проводимости трещины после проведения ГРП при повышении эффективности проведения ГРП. 3 ил.

Изобретение относится к нефтяной промышленности и может найти применение при гидравлическом разрыве карбонатного пласта.

Известен способ гидравлического разрыва пласта (ГРП) (патент RU №2451174, МПК E21B 43/267, опубл. 20.05.2012 в бюл. №14), включающий спуск в скважину колонны насосно-компрессорных труб (НКТ) в зону ГРП, герметизацию заколонного пространства скважины пакером, закачку газа, жидкости разрыва под давлением по колонне НКТ, осуществление ГРП с образованием трещины, подачу расклинивающего агента и последующее освоение скважины, при этом газ подают вместе с жидкостью разрыва, в качестве которой используют сырую нефть, а расклинивающий агент - после закачки жидкости разрыва, причем газ используют инертный и закачивают в объеме 20-30% при давлении 8 МПа от объема жидкости разрыва, а в качестве расклинивающего агента используют нефтекислотную эмульсию с добавлением инертного газа в объеме 20-30% при давлении 9 МПа от объема расклинивающего агента, после чего цикл закачки жидкости разрыва с газом и расклинивающего агента повторяют 3-6 раз, а перед освоением в колонну НКТ закачивают технологическую жидкость с инертным газом в объеме 20-30% при давлении 10 МПа суммарным объемом, равным полуторакратному внутреннему объему колонны НКТ, с последующей технологической выдержкой на 2-3 ч, причем в каждом цикле жидкость разрыва и расклинивающий агент закачивают равными долями от общего объема.

Недостатками данного способа являются:

- во-первых, низкая эффективность ГРП, связанная с ограничением развития трещины в длину, так как ГРП проводится циклической закачкой жидкости разрыва и расклинивающего агента, поэтому при расклинивании трещины происходит вступление нефтекислотной эмульсии в реакцию с породой в приствольной зоне скважины. По этой причине невозможна доставка нефтекислотной эмульсии вглубь пласта, поэтому трещина не развивается в длину и при циклической закачке жидкости разрыва и расклинивающего агента равными долями от общего объема трещина лишь частично увеличивается в объеме;

- во-вторых, низкое качество раскрытия трещины, так как образовавшаяся трещина имеет низкую фильтрационную способность вследствие образования фильтрационной корки на стенках трещины из-за оседания в порах трещины, не разрушенной нефтекислотной эмульсией;

- в-третьих, низкое качество очистки призабойной зоны пласта от продуктов реакции. В итоге закольматированные поры пласта снижают нефтеотдачу после проведения ГРП;

- в-четвертых, применение сырой нефти создает высокую пожароопасность и требует большего технического и качественного контроля.

Наиболее близким по технической сущности и достигаемому результату является способ гидравлического разрыва карбонатного пласта в скважине (патент RU 2455478, МПК Е21B 43/26, опубл. в бюл. №19 от 10.07.2012 г.), включающий перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск колонны труб в зону ГРП с герметизацией межтрубного пространства пакером выше интервала перфорации и циклическую закачку в скважину гелеобразной жидкости разрыва, при этом перед проведением ГРП скважину заполняют технологической жидкостью на 0,2-0,4 объема ствола скважины, рассчитывают суммарный объем закачиваемой гелеобразной жидкости разрыва, причем гелеобразную жидкость разрыва закачивают равными порциями в 3-5 циклов с закачкой после них порций кислоты объемом 0,7-0,75 объема гелеобразной жидкости разрыва, по завершении последнего цикла закачки осуществляют продавку химических реагентов в трещину закачкой товарной нефти в полуторакратном объеме колонны труб с последующей выдержкой 1-2 ч, после чего удаляют продукты реакции кислоты с породой, снимают пакер и извлекают его с колонной труб из скважины.

Недостатками данного способа являются:

- во-первых, низкая проводимость трещины, обусловленная тем, что внутри трещины гелеобразная жидкость разрыва вступает в реакцию с кислотой, в результате чего выпадает в осадок полимер, который закупоривает поры пласта;

- во-вторых, низкая эффективность ГРП, связанная с тем, что состав кислоты и ее концентрация, применяемые при реализации способа с целью протравливания трещины, не учитывают величину проницаемости пласта. Это снижает качество протравливания трещины разрыва и величину ее раскрытия;

- в-третьих, низкая продуктивность скважины после проведения ГРП, так как невозможно произвести отклонения кислоты в менее проницаемые прослои пласта с целью образования сети разветвленных микротрещин;

- в-четвертых, при проведении ГРП используют товарную нефть, что создает высокую пожароопасность и оказывает негативное воздействие на экологию окружающей среды при разливе нефти на устье скважины.

Техническими задачами изобретения являются сохранение проводимости трещины и повышение эффективности ГРП, увеличение продуктивности скважины после проведения ГРП и исключение пожароопасности при проведении ГРП и отрицательного воздействия на экологию окружающей среды.

Поставленные задачи решаются способом гидравлического разрыва карбонатного пласта - ГРП в скважине, включающим перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск колонны насосно-компрессорных труб - НКТ в зону ГРП с герметизацией межтрубного пространства пакером выше интервала перфорации, циклическую закачку и продавку в скважину гелеобразной жидкости разрыва и кислоты.

Новым является то, что предварительно определяют проницаемость и толщину пласта, в качестве гелеобразной жидкости разрыва применяют линейный гель с концентрацией 3 кг/м3, приготовленный из расчета 1,5 м3 на 1 м толщины пласта, а в качестве кислоты - смесь соляной и фтороводородной кислот, приготовленную из расчета 1 м3 на 1 м толщины пласта, дополнительно закачивают смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем, приготовленную из расчета 0,5 м3 на 1 м толщины пласта, приготовленные растворы делят на три равные порции и осуществляют последовательную закачку в три цикла, причем при проницаемости свыше 100 мД закачивают смесь 12%-ного водного раствора соляной и 3%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 9:1, при проницаемости от 20 до 100 мД закачивают смесь 10%-ного водного раствора соляной и 2%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 8:2, при проницаемости ниже 20 мД закачивают смесь 6%-ного водного раствора соляной и 1%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 7:3, по завершении последнего цикла закачки продавку осуществляют пресной водой.

На фиг. 1, 2 и 3 схематично и последовательно изображен предлагаемый способ.

Предлагаемый способ гидравлического разрыва карбонатного пласта осуществляется следующим образом.

Способ ГРП в скважине 1 (см. фиг. 1) включает перфорацию стенок скважины каналами 2 глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины 1. Далее в скважину 1 в зону гидроразрыва производят спуск колонны НКТ 3 с пакером 4 так, чтобы пакер 4 находился на 5-10 м выше кровли 5 пласта 6, подлежащего ГРП, после чего осуществляют герметизацию заколонного пространства, т.е. производят посадку проходного пакера любой известной конструкции. Перед проведением ГРП (см. фиг. 1) на устье скважины верхний конец колонны труб 3 обвязывают через насосные агрегаты 7, 8, 9 с соответствующими емкостями для гелеобразной жидкости 10, смеси кислот 11, кислотной эмульсии 12. На нагнетательных линиях насосных агрегатов 7, 8 и 9 установлены соответствующие задвижки 13, 14, 15.

В процессе проведения ГРП трещину разрыва формируют и развивают трехкратной циклической закачкой химических реагентов в пласт 6 (см фиг. 1, 2 и 3) по колонне НКТ 3.

Каждый цикл состоит из последовательной закачки гелеобразной жидкости разрыва, смеси кислот и кислотной эмульсии.

В качестве гелеобразной жидкости разрыва применяют линейный гель с концентрацией 3,0 кг/м3. Это означает, что 1,0 м3 пресной воды плотностью 1000 кг/м3 содержит 3,0 кг гелеобразователя любого известного производителя.

Перед проведением ГРП готовят в емкости необходимое количество химических реагентов из расчета, что в каждом цикле линейный гель закачивают порциями 1,5 м3 на 1 м толщины пласта 6, разделенное на количество циклов, смесь кислот - 1 м3 на 1 м толщины пласта 6, разделенное на количество циклов, а кислотную эмульсию - 0,5 м3 на 1 м толщины пласта 6, разделенное на количество циклов. Например, толщина пласта 6, подлежащего проведению ГРП, составляет 6 м, учитывая вышеизложенное, предлагаемый процесс ГРП реализуют в три цикла, получают расчет необходимого количества химических реагентов для каждого цикла:

- линейный гель с концентрацией 3 кг/м3 закачивают порциями по

1,5 м3/м⋅6 м/3 = 9,0 м3/3 = 3,0 м3;

- смесь кислот закачивают порциями по 1,0 м3/м⋅6,0 м/3 = 6,0 м3/3 = 2,0 м3;

- кислотную эмульсию закачивают порциями по 0,5 м3/м⋅6,0 м/3 = 3,0 м3/3=1,0 м3.

Далее подбирают концентрацию смеси кислот и кислотной эмульсии в зависимости от проницаемости пород пласта 6, которая была подобрана опытным путем.

Смесь кислот состоит из смеси соляной кислоты - HCI и фтороводородной кислоты - HF. Эффективность протравливания трещины ГРП и увеличения величины ее раскрытия зависит от концентрации смеси кислот, которая, в свою очередь, зависит от проницаемости пород пласта 6.

При проницаемости пород пласта свыше 100 мД концентрации:

- смеси кислот: 12%-ного водного раствора HCl и 3%-ного водного раствора HF. Смесь кислот готовят на устье скважины в емкости 11 для смеси кислот. Для приготовления 1,0 м3 смеси кислот с концентрацией (12%-ного водного раствора HCl, 3%-ного водного раствора HF) смешивают HCl - 0,12 м3; HF - 0,03 м3; вода - остальное;

- кислотной эмульсии: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 9:1. Кислотную эмульсию готовят на устье скважины в емкости 12 для кислотной эмульсии. Для приготовления 1,0 м3 кислотной эмульсии при соотношении 9:1 (15%-ного водного раствора HCl: углеводородный растворитель) смешивают HCl - 0,9 м3; углеводородный растворитель - 0,1 м3.

Могут применять кислоты любого производителя.

В качестве углеводородного растворителя применяют, например, дистиллят любого известного производителя.

При проницаемости пород пласта от 20 до 100 мД концентрации:

- смеси кислот: 10%-ного водного раствора HCl и 2%-ного водного раствора HF. Смесь кислот готовят на устье скважины в емкости 11 для смеси кислот. Для приготовления 1,0 м3 смеси кислоты с концентрацией (10%-ного водного раствора HCl, 2%-ного водного раствора HF) смешивают HCl - 0,10 м3; HF - 0,02 м3; вода - остальное;

- кислотной эмульсии: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 8:2. Кислотную эмульсию готовят на устье скважины в емкости 12 для кислотной эмульсии. Для приготовления 1,0 м3 кислотной эмульсии при соотношении 8:2 (15%-ного водного раствора HCl: углеводородный растворитель) смешивают HCl - 0,8 м3; углеводородный растворитель - 0,2 м3.

При проницаемости пород пласта ниже 20 мД концентрации:

- смеси кислот: 6%-ного водного раствора HCl и 1,0%-ного водного раствора HF. Смесь кислот готовят на устье скважины в емкости 11 для кислоты. Для приготовления 1,0 м3 смеси кислот с концентрацией (6%-ного водного раствора HCl, 1%-ного водного раствора HF) смешивают HCl - 0,06 м3; HF - 0,01 м3; вода - остальное;

- кислотной эмульсии: смесь 15%-ного водного раствора HCl с углеводородным растворителем при соотношении 7:3. Кислотную эмульсию готовят на устье скважины в емкости 12 для кислотной эмульсии. Для приготовления 1 м3 кислотной эмульсии при соотношении 8:2 (смесь 15%-ного водного раствора HCl: углеводородный растворитель) смешивают HCl - 0,7 м3; углеводородный растворитель - 0,3 м3.

Повышается эффективность ГРП, так как состав кислоты и концентрации смеси кислот и кислотной эмульсии, применяемые для протравливания сформированной трещины при реализации способа, подбираются в зависимости от величины проницаемости породы пласта, что повышает качество протравливания трещины разрыва и увеличивает величину ее раскрытия. Например, проницаемость пород пласта составляет 120 мД при толщине пласта 6, равной 2 м, состоит из трех циклов закачки. Тогда концентрация химических реагентов:

- смеси кислот: 12%-ного водного раствора HCl и 3%-ного водного раствора HF;

- кислотной эмульсии: смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 9:1.

Таким образом, в емкости для гелеобразной жидкости 10 готовят: 1,5 м3/м⋅2 м (толщина пласта)⋅3 (количество циклов) = 9,0 м3 линейного геля с концентрацией 3,0 кг/м3.

В емкости для смеси кислот 11 готовят: 1,0 м3/м⋅2 м (толщина пласта)⋅3 (количество циклов) = 6,0 м3 смеси кислот следующей концентрации: 12%-ного водного раствора HCl и 3%-ного водного раствора HF.

В емкости для кислотной эмульсии готовят 0,5 м3/м⋅2 м (толщина пласта)⋅3 (количество циклов) = 3,0 м3 кислотной эмульсии при соотношении 9:1 (смесь 15%-ного водного раствора HCl: углеводородный растворитель), т.е. смешивают HCl - 0,9 м3⋅3 = 2,7 м3; углеводородный растворитель - 0,1⋅3 = 0,3 м3.

Начинают процесс ГРП.

Первый цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 3,0 м3 линейного геля с концентрацией 3 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16' (см. фиг. 1). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 2,0 м3 смеси кислот в концентрации 12%-ного водного раствора HCl и 3%-ного водного раствора HF, протравливают и раскрывают трещину 16'. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 1,0 м3 кислотной эмульсии при соотношении 9:1 смеси 15%-ного раствора HCl с углеводородным растворителем.

В результате воздействия кислотной эмульсии из трещины 16' образуются новые разветвленные трещины 17', направленные в менее проницаемые прослои пласта 6.

Второй цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 3,0 м3 линейного геля с концентрацией 3 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16'' (см. фиг. 2). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 2,0 м3 смеси кислот с концентрацией 12%-ного водного раствора HCl и 3%-ного водного раствора HF, протравливают и раскрывают трещину 16''. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 1,0 м3 кислотной эмульсии смеси 15%-ного водного раствора HCl:углеводородный растворитель при соотношении 9:1. В результате воздействия кислотной эмульсии из трещины 16'' образуются новые разветвленные трещины 17'', направленные в менее проницаемые прослои пласта 6.

Третий цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 3,0 м3 линейного геля с концентрацией 3 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16''' (см. фиг. 3). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 2,0 м3 смеси кислот с концентрацией 12%-ного водного раствора HCl и 3%-ного водного раствора HF, протравливают и раскрывают трещину 16'''. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 6 1,0 м3 кислотной эмульсии смеси 15%-ного водного раствора HCl:углеводородный растворитель при соотношении 9:1. В результате воздействия кислотной эмульсии из трещины 16''' образуются новые разветвленные трещины 17''', направленные в менее проницаемые прослои пласта 6.

Повышается продуктивность скважины за счет формирования первоначальной трещины с последующим ее развитием, протравливанием и созданием сети разветвленных трещин в менее проницаемых прослоях пласта, а именно:

- первый цикл состоит из формирования первоначальной трещины разрыва, протравливания первоначальной трещины разрыва и образования новых путем отклонения кислоты в менее проницаемые прослои пласта;

- второй и последующие циклы состоят из последовательного развития первоначальной трещины и их протравливания и образования новых путем отклонения кислоты в менее проницаемые прослои пласта.

По окончании третьего цикла производят продавку закачанных химических реагентов из колонны НКТ 3 в пласт 6 пресной водой, например, плотностью 1000 кг/м3 в полуторакратном объеме колонны НКТ 3, например в объеме 6,0 м3, из автоемкости 18 с помощью насосного агрегата 7 (см. фиг. 3) через открытую задвижку 13, при закрытых задвижках 14 и 15. После чего скважина 1 остается на реагирование с породой пласта на 1-2 ч.

Применение вместо сырой нефти пресной воды для продавки химических реагентов из колонны НКТ 3 в пласт после завершения последнего цикла закачки исключает пожароопасность проведения ГРП и не оказывает отрицательное воздействие на экологию окружающей среды.

Далее удаляют продукты реакции кислоты с породой любым известным способом, например свабированием (на фиг. 1, 2 и 3 не показано), по колонне НКТ 3 (см. фиг. 3) в двукратном объеме ствола скважины 1, например в объеме 30,0 м3. После чего срывают пакер 4 и извлекают его с колонной НКТ 3 из скважины 1. Процесс ГРП окончен.

В результате проведения ГРП сохраняется проводимость трещины, так как в качестве гелеобразной жидкости применяется линейный гель с концентрацией 3,0 кг/м3, что исключает химическую реакцию с кислотой и не закупоривает поры пласта, так как линейный гель не выпадает в осадок.

Выше приведен пример при проницаемости пород пласта свыше 100 мД.

Ниже рассмотрим два примера реализации способа при проницаемости пород пласта от 20 до 100 мД и ниже 20 мД.

1. Пример конкретного применения при проницаемости пород пласта 6 от 20 до 100 мД.

Проницаемость пород пласта составляет 70 мД, толщина пласта 6 равна 9 м.

Предлагаемый процесс ГРП реализуют в три цикла.

Тогда в каждом цикле:

- линейный гель с концентрацией 3 кг/м3 закачивают порциями:

1,5 м3/м⋅9,0 м/3 = 13,5 м3/3 = 4,5 м3;

- смесь кислот закачивают порциями:

1,0 м3/м⋅9,0 м/3 = 9 м3/3 = 3 м3;

- кислотную эмульсию закачивают порциями:

0,5 м3/м⋅9,0 м/3 = 4,5 м3/3 = 1,5 м3.

Далее для проницаемости пород пласта 6, равной 70 мД, подбирают концентрации:

- смеси кислот: 10%-ного водного раствора HCl и 2%-ного водного раствора HF;

- кислотной эмульсии: смесь 15%-ного водного раствора HCl с углеводородным растворителем при соотношении 8:2.

Таким образом, в емкости для гелеобразной жидкости 10 готовят 13,5 м3 линейного геля с концентрацией 3,0 кг/м3.

В емкости для смеси кислот 11 готовят 9 м3 смесь кислот с концентрацией: 10%-ного водного раствора HCl и 2%-ного водного раствора HF.

В емкости для кислотной эмульсии 12 готовят 4,5 м3 кислотной эмульсии с концентрацией: 15%-ного водного раствора HCl с углеводородным растворителем при соотношении 8:2.

Начинают процесс ГРП.

Первый цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 4,5 м3 линейного геля с концентрацией 3,0 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16' (см. фиг. 1). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 3,0 м3 смеси кислот с концентрацией 10%-ного водного раствора HCl и 2%-ного водного раствора HF, протравливают и раскрывают трещину 16'. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 1,5 м3 кислотной эмульсии с концентрацией: смесь 15%-ного водного раствора HCl с углеводородным растворителем при соотношении 8:2. В результате воздействия кислотной эмульсии из трещины 16' образуются новые разветвленные трещины 17', направленные в менее проницаемые прослои пласта 6.

Второй цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 4,5 м3 линейного геля с концентрацией 3,0 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16'' (см. фиг. 2). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 3,0 м3 смеси кислот с концентрацией 10%-ного водного раствора и HCl и 2%-ного водного раствора HF, протравливают и раскрывают трещину 16''. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 6 1,5 м3 кислотной эмульсии с концентрацией: смесь 15%-ного водного раствора HCl с углеводородным растворителем при соотношении 8:2. В результате воздействия кислотной эмульсии из трещины 16'' образуются новые разветвленные трещины 17'', направленные в менее проницаемые прослои пласта 6.

Третий цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 4,5 м3 линейного геля с концентрацией 3,0 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16''' (см. фиг. 3). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 3,0 м3 смеси кислот с концентрацией 10%-ного водного раствора HCl и 2%-ного водного раствора HF, протравливают и раскрывают трещину 16'''. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 6 1,5 м3 кислотной эмульсии с концентрацией: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 8:2. В результате воздействия кислотной эмульсии из трещины 16''' образуются новые разветвленные трещины 17''', направленные в менее проницаемые прослои пласта 6.

По окончании третьего цикла производят продавку закачанных в колонну НТК 3 химических реагентов по колонне НКТ 3 в пласт 6 пресной водой, например, плотностью 1000 кг/м3 в полуторакратном объеме колонны НКТ 3, например в объеме 6 м3, из автоемкости 18 с помощью насосного агрегата 7 (см. фиг. 3) через открытую задвижку 13 при закрытых задвижках 14 и 15. После чего скважина 1 остается на реагирование кислоты с породой пласта на 1-2 ч. Далее удаляют продукты реакции кислоты с породой любым известным способом, например свабированием (на фиг. 1, 2 и 3 не показано), по колонне НКТ 3 (см. фиг .3) в двукратном объеме ствола скважины 1, например в объеме 30,0 м3. После чего срывают пакер 4 и извлекают его с колонной НКТ 3 из скважины 1. Процесс ГРП окончен.

2. Пример конкретного применения при проницаемости пород пласта ниже 20 мД.

Проницаемость пород пласта составляет 10 мД, толщина пласта 6 равна 4 м.

Предлагаемый процесс ГРП реализуют в три цикла.

Тогда в каждом цикле:

- линейный гель с концентрацией 3,0 кг/м3 закачивают порциями: 1,5 м3⋅4/3 = 6 м3/3 = 2,0 м3;

- смесь кислот закачивают порциями: 1,0 м3⋅4/3 =4 м3/3 = 1,33 м3;

- кислотную эмульсию закачивают порциями: 0,5 м3⋅4/3 = 2,0 м3/3 = 0,67 м3.

Далее для проницаемости пород пласта 6, равной 10 мД, подбирают концентрацию:

- смеси кислот: 6%-ного водного раствора HCl и 1,0%-ного водного раствора HF;

- кислотной эмульсии: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 7:3.

Таким образом, в емкости для гелеобразной жидкости 10 готовят 6 м3 линейного геля с концентрацией 3,0 кг/м3.

В емкости для смеси кислот 11 готовят 4 м3 смеси кислот с концентрацией: 6%-ного водного раствора HCl и 1%-ного водного раствора HF.

В емкости для кислотной эмульсии готовят 2 м3 кислотной эмульсии с концентрацией: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 7:3.

Начинают процесс ГРП.

Первый цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 2,0 м3 линейного геля с концентрацией 3,0 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16' (см. фиг. 1). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 1,33 м3 смеси кислот с концентрацией 6%-ного водного раствора HCl и 1,0%-ного водного раствора HF, протравливают и раскрывают трещину 16'. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 0,67 м3 кислотной эмульсии с концентрацией: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 7:3. В результате воздействия кислотной эмульсии трещины 16' образуются новые разветвленные трещины 17', направленные в менее проницаемые прослои пласта 6.

Второй цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 2,0 м3 линейного геля с концентрацией 3,0 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16'' (см. фиг. 2). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 1,33 м3 смеси кислот с концентрацией 6%-ного водного раствора HCl и 1%-ного водного раствора HF, протравливают и раскрывают трещину 16''. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 6 0,67 м3 кислотной эмульсии с концентрацией: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 7:3. В результате воздействия кислотной эмульсии из трещины 16'' образуются новые разветвленные трещины 17'', направленные в менее проницаемые прослои пласта 6.

Третий цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 2,0 м3 линейного геля с концентрацией 3,0 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16''' (см. фиг. 3). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 1,33 м3 смеси кислот с концентрацией 6%-ного водного раствора HCl и 1%-ного водного раствора HF, протравливают и раскрывают трещину 16'''. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 6 0,67 м3 кислотной эмульсии с концентрацией: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 7:3. В результате воздействия кислотной эмульсии из трещины 16''' образуются новые разветвленные трещины 17''', направленные в менее проницаемые прослои пласта 6.

По окончании третьего цикла производят продавку химических реагентов из колонны НКТ 3 в пласт 6 пресной водой, например, плотностью 1000 кг/м3 в полуторакратном объеме колонны НКТ 3, например в объеме 6 м, из автоемкости 18 с помощью насосного агрегата 7 (см. фиг. 3) через открытую задвижку 13 при закрытых задвижках 14 и 15. После чего скважина 1 остается на реагирование кислоты с породой пласта 6 на 1-2 ч. Далее удаляют продукты реакции кислоты с породой любым известным способом, например свабированием (на фиг. 1, 2 и 3 не показано), по колонне НКТ 3 (см. фиг. 3) в двукратном объеме ствола скважины 1, например в объеме 30,0 м3. После чего срывают пакер 4 и извлекают его с колонной НКТ 3 из скважины 1. Процесс ГРП окончен.

Предлагаемый способ ГРП в скважине позволяет:

- сохранить проводимость трещин после проведения ГРП;

- повысить эффективность проведения ГРП;

- увеличить продуктивность скважины после проведения ГРП;

- исключить пожароопасность при проведения ГРП и негативное воздействие на экологию окружающей среды.

Способ гидравлического разрыва карбонатного пласта - ГРП в скважине, включающий перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск колонны насосно-компрессорных труб - НКТ в зону ГРП с герметизацией межтрубного пространства пакером выше интервала перфорации, циклическую закачку и продавку в скважину гелеобразной жидкости разрыва и кислоты, отличающийся тем, что предварительно определяют проницаемость и толщину пласта, в качестве гелеобразной жидкости разрыва применяют линейный гель с концентрацией 3 кг/м, приготовленный из расчета 1,5 м на 1 м толщины пласта, а в качестве кислоты - смесь соляной и фтороводородной кислот, приготовленную из расчета 1 м на 1 м толщины пласта, дополнительно закачивают смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем, приготовленную из расчета 0,5 м на 1 м толщины пласта, приготовленные растворы делят на три равные порции и осуществляют последовательную закачку в три цикла, причем при проницаемости свыше 100 мД закачивают смесь 12%-ного водного раствора соляной и 3%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 9:1, при проницаемости от 20 до 100 мД закачивают смесь 10%-ного водного раствора соляной и 2%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 8:2, при проницаемости ниже 20 мД закачивают смесь 6%-ного водного раствора соляной и 1%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 7:3, по завершении последнего цикла закачки продавку осуществляют пресной водой.
Способ гидравлического разрыва карбонатного пласта
Способ гидравлического разрыва карбонатного пласта
Способ гидравлического разрыва карбонатного пласта
Способ гидравлического разрыва карбонатного пласта
Источник поступления информации: Роспатент

Показаны записи 261-270 из 584.
20.01.2018
№218.016.1d7e

Центратор обсадной колонны

Изобретение относится к строительству скважин и может быть использовано в компоновке обсадной колонны или хвостовиков при креплении нефтяных и газовых скважин, а также боковых стволов. Технический результат - беспрепятственный спуск обсадной колонны в скважину и центрирование ее во время...
Тип: Изобретение
Номер охранного документа: 0002640849
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1da3

Способ ремонтно-изоляционных работ в скважине

Изобретение относится к нефтедобывающей промышленности и может быть использовано для проведения ремонтно-изоляционных работ (РИР) в скважинах. Способ ремонтно-изоляционных работ в скважинах включает приготовление и закачивание в скважину водоизоляционной композиции, содержащей, мас. %:...
Тип: Изобретение
Номер охранного документа: 0002640854
Дата охранного документа: 12.01.2018
13.02.2018
№218.016.2112

Установка для проведения спуско-подъемных операций в скважинах с наклонным устьем

Изобретение относится к нефтегазодобывающей промышленности, в частности к механизмам для проведения спуско-подъемных операций в скважинах с наклонным устьем. Установка включает подвижное шасси с рамой, на которой установлена с возможностью подъема одним или несколькими гидродомкратами одного...
Тип: Изобретение
Номер охранного документа: 0002641677
Дата охранного документа: 19.01.2018
13.02.2018
№218.016.21ea

Элеватор корпусной

Изобретение относится нефтегазодобывающей промышленности, а именно к оборудованию, применяемому при подземном ремонте нефтяных и газовых скважин, и предназначено для захвата колонны насосно-компрессорных труб и удержания их на весу в процессе спуско-подъемных операций. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002641803
Дата охранного документа: 22.01.2018
13.02.2018
№218.016.271a

Способ гидравлического разрыва пласта в скважине

Изобретение относится к нефтяной промышленности и может быть применено для гидроразрыва пласта. В способе гидравлического разрыва пласта ГРП в скважине, включающем перфорацию стенок обсадной колонны скважины в интервале пласта каналами, спуск колонны труб с пакером, посадку пакера над кровлей...
Тип: Изобретение
Номер охранного документа: 0002644361
Дата охранного документа: 09.02.2018
13.02.2018
№218.016.2728

Способ разработки неоднородного нефтяного пласта

Изобретение относится к нефтедобывающей промышленности, в частности к способам разработки неоднородного нефтяного пласта микробиологическим воздействием. Технический результат - увеличение охвата пласта за счет блокирования высокопроницаемых зон пласта и вовлечения в разработку...
Тип: Изобретение
Номер охранного документа: 0002644365
Дата охранного документа: 09.02.2018
13.02.2018
№218.016.272f

Состав для ограничения водопритока в добывающей скважине

Изобретение относится к нефтяной промышленности, в частности к составам для ограничения водопритока в добывающей скважине, и может найти применение для выравнивания профиля приемистости нагнетательной скважины. Состав для ограничения водопритока в добывающей скважине включает инвертную...
Тип: Изобретение
Номер охранного документа: 0002644363
Дата охранного документа: 09.02.2018
13.02.2018
№218.016.2738

Способ установки цементного моста в скважине

Изобретение относится к нефтегазодобывающей промышленности, а именно к установке цементных мостов в эксплуатационных колоннах скважин при временном отключении продуктивной части отдельных пластов или части пласта и ликвидации скважин. Технический результат – повышение эффективности установки...
Тип: Изобретение
Номер охранного документа: 0002644360
Дата охранного документа: 09.02.2018
17.02.2018
№218.016.2e32

Скважинный штанговый насос

Изобретение относится к отрасли нефтедобывающей промышленности и предназначено для добычи нефти из скважин. Насос содержит полый плунжер с нагнетательным клапаном, цилиндр с всасывающим клапаном в нижней части и кольцевым выступом в средней части. На кольцевом выступе размещены уплотнительные...
Тип: Изобретение
Номер охранного документа: 0002643921
Дата охранного документа: 06.02.2018
04.04.2018
№218.016.2f0f

Способ определения адгезии отвержденного цементного раствора и устройство для его осуществления

Изобретение относится к области испытаний материалов, в частности к устройствам и способам определения адгезии цементного камня к металлу. Сущность: осуществляют фиксацию вертикальной направляющей, установку коаксиально формы, заполнение зазора между ними цементным раствором, отверждение...
Тип: Изобретение
Номер охранного документа: 0002644629
Дата охранного документа: 13.02.2018
Показаны записи 261-270 из 400.
20.01.2018
№218.016.1da3

Способ ремонтно-изоляционных работ в скважине

Изобретение относится к нефтедобывающей промышленности и может быть использовано для проведения ремонтно-изоляционных работ (РИР) в скважинах. Способ ремонтно-изоляционных работ в скважинах включает приготовление и закачивание в скважину водоизоляционной композиции, содержащей, мас. %:...
Тип: Изобретение
Номер охранного документа: 0002640854
Дата охранного документа: 12.01.2018
13.02.2018
№218.016.2112

Установка для проведения спуско-подъемных операций в скважинах с наклонным устьем

Изобретение относится к нефтегазодобывающей промышленности, в частности к механизмам для проведения спуско-подъемных операций в скважинах с наклонным устьем. Установка включает подвижное шасси с рамой, на которой установлена с возможностью подъема одним или несколькими гидродомкратами одного...
Тип: Изобретение
Номер охранного документа: 0002641677
Дата охранного документа: 19.01.2018
13.02.2018
№218.016.21ea

Элеватор корпусной

Изобретение относится нефтегазодобывающей промышленности, а именно к оборудованию, применяемому при подземном ремонте нефтяных и газовых скважин, и предназначено для захвата колонны насосно-компрессорных труб и удержания их на весу в процессе спуско-подъемных операций. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002641803
Дата охранного документа: 22.01.2018
13.02.2018
№218.016.271a

Способ гидравлического разрыва пласта в скважине

Изобретение относится к нефтяной промышленности и может быть применено для гидроразрыва пласта. В способе гидравлического разрыва пласта ГРП в скважине, включающем перфорацию стенок обсадной колонны скважины в интервале пласта каналами, спуск колонны труб с пакером, посадку пакера над кровлей...
Тип: Изобретение
Номер охранного документа: 0002644361
Дата охранного документа: 09.02.2018
13.02.2018
№218.016.2728

Способ разработки неоднородного нефтяного пласта

Изобретение относится к нефтедобывающей промышленности, в частности к способам разработки неоднородного нефтяного пласта микробиологическим воздействием. Технический результат - увеличение охвата пласта за счет блокирования высокопроницаемых зон пласта и вовлечения в разработку...
Тип: Изобретение
Номер охранного документа: 0002644365
Дата охранного документа: 09.02.2018
13.02.2018
№218.016.272f

Состав для ограничения водопритока в добывающей скважине

Изобретение относится к нефтяной промышленности, в частности к составам для ограничения водопритока в добывающей скважине, и может найти применение для выравнивания профиля приемистости нагнетательной скважины. Состав для ограничения водопритока в добывающей скважине включает инвертную...
Тип: Изобретение
Номер охранного документа: 0002644363
Дата охранного документа: 09.02.2018
13.02.2018
№218.016.2738

Способ установки цементного моста в скважине

Изобретение относится к нефтегазодобывающей промышленности, а именно к установке цементных мостов в эксплуатационных колоннах скважин при временном отключении продуктивной части отдельных пластов или части пласта и ликвидации скважин. Технический результат – повышение эффективности установки...
Тип: Изобретение
Номер охранного документа: 0002644360
Дата охранного документа: 09.02.2018
17.02.2018
№218.016.2e32

Скважинный штанговый насос

Изобретение относится к отрасли нефтедобывающей промышленности и предназначено для добычи нефти из скважин. Насос содержит полый плунжер с нагнетательным клапаном, цилиндр с всасывающим клапаном в нижней части и кольцевым выступом в средней части. На кольцевом выступе размещены уплотнительные...
Тип: Изобретение
Номер охранного документа: 0002643921
Дата охранного документа: 06.02.2018
04.04.2018
№218.016.2f0f

Способ определения адгезии отвержденного цементного раствора и устройство для его осуществления

Изобретение относится к области испытаний материалов, в частности к устройствам и способам определения адгезии цементного камня к металлу. Сущность: осуществляют фиксацию вертикальной направляющей, установку коаксиально формы, заполнение зазора между ними цементным раствором, отверждение...
Тип: Изобретение
Номер охранного документа: 0002644629
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.3079

Устройство для разработки многопластовой скважины

Изобретение относится к нефтегазодобывающей промышленности и может быть применено при разработке многопластовых скважин как для раздельной, так и для одновременной выработки пластов. Устройство содержит патрубок с отверстиями, выполненными напротив каждого из продуктивных пластов, герметично...
Тип: Изобретение
Номер охранного документа: 0002644806
Дата охранного документа: 14.02.2018
+ добавить свой РИД