×
04.04.2018
218.016.3393

Результат интеллектуальной деятельности: Способ цементирования дополнительной колонны труб в нагнетательной скважине

Вид РИД

Изобретение

Аннотация: Изобретение относится к области нефтегазодобывающей промышленности, в частности к ремонту нагнетательной скважины путем спуска дополнительной колонны труб и ее последующего цементирования. Способ цементирования дополнительной колонны труб в нагнетательной скважине включает в себя этапы, на которых проводят геофизические исследования скважины для определения состояния эксплуатационной колонны, местоположений интервалов нарушений и интервалов перфорации, спускают и устанавливают компоновку дополнительной колонны труб в скважину, осуществляют подготовку расчетного объема тампонажного раствора и закачку его в дополнительную колонну труб, осуществляют продавку тампонажного раствора из дополнительной колонну труб в межколонное пространство скважины, оставляют скважину на время ожидания затвердевания цемента – ОЗЦ. После проведения геофизических исследований герметизируют интервалы нарушений и интервалы перфорации блокирующим составом. На устье нагнетательной скважины перед спуском компонуют дополнительную колонну труб, оснащенную снизу вверх башмачным патрубком с радиальными отверстиями, обратным клапаном, стоп-кольцом, хвостовиком из стальных насосно-компрессорных труб - НКТ, колонной стеклопластиковых труб до устья нагнетательной скважины и патрубком подгоночным из стальной НКТ. Дополнительную колонну труб спускают в нагнетательную скважину от забоя до устья так, чтобы хвостовик из стальных НКТ размещался напротив интервала перфорации скважины. Затем на устье скважины готовят расчетный объем тампонажного раствора плотностью 1430 кг/м, состоящий из 84,45% - цемента ПЦТ-II-50, 15% - пеностекла, 0,5% - понизителя водоотдачи, 0,05% - пеногасителя. Далее в дополнительную колонну труб закачивают расчетный объем тампонажного раствора и продавливают его с применением продавочной пробки технологической жидкостью плотностью 1180 кг/м с расходом 10-15 л/с, при этом в процессе продавки последних 0,5 м тампонажного раствора расход технологической жидкости снижают до 4 л/с. После выхода тампонажного раствора из межтрубного пространства, но перед взаимодействием продавочной пробки со стоп-кольцом, фиксируют давление продавки. После чего давление в дополнительной колонне труб снижают на 50-60% от значения давления продавки и оставляют скважину на ОЗЦ. По окончании времени ОЗЦ снижают давление в дополнительной колонне труб до атмосферного и производят вторичное вскрытие интервалов перфорации с использованием кумулятивной перфорации. Затем спускают колонну гибких труб, промывают забой и определяют приемистость вскрытых интервалов перфорации, после чего запускают скважину в эксплуатацию. Предлагаемый способ позволяет повысить качество крепления дополнительной колонны труб, а также увеличить срок службы стальных труб дополнительной колонны в нагнетательных скважинах. 2 ил., 1 пр.

Изобретение относится к области нефтедобычи, в частности к ремонту нагнетательной скважины путем спуска дополнительной колонны труб и ее последующего цементирования.

Известен способ ремонта эксплуатационной колонны путем спуска в скважину и цементирования дополнительной колонны (Амиров А.Д., Карапетов К.А., Лемберанский Ф.Д. и др. Справочная книга по текущему и капитальному ремонту нефтяных и газовых скважин. М.: Недра, 1979, стр. 207). Согласно способу производят спуск в скважину до забоя дополнительной колонны труб, после чего выполняют тампонажные работы с подъемом цементного раствора за дополнительной колонной труб.

Недостатки способа:

- во-первых, вследствие того, что интервалы перфорации и нарушения эксплуатационной колонны (ЭК) при формировании цементного кольца за дополнительной колонной труб не загерметизированы, в скважине образуется водяной пояс из-за фильтрации жидкой фазы цементного раствора в нарушении ЭК и в интервалах перфорации. Образование водяного пояса нарушает монолитность цементного кольца, снижая качество крепи дополнительной колонны труб, что приводит к ускоренной коррозии дополнительной колонны труб и потери ее герметичности в течение 1-3 лет;

- во-вторых, не управляемая фильтрация жидкой фазы цементного раствора в нарушении ЭК и в интервалах перфорации, протекающая в начальный период ожидания затвердевания цемента (ОЗЦ) под действием веса столба цементного раствора, влечет за собой недостаточную высоту подъема цементного раствора за дополнительной колонной труб, тем самым оголяя верхнюю часть дополнительной колонны труб, что уменьшает надежность проведения тампонажных работ.

Наиболее близким по технической сущности и достигаемому результату является способ цементирования дополнительной колонны (патент RU №2568198, МПК Е21В 33/14, опубл. в бюл. №31 от 10.11.2015 г.), включающий в себя этапы, на которых проводят геофизические исследования скважины для определения состояния ЭК, местоположений интервалов нарушений и интервалов перфорации. На основании результатов геофизических исследований определяют длину цементируемой дополнительной колонны, количество и места установки уплотнительных устройств на дополнительной колонне из расчета их последующего расположения на расстоянии 8-12 м выше и ниже интервалов нарушений и на расстоянии 8-12 м над верхней границей интервала перфорации. Выполняют сборку компоновки дополнительной колонны путем установки уплотнительных устройств в соответствии с данными, полученными на этапе определения мест установки уплотнительных устройств, и путем установки жестких центраторов выше и ниже от уплотнительных устройств.

Установку уплотнительных устройств осуществляют следующим образом: на дополнительную колонну снизу одевают верхнее ограничительное кольцо, резиновую уплотнительную манжету самоуплотняющегося типа, конусообразный упор с жесткими лепестками и зазорами, обеспечивающими проход цементного раствора. Ограничительное кольцо и конусообразный упор жестко закрепляют на дополнительной колонне. Спускают и устанавливают компоновку дополнительной колонны в скважину на глубину, определенную в соответствии с результатами геофизических исследований. Спускают в скважину оборудование для закачки цементного раствора. Осуществляют подготовку расчетного объема тампонажного раствора (цементного раствора) и закачку его в дополнительную колонну. Осуществляют продавку тампонажного раствора из дополнительной колонны труб в межколонное пространство скважины. Оставляют скважину на время ОЗЦ.

Недостатками способа являются:

- во-первых, низкое качество крепления дополнительной колонны труб из-за наличия уплотнительных устройств в межколонном пространстве, препятствующих равномерному заполнению по всей длине межколонного пространства между дополнительной колонной труб и ЭК тампонажным раствором, что способствует потере монолитности крепи дополнительной колонны труб;

- во-вторых, низкая надежность реализации способа ввиду высокой вероятности получения преждевременного «СТОП» в процессе продавки (подъема тампонажного раствора в межколонном пространстве между дополнительной колонной труб и ЭК) из-за наличия в составе дополнительной колонны труб уплотнительных устройств, которые необходимо продавливать снизу вверх тампонажным раствором, а это ведет к созданию дополнительных гидравлических сопротивлений при подъеме тампонажного раствора за дополнительной колонной труб;

- в-третьих, недоподъем тампонажного раствора до устья нагнетательной скважины, так как в качестве тампонажного раствора от забоя до устья нагнетательной скважины применяют цементный раствор плотностью 1850 кг/м3, из-за чего создаются высокие давления продавки. Кроме того, в процессе ОЗЦ происходит потеря герметичности уплотнительных манжет самоуплотняющегося типа за счет их передавливания вниз под весом цементного раствора и поглощения цементного раствора в не загерметизированные нарушения и в интервалы перфорации;

- в-четвертых, низкий срок службы стальных труб дополнительной колонны в нагнетательных скважинах (до следующего капитального ремонта) по причине коррозии, возникающей в дополнительной колонне труб под действием агрессивных вод, закачиваемых в пласт через нагнетательную скважину.

Техническими задачами изобретения являются повышение качества крепления дополнительной колонны труб, надежности реализации способа, а также гарантированный подъем тампонажного раствора до устья скважины и продление срока службы скважины.

Поставленные задачи решаются способом цементирования дополнительной колонны труб в нагнетательной скважине, включающим в себя этапы, на которых проводят геофизические исследования скважины для определения состояния эксплуатационной колонны, местоположений интервалов нарушений и интервалов перфорации, спускают и устанавливают компоновку дополнительной колонны труб в скважину, осуществляют подготовку расчетного объема тампонажного раствора и закачку его в дополнительную колонну труб, осуществляют продавку тампонажного раствора из дополнительной колонны труб в межколонное пространство скважины, оставляют скважину на время ожидания затвердевания цемента - ОЗЦ.

Новым является то, что после проведения геофизических исследований герметизируют интервалы нарушений и интервалы перфорации блокирующим составом, на устье нагнетательной скважины перед спуском компонуют дополнительную колонну труб, оснащенную снизу вверх башмачным патрубком с радиальными отверстиями, обратным клапаном, стоп-кольцом, хвостовиком из стальных насосно-компрессорных труб - НКТ, колонной стеклопластиковых труб до устья нагнетательной скважины и патрубком подгоночным из стальной НКТ, спускают дополнительную колонну труб в нагнетательную скважину от забоя до устья так, чтобы хвостовик из стальных НКТ размещался напротив интервала перфорации скважины, затем на устье скважины готовят расчетный объем тампонажного раствора плотностью 1430 кг/м3, состоящий из 84,45% - цемента ПЦТ-II-50, 15% - пеностекла, 0,5% - понизителя водоотдачи, 0,05% - пеногасителя, далее в дополнительную колонну труб закачивают расчетный объем тампонажного раствора и продавливают его с применением продавочной пробки технологической жидкостью плотностью 1180 кг/м3 с расходом 10-15 л/с, при этом в процессе продавки последних 0,5 м3 тампонажного раствора расход технологической жидкости снижают до 4 л/с, при этом после выхода тампонажного раствора из межтрубного пространства, но перед взаимодействием продавочной пробки со стоп-кольцом, фиксируют давление продавки, после чего давление в дополнительной колонне труб снижают на 50-60% от значения давления продавки, оставляют скважину на ОЗЦ, по окончании времени ОЗЦ снижают давление в дополнительной колонне труб до атмосферного, производят вторичное вскрытие интервалов перфорации с использованием кумулятивной перфорации, спускают колонну гибких труб, промывают забой и определяют приемистость вскрытых интервалов перфорации, после чего запускают скважину в эксплуатацию.

На фиг. 1 и 2 схематично и последовательно изображен предлагаемый способ цементирования дополнительной колонны труб в нагнетательной скважине.

Предлагаемый способ реализуют следующим образом.

ЭК 1 (см. фиг. 1) на устье нагнетательной скважины оснащена колонной муфтой 2, колонным патрубком с отводом 3, колонным фланцем, на котором с помощью шпилек 4 (на фиг. 1 и 2 показаны условно) закреплен фланец-планшайба 5 (см. фиг. 1).

Проводят геофизические исследования в нагнетательной скважине для определения технического состояния ЭК 1 (см. фиг. 1), местоположений интервалов нарушений ЭК 1 и интервалов перфорации (на фиг. 1 и 2 показаны условно).

Исследования проводятся известными способами, включающими в себя: термометрию, расходометрию, локатор муфт и другие.

На основании результатов геофизических исследований герметизируют интервалы нарушений ЭК 1 и интервалы перфорации блокирующим составом (любым известным), например, водонабухающим полимером, рассчитанным на давление, превышающее на 10% давление продавки тампонажного раствора, например 11,0 МПа.

На устье нагнетательной скважины перед спуском компонуют сверху вниз дополнительную колонну труб: башмачным патрубком 6 с радиальными отверстиями (на фиг. 1 показаны условно), обратным клапаном 7, стоп-кольцом 8, хвостовиком 9 из стальных НКТ, например, диаметром 73 на 5,5 мм (внутренний диаметр хвостовика 9 равен: 73 мм - (2⋅5,5 мм) = 62 мм), хвостовик 9 из стальных НКТ соединен посредством стальной муфты переводника 10 с колонной стеклопластиковых труб (СПТ) 11, например, также диаметром 77,7 на 8,0 мм (внутренний диаметр СПТ 11 равен: 77,7 мм - (2⋅8,0 мм) = 61,7 мм, до колонной муфты 2, т.е. устья скважины. Внутренние диаметры хвостовика 9 и СПТ 11 соизмеримы и составляют 62 и 61,7 мм. При этом колонная муфта 2 СПТ 11 посредством стальной муфты переводника 10 соединена с патрубком подгоночным 12 из стальной НКТ.

Дополнительную колонну труб спускают в нагнетательную скважину до упора на забой так, чтобы хвостовик 9 из стальных НКТ размещался напротив интервала перфорации скважины. Разгрузку дополнительной колонны труб на забой нагнетательной скважины контролируют по индикатору веса (снижение показаний веса дополнительной колонны труб при разгрузке ее на забой нагнетательной скважины должно составлять не более 0,5 т = 5000 Н).

Хвостовик 9 из стальных НКТ включен в состав дополнительной колонны труб с целью вторичного вскрытия интервалов перфорации кумулятивным перфоратором после цементирования.

Далее во фланец-планшайбу 5 заворачивают цементировочную головку 13 с продавочной пробкой 14 внутри. Открывают кран 15 колонного патрубка 3 с отводом.

Обвязывают цементировочный агрегат (не показано) с патрубком цементировочной головки 13 (см. фиг. 1), на котором находится кран 16 (кран 16 открыт, кран 17 закрыт).

С помощью цементировочного агрегата производят закачку технологической жидкости, например сточной воды, плотностью 1180 кг/м3 по дополнительной колонне труб. Определяют наличие циркуляции по дополнительной колонне труб через обратный клапан 7 и радиальные отверстия башмачного патрубка 6 по выходу технологической жидкости из межколонного пространства 18 (см. фиг. 1 и 2) через кран 15 колонного патрубка 3 с отводом.

Далее на устье нагнетательной скважины готовят тампонажный раствор следующего состава:

84,45% - цемент ПЦТ-П-50;

15% - пеностекло;

0,5% - понизитель водоотдачи;

0,05% - пеногаситель.

Цемент ПЦТ-II-50 выпускается согласно ГОСТ 1581-96 «Тампонажный портландцемент типа II для низких и нормальных температур».

При реализации способа в качестве пеностекла применяют гранулированное пеностекло насыпной плотностью 400-450 кг/м3 и размерами 0,4-1,5 мм. Пеностекло состоит из оксида кремния SiO2, а остаток составляют устойчивые оксиды металлов.

Основным назначением пеностекла при реализации данного способа является его применение в качестве облегчающей добавки в тампонажном растворе при креплении дополнительной колонны труб в нагнетательной скважине, что позволяет снизить плотность тампонажного раствора до плотности 1430 кг/м3 с одновременным повышением прочности на сжатие.

Плотность тампонажного раствора до 1430 кг/м3 в сравнении с плотностью цементного раствора, равной 1850 кг/м3, описанной в прототипе, позволяет снизить в полтора раза давление продавки тампонажного раствора в межколонное пространство 18 (см. фиг. 2) нагнетательной скважины, что в свою очередь обеспечивает гарантированный подъем тампонажного раствора до устья скважины. Кроме того, герметизация интервалов нарушений и интервалов перфорации скважины блокирующим составом в процессах продавки и ОЗЦ исключает поглощение тампонажного раствора в нарушения и интервалы перфорации под действием веса тампонажного раствора.

В качестве понизителя водоотдачи, например, применяют реагент для цементирования BauCem FL - полимерный понизитель водоотдачи, проявляющий свои свойства во время промысловых цементировочных работ за счет структурирования цементного теста и удерживания воды в объеме раствора. Продукт хорошо совместим с любыми классами цемента, не влияет на строки его застывания, быстро растворяется в разных затворяющих жидкостях и отличается термической стабильностью.

В качестве пеногасителя, например, применяют реагент Пента-463, эффективный для гашения пены в процессах, сопровождающихся пенообразованием.

Например, на устье скважины готовят расчетный объем тампонажного раствора, равный 20 м3, состоящий из:

- цемента ПЦТ-II-50: 20 м3 ⋅ (84,45% / 100%) = 16,89 м3;

- пеностекла: 20 м3 ⋅ (15% / 100%)=3 м3;

- понизителя водоотдачи: 20 м3 ⋅ (0,5% / 100%) = 0,1 м3;

- пеногасителя: 20 м3 ⋅ (0,05% / 100%) = 0,01 м3.

Плотность приготовленного тампонажного раствора составляет 1430 кг/м3, что контролируется ареометром на устье в процессе тампонирования.

Далее с помощью цементировочного агрегата через кран 16 (кран 16 открыт, кран 17 закрыт) патрубка цементировочной головки 13 (см. фиг. 1) в дополнительную колонну труб закачивают тампонажный раствор в расчетном объеме, например 20 м3.

Затем отворачивают фиксаторы (на фиг. 1 показано условно) цементировочной головки 13 и освобождают продавочную пробку 14.

Производят продавливание тампонажного раствора через кран 17 расчетным количеством технологической жидкости плотностью 1180 кг/м3 с расходом 10-15 л/с. При этом в процессе продавки последних 0,5 м3 тампонажного раствора, чтобы избежать резкого повышения давления по окончании продавки в момент «СТОП», расход технологической жидкости снижают до 4 л/с.

В момент выхода цементного раствора из межтрубного пространства 18, но перед взаимодействием продавочной пробки 14 со стоп-кольцом 8 (получения момента «СТОП», т.е. резкого повышения давления продавки, например до 15,0 МПа) фиксируют давление продавки, например давление продавки составило 10,0 МПа.

После чего давление в дополнительной колонне труб снижают в два раза от значения, достигнутого при продавке, т.е. 10,0 МПа/2=5,0 МПа.

Оставляют скважину на ОЗЦ, например, на 24 часа. По окончании времени ОЗЦ снижают давление в дополнительной колонне труб до атмосферного.

Применение данного способа по сравнению с прототипом имеет следующие преимущества.

Повышается качество крепления дополнительной колонны труб из-за отсутствия уплотнительных устройств в межколонном пространстве, что обеспечивает равномерное заполнение межколонного пространства между дополнительной колонной труб и ЭК 1 тампонажным раствором по всей длине, а это способствует созданию монолитной крепи в межколонном пространстве за дополнительной колонной труб. Кроме того, пеностекло в составе тампонажного раствора при долговременной эксплуатации не изменяет своих физических свойств, стойко к агрессивным кислотам и жидкостям, непроницаемо для воды и газов, что также повышает качество крепи скважины.

Повышается надежность реализации способа, так как исключается преждевременный «СТОП» в процесс продавки (подъем тампонажного раствора в межколонном пространстве между дополнительной колонной труб и ЭК) из-за отсутствия в составе дополнительной колонны труб уплотнительных устройств, создающих дополнительные гидравлические сопротивления.

Включение в состав дополнительной колонны СПТ 11 от интервалов перфорации до устья скважины позволяет увеличить срок службы нагнетательной скважины до следующего капитального ремонта по причине того, что СПТ 1 не подвержена коррозии, возникающей в дополнительной колонне труб под действием агрессивных вод, закачиваемых в пласт через нагнетательную скважину.

Производят спуск перфоратора в дополнительную колонну труб в интервал хвостовика 9 из стальных НКТ и вторичное вскрытие интервалов перфорации скважины выполнением кумулятивной перфорации.

Затем извлекают перфоратор из дополнительной колонны труб и спускают в нее колонну гибких труб (не показано).

Промывают забой нагнетательной скважины закачкой промывочной жидкости, например сточной воды плотностью 1110 кг/м3 в двукратном объеме дополнительной колонны труб (15 м3).

После чего герметизируют колонну гибких труб на устье и определяют приемистость вскрытых интервалов перфорации, извлекают из нагнетательной скважины колонну гибких труб и запускают нагнетательную скважину в эксплуатацию.

Способ цементирования дополнительной колонны труб в нагнетательной скважине позволяет:

- повысить качество крепления дополнительной колонны труб;

- повысить надежность реализации способа;

- обеспечить гарантированный подъем тампонажного раствора до устья скважины;

- увеличить срок службы стальных труб дополнительной колонны труб в нагнетательных скважинах.

Способ цементирования дополнительной колонны труб в нагнетательной скважине, включающий в себя этапы, на которых проводят геофизические исследования скважины для определения состояния эксплуатационной колонны, местоположений интервалов нарушений и интервалов перфорации, спускают и устанавливают компоновку дополнительной колонны труб в скважину, осуществляют подготовку расчетного объема тампонажного раствора и закачку его в дополнительную колонну труб, осуществляют продавку тампонажного раствора из дополнительной колонну труб в межколонное пространство скважины, оставляют скважину на время ожидания затвердевания цемента - ОЗЦ, отличающийся тем, что после проведения геофизических исследований герметизируют интервалы нарушений и интервалы перфорации блокирующим составом, на устье нагнетательной скважины перед спуском компонуют дополнительную колонну труб, оснащенную снизу вверх башмачным патрубком с радиальными отверстиями, обратным клапаном, стоп-кольцом, хвостовиком из стальных насосно-компрессорных труб - НКТ, колонной стеклопластиковых труб до устья нагнетательной скважины и патрубком подгоночным из стальной НКТ, спускают дополнительную колонну труб в нагнетательную скважину от забоя до устья так, чтобы хвостовик из стальных НКТ размещался напротив интервала перфорации скважины, затем на устье скважины готовят расчетный объем тампонажного раствора плотностью 1430 кг/м, состоящий из 84,45% - цемента ПЦТ-II-50, 15% - пеностекла, 0,5% - понизителя водоотдачи, 0,05% - пеногасителя, далее в дополнительную колонну труб закачивают расчетный объем тампонажного раствора и продавливают его с применением продавочной пробки технологической жидкостью плотностью 1180 кг/м с расходом 10-15 л/с, при этом в процессе продавки последних 0,5 м тампонажного раствора расход технологической жидкости снижают до 4 л/с, при этом после выхода тампонажного раствора из межтрубного пространства, но перед взаимодействием продавочной пробки со стоп-кольцом, фиксируют давление продавки, после чего давление в дополнительной колонне труб снижают на 50-60% от значения давления продавки, оставляют скважину на ОЗЦ, по окончании времени ОЗЦ снижают давление в дополнительной колонне труб до атмосферного, производят вторичное вскрытие интервалов перфорации с использованием кумулятивной перфорации, спускают колонну гибких труб, промывают забой и определяют приемистость вскрытых интервалов перфорации, после чего запускают скважину в эксплуатацию.
Способ цементирования дополнительной колонны труб в нагнетательной скважине
Источник поступления информации: Роспатент

Показаны записи 291-300 из 594.
10.05.2018
№218.016.3ec1

Устройство для извлечения уплотнительных элементов из устьевого сальника

Изобретение относится к устройству для извлечения уплотнительных элементов из устьевого сальника. Техническим результатом является повышение удобства при пользовании. Устройство для извлечения уплотнительных элементов из устьевого сальника выполнено в виде разрезной трубы с продольным пазом под...
Тип: Изобретение
Номер охранного документа: 0002648385
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.3f05

Способ утилизации попутно добываемой пластовой воды

Изобретение относится к нефтедобывающей промышленности, в частности к способам утилизации попутно-добываемой воды при эксплуатации высокообводненных нефтяных скважин на поздней стадии эксплуатации нефтяного месторождения. Способ утилизации попутно добываемой пластовой воды включает закачку...
Тип: Изобретение
Номер охранного документа: 0002648410
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.43fd

Устьевой сальник

Изобретение относится к нефтепромысловому оборудованию, в частности к конструкции устройств для герметизации устья скважин, и может быть использовано при добыче нефти штанговыми насосами. Устьевой сальник включает закрепленную к тройнику шаровую головку, закрытую сверху крышкой и содержащую...
Тип: Изобретение
Номер охранного документа: 0002649708
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4485

Трубная головка

Изобретение относится к горному делу, в частности к устьевому оборудованию для эксплуатации скважин. Трубная головка включает корпус со ступенчатым осевым каналом, боковыми исследовательским каналом и линией сбора, трубодержатель, установленный в осевом канале корпуса, для подвески лифтовой...
Тип: Изобретение
Номер охранного документа: 0002650000
Дата охранного документа: 06.04.2018
10.05.2018
№218.016.449d

Устройство для изоляции водопритоков в нефтегазодобывающей скважине

Изобретение относится к нефтегазодобывающей промышленности и предназначено для ограничения и изоляции водопритоков. Технический результат - повышение эффективности и надежности изоляции зон водопритоков за счет возможности сохранения коллекторских свойств продуктивной части ствола. Устройство...
Тип: Изобретение
Номер охранного документа: 0002650004
Дата охранного документа: 06.04.2018
10.05.2018
№218.016.44c2

Способ ремонтно-изоляционных работ в скважине

Изобретение относится к нефтедобывающей промышленности и может быть использовано для проведения ремонтно-изоляционных работ в скважине. Способ включает приготовление и закачивание изоляционной композиции в скважину, содержащей 25,0-60,0 мас.% ацетоноформальдегидной смолы и 15,0-25,0 мас.%...
Тип: Изобретение
Номер охранного документа: 0002650001
Дата охранного документа: 06.04.2018
10.05.2018
№218.016.454e

Клин-отклонитель для забуривания боковых стволов из необсаженных скважин

Изобретение относится к бурению скважин, а именно к забуриванию боковых стволов из ранее пробуренных необсаженных скважин. Клин-отклонитель для забуривания боковых стволов из необсаженных скважин включает клин с направляющим желобом и продольным каналом, соединенный шарнирно поперечной осью с...
Тип: Изобретение
Номер охранного документа: 0002650163
Дата охранного документа: 09.04.2018
10.05.2018
№218.016.4ccf

Способ установки профильного перекрывателя в скважине

Изобретение относится к нефтегазодобывающей промышленности, а именно к способам изоляции зон осложнений при бурении скважин перекрывателями из профильных труб. Способ включает установку профильного перекрывателя в скважине, соединение секций профильных труб, спуск перекрывателя в зону...
Тип: Изобретение
Номер охранного документа: 0002652401
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4cd7

Способ термохимической обработки нефтяного пласта (варианты)

Группа изобретений относится к нефтедобывающей промышленности. Технический результат - направленное термохимическое воздействие на нефтенасыщенные пропластки, подключение в разработку ранее не охваченных нефтенасыщенных, низкопроницаемых зон пласта, увеличение охвата пласта тепловым...
Тип: Изобретение
Номер охранного документа: 0002652238
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4cde

Способ разработки двух объектов разной стратиграфической принадлежности

Изобретение относится к области нефтегазодобывающей промышленности, в частности к разработке многообъектного месторождения. Способ разработки нефтяного месторождения включает бурение наклонно направленных добывающих и нагнетательных скважин, отбор из добывающих скважин и закачку вытесняющего...
Тип: Изобретение
Номер охранного документа: 0002652240
Дата охранного документа: 25.04.2018
Показаны записи 291-300 из 428.
29.05.2018
№218.016.5968

Способ определения эффективности гидравлического разрыва пласта скважины

Изобретение относится к разработке нефтяных залежей и может быть применено для проведения гидравлического разрыва пласта (ГРП) с различной проницаемостью пород. Способ включает проведение исследований до и после проведения ГРП с проппантом, проведение ГРП, определение эффективности ГРП на...
Тип: Изобретение
Номер охранного документа: 0002655310
Дата охранного документа: 25.05.2018
29.05.2018
№218.016.5997

Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины

Изобретение относится к нефтяной промышленности и может быть применено для многократного гидравлического разрыва пласта в горизонтальном стволе скважины. Способ многократного гидравлического разрыва пласта - ГРП в горизонтальном стволе скважины включает бурение горизонтального ствола скважины,...
Тип: Изобретение
Номер охранного документа: 0002655309
Дата охранного документа: 25.05.2018
09.06.2018
№218.016.5de5

Способ перфорации скважины и обработки призабойной зоны карбонатного пласта

Изобретение относится к нефтегазодобывающей промышленности, к области эксплуатации скважин, а именно к способам вторичного вскрытия и обработки призабойной зоны карбонатных пластов. Способ включает спуск колонны НКТ с гидромеханическим прокалывающим перфоратором на нижнем конце в...
Тип: Изобретение
Номер охранного документа: 0002656255
Дата охранного документа: 04.06.2018
16.06.2018
№218.016.62c2

Станок для распиловки керна

Изобретение относится к области геологоразведочных работ и может быть использовано для распиловки керна горных пород. Техническим результатом являются упрощение и усовершенствование конструкции подающего устройства рабочего органа, повышение точности выполнения распилов керна, снижение износа...
Тип: Изобретение
Номер охранного документа: 0002657582
Дата охранного документа: 14.06.2018
10.08.2018
№218.016.7b34

Гидромеханический перфоратор

Изобретение относится к нефтедобывающей промышленности, в частности к области вторичного вскрытия созданием перфорационных каналов в эксплуатационной колонне. Гидромеханический перфоратор содержит гидропривод, состоящий из по меньшей мере двух цилиндров с поршнями, верхний из которых соединен с...
Тип: Изобретение
Номер охранного документа: 0002663760
Дата охранного документа: 09.08.2018
22.09.2018
№218.016.88be

Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины

Изобретение относится к способам гидравлического разрыва в горизонтальном стволе скважины. Способ включает бурение горизонтального ствола скважины, определение нефтенасыщенных интервалов пласта, вскрытого горизонтальным стволом скважины, спуск и крепление хвостовика, поинтервальное выполнение...
Тип: Изобретение
Номер охранного документа: 0002667240
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.8936

Способ гидравлического разрыва пласта

Изобретение относится к нефтяной промышленности и может быть применено при гидравлическом разрыве карбонатного пласта или залежи высоковязкой нефти. Способ включает перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений...
Тип: Изобретение
Номер охранного документа: 0002667255
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.8983

Способ перфорации скважины и обработки призабойной зоны карбонатного пласта

Изобретение относится к нефтегазодобывающей промышленности, к области эксплуатации скважин, а именно к способам для вторичного вскрытия и обработки призабойной зоны карбонатного пласта. Способ включает спуск в эксплуатационную колонну (ЭК) закрепленных на колонне насосно-компрессорных труб...
Тип: Изобретение
Номер охранного документа: 0002667239
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.8990

Способ определения пространственной ориентации трещины гидроразрыва в горизонтальном стволе скважины

Изобретение относится к проведению гидравлического разрыва пласта (ГРП) и может быть применено для определения ориентации трещины в горизонтальном стволе скважины, полученной в результате ГРП. Способ включает проведение ГРП с образованием трещины разрыва и определение пространственной...
Тип: Изобретение
Номер охранного документа: 0002667248
Дата охранного документа: 18.09.2018
23.09.2018
№218.016.8a86

Способ многократного гидравлического разрыва пласта в открытом стволе наклонной скважины

Изобретение относится к способам гидравлического разрыва в открытых стволах горизонтальных скважин, вскрывших многопластовую продуктивную залежь нефти с низкими фильтрационно-емкостными свойствами с подошвенной водой в карбонатных породах. Способ включает бурение скважины в продуктивном пласте,...
Тип: Изобретение
Номер охранного документа: 0002667561
Дата охранного документа: 21.09.2018
+ добавить свой РИД